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ABSTRACT 

This paper introduces an approach for highly efficient 
simulation of supply networks in which several nodes use 
advanced planning and scheduling (APS) systems. APS 
systems increasingly become part of bigger companies IT 
landscape.  Today, APS systems communicate only with 
the ERP system they sit on top of. If APS systems would 
be able to communicate with each other, qualitatively new 
processes for planning collaboration in supply nets could 
emerge. Simulation is accepted to be an useful approach 
for support of business process design. Design of planning 
processes which should exploit APS systems requires 
simulation systems with integrated APS functionality.  

We augmented an existing, agent-based simulation 
system by an APS component which we developed based 
on finite domain (FD) constraint technology. In this paper, 
we present our simulation system with special focus on the 
APS component, and results of a simulation experiment 
which was used for the proof of concept.  

1 INTRODUCTION 

In many industries, companies tend to reduce their own 
operation to fields of their core competence. The depth of 
value added processes decreases, as outsourcing of many 
operations is performed. Closely coupled supply networks 
emerge. In such networks, management of the relationship 
with suppliers becomes more important than ever.  

The key concept shaped out in last year is collabora-
tion. It comprises the fact that the most critical factor for 
successful management of relationships in supply nets is 
that companies work together. Fields of collaboration 
range from sharing knowledge, data and IT systems over 
common process design and implementation up to com-
mon supply net controlling and assessment.  
 
Another trend is that APS systems increasingly be-

come part of bigger companies IT landscape.  As of today, 
APS systems communicate only with the ERP system they 
sit on top of. If APS systems would be able to communi-
cate with each other, qualitatively new processes for plan-
ning collaboration in supply nets could emerge. 

Most projects on collaboration reported in the last 
year act mainly on the operational level. Sharing knowl-
edge and data, e.g. production program plans, plans for 
new products and their production start, inventories, key 
performance indicators (KPIs) and even calculations in-
creasingly become reality in industries like automotive, 
high-tech and consumer packaged goods. Commonly 
used systems which act above transaction level arise. The 
systems make data and knowledge visible for partners, 
perform simple calculations, e.g. comparisons of de-
mands, inventories and capacities, create and  send alerts 
in case of mismatches and support the workflow for solv-
ing problems. These systems are labeled as demand visi-
bility, demand-capacity-comparison, and collaborative 
capacity management systems.  

Although they help to solve essentially operational 
problems, these systems are not the high end of supply net 
management, for the following reasons: 

• 

• 

Despite the fact that most approaches are sup-
ported by web-based IT systems, they heavily rely 
on human action. The systems are usually not 
closely coupled with the ERP systems of the part-
ners. Solving an alerted problem, e.g. a capacity 
shortage, requires from the user to interpret the 
data, understand the problem, and solving it by 
use of his primary planning system.   
The systems reported so far are mainly proprietary 
solutions for particular supply chains, not seldom 
only between two companies. Extending these ap-
proaches to much more partners, e.g. to the auto-
motive supply network in it’s broadness and 
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deepness, will induce new questions. Due to net-
work effects of information flow and parallel de-
cision making  in different branches of the net-
work, it is not clear if stable states can be reached: 
a solution for one sub-problem, i.e. a new produc-
tion plan, can cause new problems in other sub-
networks in which demand and capacity were 
aligned before. If such problems start to oscillate, 
the user will be confronted with tons of alerts in 
short time. This would inevitably de-motivate the 
user. She would start to ignore the alerts or work 
only on that they assume to be important.  

• 

• 

The systems provide no concepts for collaboration 
on tactical or even strategic level. But the founda-
tion for supply network management comes from 
these levels: the better the partners in a supply net 
are aligned with regard to their strategy and their 
process designs, the better the operational work 
can be performed. Alerting operational problems 
is often not more than allaying symptoms of bad 
process design or alignment. Sustainable repair 
can be reached only by work on the higher levels.  
The most common approach for design of col-
laborative processes is to execute a pilot project 
with a software which is roughly specified in ad-
vance or chosen from the software market. This is 
again a very operational approach, which has sev-
eral shortcomings: (1) implementation of software 
pilot creates effort for software installation and IT 
support, data gathering, software adaptation, user 
teaching, etc. Process design, which is the original 
aim, tends to be crowded out of the project focus. 
(2) there are often no unique causal relationships 
between processes and KPIs. Other changes in the 
environment can effect the same KPIs, i.e effects 
of the piloted processes are difficult to measure. 
(3) supply net management processes mainly have 
mid- and long term effects. Pilot projects will be 
performed usually over periods of three to six 
month. The effects of process changes can often 
not be shown within the pilot project.    

Two essential problems can be derived from these observa-
tions. The first is to reduce the need of human action in 
planning collaboration. The second problem is to shift the 
work on design of collaborative approaches from the op-
erational to at least the tactical level.  

A solution approach for the first problem is the proper 
use of APS systems in collaboration, the second problem 
can be addressed by use of simulation for process design, 
as described in Wilke (2002). A pioneering approach, ad-
dressing both topics in combination, was presented by 
Lendermann, Gan, and McGinnis (2001). The approach 
presented in this paper also addresses the combination of 
supply chain simulation and APS systems, but on a higher 
level of abstraction. Instead of using an event-based simu-
lator and an commercial APS system, we use an highly ef-
ficient special purpose supply net simulator and an APS 
component which was specifically developed for this simu-
lator. With this approach, we can simulate supply networks 
of real size where several APS systems are in use. Simula-
tions have runtimes of few minutes, so that large scenario 
spaces can be explored and interactive use of the simula-
tion is possible.  

We would like to present our approach in the remain-
der of this paper in the following way. After discussing the 
motivating questions more detailed in the following two 
sub-sections, we introduce in Section 2 the ingredients of 
the technical system SNS-APS, the agent-based supply net 
simulator SNS and Finite Domain constraint solving. In 
Section 3  we present our APS system and it’s integration 
into SNS. One sample scenario we investigated will be 
presented in Section 4.  

1.1 Collaborative Planning by Interacting,  
Intelligent Planning Systems  

An extension to the human-centric collaboration approach 
is to develop automated, intelligent information exchange 
and processing tools for supply net planning. Of course, 
this does not mean to get the human completely out of the 
process: the planning systems will need interaction with 
their users too, but only in cases when it is really neces-
sary, and then, by presenting solution proposals instead of 
problem descriptions. We claim that there is a lot of rou-
tine activity in demand visibility and capacity comparison 
processes from which human could be unburdened.  

It is also absolutely out of question that central plan-
ning approaches cannot work. Some software vendors pro-
vide a central planning engine on a web server with the 
possibility to connect many clients via Internet and call it 
“collaborative planning tool”. These approaches do neither 
understand the importance of planning and decision auton-
omy of independent companies nor the effects of computa-
tional  complexity which make this approach infeasible for 
large networks both from the organizational and from the 
technical point of view.   

We started to explore the possibility of distributed, 
collaborative supply net planning based on interacting 
planning systems in a research project in 2002. Since no-
body knew in advance whether this kind of collaborative 
planning is a useful approach or not, we developed a proof 
of concept under laboratory conditions. The central ques-
tions shaped out first in the project were:  

1. Which information is appropriate to be sent at 
which time from which node to which node in the 
supply network?  

2. How can this information be created and how 
should it be processed, as far as possible auto-
matically? 
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The work was mainly influenced by our previous re-
search on distributed, coordinated, constraint-based plan-
ning for DaimlerChrysler’s internal production network 
(Baumgaertel 2000) and by our recent activities on supply 
net simulation which are described in the next sub-section.  

1.2 Simulation-Based Process Design 

An alternative to the mainly IT driven pilot projects is to 
design collaboration processes first, check them and make 
them robust, and finally define supporting IT tools. Today, 
business and information processes are usually defined by 
process description languages and tools, e.g. ARIS, alfabet, 
OMEGA, UML etc. These tools are based on static process 
descriptions and provide hardly support for the analysis of 
the dynamic behavior of processes. Simulation is the logi-
cal way to solve this problem. 

Together with ERIM CEC (which migrated to Altarum 
meanwhile) we developed a specific supply net simulation 
approach. It meets the requirements to the right modeling 
level of abstraction, high performance, and focus on inves-
tigation of information and decision processes, e.g. produc-
tion planning, demand forecasting, material procurement 
and dispatching, and capacity management. It is based on 
agent-based modeling and inspired from system dynamics. 
The origins of the approach can be found in Parunak, 
Riolo, Savit, and Clark (1999), the result of our common 
work of ERIM CEC in 2000 is presented in Baumgaertel, 
Brueckner, Parunak, Vanderbok, and Wilke (2003). This 
system  was completely redesigned and implemented in 
Java in 2002 and is now called SNS. It is shortly described 
in Section 2.1.   

This simulation system was augmented by supply 
chain planning capabilities. The operation of a sample sup-
ply net was simulated for different kinds of information 
processing and context settings.  

2 INGREDIENTS OF SNS-APS 

In this section we introduce the two basics of the technical 
part of the APS-augmented supply net simulator. The first 
ingredient is obviously the supply net simulator, SNS, the 
other is Finite Domain constraint solving.  

2.1 SNS 

SNS is a supply net simulation tool which combines agent-
oriented modeling with state transitions over time (time 
step based simulation).  

The SNS modeling architecture consists of two hierar-
chy levels. The upper level provides agents for the inter-
organizational view, the lower level for the intra-
organizational model of manufacturing companies. The 
agent types of the upper level are Producer, Supplier, Con-
sumer, Mailer and Shipper. The intra-organizational level 
follows the structure of the SCOR model (Supply-Chain 
Council 2003). The main elements of this model are 
SOURCE, MAKE, DELIVER and PLAN. While 
SOURCE, MAKE and DELIVER comprise information as 
well as material flow, PLAN is a pure information flow 
level. PLAN spreads into three sub topics: PLAN 
DELIVER, PLAN MAKE and PLAN SOURCE. The cor-
responding agent types are Part Buffer (SOURCE), Pro-
duction Resource Manager (MAKE), Finished Goods 
Buffer (DELIVER), Part Procurer (PLAN SOURCE), De-
mand and Production Planner (PLAN MAKE) and Cus-
tomer Order Center (PLAN DELIVER). Additionally, a 
Capacity Manager exists which is responsible for adjusting 
production capacity to the demand.  

Agents are characterized by internal state variables, for 
example inventory levels, work-in-process level, order 
amounts, orders in pipeline, production plans etc.  

Since the system is time step based, the user has to de-
fine the interpretation of a basic time unit, called basic tact. 
Useful tact interpretations range from one week over one 
day, one shift down to few hours.  

For each state variable s of the agents exists a transi-
tion function F which describes the computation of the 
value of s at a time step t from the values of arbitrary state 
variables at time step t-1 and from values of particular state 
variables at t. The computation of the value of a state vari-
able is also called simulation action. They belong to the 
following kinds of activities:  

• 

• 
• 
• 
• 
• 
• 

Calculation of demand for the current time step 
and creation of a demand forecast 
Receiving incoming information 
Receiving incoming material  
Processing information 
Sending out information to supplying nodes   
Processing of material 
Sending out material according to received orders.  

The classes of simulation actions will be performed in se-
quence, while each particular action is performed in paral-
lel for all agents of the corresponding agent type. Whether 
a state variable is computed from other state variables val-
ues at t-1 or at t depends on the sequence of calculations of 
the action classes.   

Production planning is part of the information process-
ing. State variables exist for the demand forecast, the pro-
duction output plan, the production release plan and the 
part demand plan. They belong to the Demand and Produc-
tion Planner (DPP). It calculates the demand forecast from 
customer forecast or from demand history, the production 
output with respect to desired finished goods inventory 
levels, initial inventory, work in process, production capac-
ity, and production batch size, the release plan from output 
plan and production cycle times, and the part demands 
from release plan and bill of materials. The planning algo-
rithm is an adapted MRP algorithm, extended to produc-
tion capacity treatment. The user can choose between sev-
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eral forecasting and planning modes, e.g. forecast from 
weighted average of past demand or using customers fore-
cast, and planning with or without regard to production ca-
pacity. When capacity has to be treated and demand peaks 
over capacity are recognized, DPP tries to shift production 
orders to earlier time steps (production in advance) to 
avoid delivery shortages. 

But even the best planning procedure implemented in 
SNS cannot take finished goods buffer capacity or part 
availability into account. In practice, these kinds of restric-
tions are usually treated, most often by human planners 
during sequential planning procedures, supported by spe-
cific software tools. Further, companies optimize their 
plans to keep the finished goods inventory near an optimal 
level or to keep the production rate constant. Real APS 
systems support these kinds of planning optimization.  

The aim of the APS system was consequently to extend 
the set of available planning methods of the DPP by methods 
which provide these planning capabilities. This leads to solv-
ing of complex, constrained integer optimization problems. 
Writing an algorithm for that in Java from scratch would ob-
viously not be appropriate. The appropriate tools for solving 
this kind of problems are either mathematical optimization 
technology, i.e. mixed integer programming (MIP), or finite 
domain (FD) constraint solving. In our case, FD constraint 
solving was the better alternative since execution efficiency 
was more important than optimization. The overall perform-
ance of the simulator should be kept as far as possible. This 
could better be reached by employing the explicit control 
capabilities for solving the non-deterministic search problem 
in the FD approach.  

2.2 FD Constraint Technology 

This chapter gives a short introduction to constraint pro-
gramming. For a deeper understanding we refer to Marriot 
and Stuckey (1998) and Bartak (2002). Starting in  the 
early nineties, Constraint Programming was developed 
more and more as a new programming paradigm  for the 
solving of complex planning and  scheduling problems. 

In Constraint Programming, a problem is modeled as a 
variable set and functions/ relations over the variables. 
Generally, those relations specify conditions (also often 
named restrictions or constraints)  on valid variables as-
signments. In the classical programming paradigm, the ful-
fillment of those conditions (sometimes also named con-
straints) can be checked only after the variable assignment. 
In Constraint Programming, the computation of the speci-
fied constraints will be done substantially before starting 
the generation of variable values (labeling). That means, 
the constraint programming paradigm turns upside down 
the sequence between variable assignment and computa-
tion which is necessary in classical programming. 

In the case of constraint programming over finite do-
mains, each variable is annotated with a finite set of values 
(domain) that is initially a superset for all possible assign-
ments of the variable. A variable with annotated domain is 
called constraint variable.  

Constraint variables can be connected by a constraint 
which defines a relation between them, i.e. it describes 
permissible combinations of values. A constraint net is a 
graphical interpretation of these relations, consisting of 
constraint variables as nodes and constraints as edges. If 
the domain of a variable CV is reduced, the constraint 
solver (working as a daemon) computes immediately the 
consequences for all variables which are connected with 
CV by constraints. This process is called propagation. For 
each connected constraint it deletes values from variable 
domains which cannot fulfill the constraint. 

If the domain of a variable becomes empty – no valid 
value exists for the variable – an inconsistency is detected. 
If this happens during the search phase (see below), back-
tracking to an alternative reduction of CV has to be per-
formed. The crucial advantage of constraint programming 
is the ability to recognize those situations before assigning 
values to all variables. This property results in a very effi-
cient processing, in particular if the number of relevant 
constraints is high. 

The application of constraint programming results in 
substantial reductions of the respective search space without 
cutting off potential solutions. A unique solution is identified 
if all variable domains have exactly one value left. 

In general we have more than one value left after set-
ting the constraints (propagation by the solver, see above). 
In those cases, search is necessary, i.e. cycles of variable 
selection, domain reduction and propagation will be proc-
essed as long as a solution is found or a variable domain 
becomes empty. In such cases, backtracking is needed. 
Usually, the application of problem-independent and prob-
lem-specific heuristics is needed during search if the initial 
problem is hard. 

A state-of-the-art FD constraint programming tool is 
ILOG Solver from ILOG S.A., France (www.ilog.com). 
It is a C++ library which provides methods for defining 
constraint variables with their domains, constraints, and 
search strategies, as well as for initiating of solving and for  
returning results. ILOG provides also a modeling language 
called OPL (Optimization Programming Language), which 
is described in van Hentenryck (1999). OPL allows speci-
fying constraint models which can be solved by ILOG 
Solver. Two software components based on OPL and 
Solver are the integrated development environment 
OPLStudio and a Java API for loading and executing OPL 
models from Java applications. This set of tools allows 
rapid prototyping and fast, simple integration of the con-
straint model into a Java application. They were used in 
this way for creation of the SNS APS node.   

http://www.ilog.com/
http://www.ilog.com/
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3 THE SNS-APS SYSTEM 

The task of the APS system is to provide a production 
planning algorithm which can simultaneously plan produc-
tion output, release and part demand in a way that demands 
are fulfilled, production capacity is not exceeded and fin-
ished goods and part inventories neither exceed buffer ca-
pacities nor fall below a specified safety stock level. It has 
to consider part availability in terms of parts in transit and 
supplier capacity and shall minimize the distance between 
planned and optimal finished goods inventory. This plan-
ning algorithm had to be integrated into SNS as one pro-
duction planning method of each DPP agent.  

IBM's Supply Chain Analyzer (SCA), presented in 
1999, was already a supply net simulation system with an 
integrated advanced planning algorithm (IBM 1999). But 
the system architecture was only able to model central 
planning: the planning algorithm could be instantiated only 
once in a supply net model, and it computed a production 
plan for all production nodes which were connected to it. 
Effects of forecast horizon length, information delay, fore-
cast falsification etc. could not be addressed with this ap-
proach. One novelty of SNS-APS is that the APS node can 
occur in multiple instances, up to one instance for each 
producer node.  

3.1 APS for SNS 

As described above, the main task of the APS system in 
SNS is to create plans of production output, production re-
lease and part demand with regard to several constraints 
and an optimization goal. This task is called production 
program planning. The time horizon of program planning 
in practice ranges between six and twelve months, begin-
ning with the current date. This is one important task of to-
day’s ERP or APS systems, but not the only one. That is, 
the APS of SNS covers not the whole range of subsystems 
of commercial APS systems. It focuses on the program 
planning aspect which is the most important one for inves-
tigations of distributed planning concepts.  

Since the APS system of SNS appears as one among 
other planning methods of the DPP agent, it needs to cope 
with the whole parameter set of the planning methods. Es-
pecially, the planning horizon and granularity can be cus-
tomized by the user to map the specific situation of each 
simulated manufacturing company. This requires the APS 
system to be generic with respect to horizon and granular-
ity of it’s planning.  

3.1.1 Handling of Over-Constraint Problems 

Since the planning problems are constrained problems, it is 
possible that over-constrained problems occur. That is, 
some planning problems which occur during a simulation 
run may have no solution, e.g. since demand exceeds the 
current capacity, or since a supplier delivers not the re-
quested amount in time. In those cases, a classical MIP or 
FD program identifies the unfeasibility and returns the fact 
that no solution exists. In practice, trouble shooting will be 
initiated when such situations are recognized. Such situa-
tions are basically the drivers for all work on collaborative 
planning, which is aimed to minimize trouble shooting ef-
fort by introducing pro-active and preventive processes. 
Both prevention and trouble shooting rely on the analysis 
of the problem. The reason for an unfeasibility needs to be 
identified before actions for repair can be taken.  

Consequently, the SNS-APS system has to have an un-
feasibility analysis capability too. New processes for pre-
vention or intelligent reaction to problems are the main 
subject of it’s application scenario, process design for col-
laborative planning.   

Analysis of unfeasibility is performed by so called 
conflict tests. These tests check the input data for several 
possible conflict situations. A conflict situation exists, for 
example, if demand exceeds capacity for a time period so 
that even with production in advance and use of inventory 
not all orders can be fulfilled in time. Another conflict oc-
curs if parts for particular product variants are not available 
in sufficient amount and time. If the reason for the unfeasi-
bility could be analyzed, it will be returned in terms of an 
error code together with additional information, e.g. on af-
fected variants, parts, and time steps. Based on that infor-
mation, processes for repair can be invoked.  If the analysis 
was not successful, a relaxation of the planning problem 
will be solved and the result will be accepted as a plan. In 
such cases, it is possible that the simulated material flow 
does not meet the simulated plans. This situation is said to 
be recognized in practice too. Nevertheless, it is a subject 
of further work to reduce the possibility of this situation to 
a minimum. That is, more conflict tests need to be de-
signed and implemented to analyze nearly all possible fail-
ure causes. 

The following sub-sections describe the input and out-
put data, the constraints, and the search strategy of the APS 
system.  

3.1.2 Input Data 

The input data for the APS system can be divided into the 
classes static, dynamic, and planning control data. They 
comprise the following single information:  

Static data are the product types or variants the com-
pany produces, their production batch sizes, bill of materi-
als (BOM) and times for assembly (the time step after pro-
duction start when a part is really needed for a product’s 
assembly (time of part assembly, TOP).  

Dynamic data are orders and forecasts from custom-
ers, inventories of finished goods and parts and amount of 
work in process, production capacity, production cycle 
times, and order cycle times for parts. (Production capacity 
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is dynamic since the user can specify the nominal capacity 
as a curve over time and since the capacity manager agent 
can change the capacity by invoking capacity adjustment 
actions if demand requires this.)  Finally, also the order 
pipeline, i.e. the list of open orders of all parts, and sup-
plier capacity (which can either be specified by user or 
communicated by the supplier node during simulation) be-
long to dynamic data.  

Planning control data comprise the desired inventory 
levels and/or safety stocks for both finished goods and 
parts, the planning horizon and the planning granularity for 
the resulting production plans.  

3.1.3 Output Data 

The main output data of the APS system are the plans, 
namely production output plan, production release plan 
and part demand plan. All of these plans contain amounts 
of products or parts for each period within the planning ho-
rizon. The production output plan specifies how much 
products will be finished during the periods, the release 
plan specifies the amount of products which will be re-
leased to the production system during the periods, and the 
part demand plan specifies the amounts of parts needed for 
production, also during the time periods. The plans are de-
termined if the APS found a regular solution for the prob-
lem stated by the inputs.  

In the case of unfeasibility, but successful failure 
analysis, an error code and information on affected prod-
ucts, parts and time steps is returned. Otherwise, only the 
fact that no solution could be found is the answer. 

It is possible to get two more kinds of output data from 
the system which will be filled during the planning proc-
ess: the estimated finished goods inventory and the esti-
mated maximal part inventory.  These data can be used 
for assessment of solutions, e.g. for comparison with stated 
optimal inventory levels.  

3.1.4 Constraint Variables and Basic Constraints 

While all input data are handled as constants in the con-
straint model, the output data define the most important 
constraint variables.  

The basic constraints are identically with the basic 
equations of the so called manufacturing resource planning 
(MRP) algorithm. This algorithm calculates production 
output and estimated product inventory in an iterative 
manner. The iteration starts with the current time step and 
the current inventory and work in process amounts. The 
iteration runs over the planning periods.  

Let i be the index of the planning periods and p the 
product index. Let further be fc(p,i) the demand forecast 
for product p at (during) period i, op(p,i) the planned pro-
duction output for p at (during)  i, and esi(p,i) the estimated 
product inventory of p at the end of period i. Let finally be 
ci(p) the current inventory level, dsimin(p) and dsimax(p) the 
minimal and maximal desired inventory level and wip(p) 
the current work in process amount of product p. Then the 
basic constraints are 

 
esi(p,0) = ci(p) + wip(p) – fc(p,0), 

∀ i: 1 ≤ i ≤ imax: op(p, i) ≥  fc(p, i) + dsimin(p) – esi(p, i-1), 

∀ i: 1 ≤ i ≤ imax: op(p, i) ≤  fc(p, i) + dsimax(p) – esi(p, i-1), 

∀ i: 1 ≤ i ≤ imax: esi(p, i) = esi(p, i-1) + op(p, i) – fc(p, i). 

 
Since we assume that each product consumes one ca-

pacity unit of the manufacturing resource, the capacity 
constraints can be specified as follows:  
 

∀ i: 1 ≤ i ≤ imax: ∑p op(p, i) ≤ cap(i), 
 
where cap(i) is the production capacity at period i. The 
complete constraint model contains numerous further con-
straints which cannot all be presented  here. Basically they 
are  concerned with production batch sizes, time relations 
between production output and release, bill of material re-
lationship between production release and part demand, 
and  estimated part availability and inventory, respectively. 

The constraint definition given above demonstrates the 
difference between classical programming paradigm and 
constraint programming. The inequations define a range of 
possible values for the constraint variables on the left-hand 
side instead of giving a calculation instruction. This allows 
to specify a range of allowed values explicitly, for example 
the interval between minimally and maximally allowed in-
ventory levels. This simplifies the problem specification, but 
requires strong mechanisms inside the solver to create a 
concrete solution. The general approach of constraint pro-
gramming which consists of iteration cycles of propagation, 
variable choice and labeling, provides the framework for 
such mechanisms. Efficient behavior heavily rely on good 
strategies for variable choice and labeling, as well as of addi-
tional (redundant) constraints which prune the search space 
by reducing the domains of as much as possible constraint 
variables as strong as possible after each labeling step.  

3.1.5 Cumulative Constraints and Search Strategy 

This paper cannot present the search strategy and search 
space pruning mechanisms of SNS-APS in detail. They 
will be subject of a forthcoming publication. We will only 
present the basic ideas and some results here.   

The basic idea of the search strategy follows the itera-
tion approach of the MRP algorithm. The iteration runs 
along the planning periods, output plans and estimated part 
inventories for a period i are computed based on correspond-
ing values at period i-1. Our variable choice works in the 
same way: it chooses the plan and estimated inventory vari-
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ables along the planning periods. If values for early chosen 
variables cause a conflict in later steps, backtracking to the 
earlier choice points will occur. Since backtracking requires 
a heavy computational effort, it should be avoided if possi-
ble. This can be done by deleting values from the domains of 
early chosen variables in advance and by detecting forth-
coming problems as soon as possible. Both mechanisms help 
to prune the search space and make the solution process effi-
cient. We use the concept of so called cumulative constraints 
to reach this: in addition to the basic constraints, relation-
ships of variables can be analyzed and stated as constraints. 
One class of such relationships exists between sums of de-
mands and capacities over all periods between period 1 and 
each period i. These sum constraints are called cumulative 
constraints. An example for a cumulative constraint is given 
in the following equation.  

 
∀ i: 1 ≤ i ≤ imax: ∑k: 1≤k ≤i ∑p op(p,k) ≤ ∑k: 1≤k ≤i cap(k) 

 
The same basic principle underlies the production and 

inventory control concept called progression numbers. 
These number cumulate inflow and outflow of material by 
enumerating continuously.  

Another important class of additional constraints is de-
fined over the minimal remaining production demand for 
each product p at a period i. With this, values can be de-
leted from the domains of plan variables which would be 
sufficient to fulfill the demand at the current period but not 
at further periods. This mechanism mainly controls the 
“production in advance”, i.e. production to stock if capac-
ity shortages in later periods are recognized.  

Use of these mechanisms helped us to dramatically in-
crease the computational efficiency of our APS system. 
We illustrate this for a particular, but representative sample  
planning problem with 25 planning periods and 6 product 
types. Table 1 and Figure 1 compare the efficiency of the  
 

Table 1: Search Efficiency of APS 
Search efficiency comparison 

 Standard search Specific search 
Constraints 1779 1779 
Variables 1016 1116 

Choice points 16537 246 
Failures 16431 116 

Solving time 59,72 sec 0,63 sec 
 

   
Figure 1: Search Trees of Standard and Specific Search 
search by performance numbers and by search tree visuali-
zation, respectively.  

In the search tree visualization, leaf nodes correspond 
to failures (red marked nodes) or to success (solution, 
green marked node). The left picture shows a part of the 
tree of the standard search procedure (500 of 16.500 choice 
points), the right picture shows the complete tree of our 
search procedure. While the standard procedure performs 
many backtracking steps, the customized search procedure 
comes rather straight to a solution.  

A runtime of only few seconds was needed to keep the 
overall simulation system at a high performance. For one 
singular planning problem, a runtime of one minute may be 
acceptable. But in supply net simulation, several producer 
nodes may use an APS with a frequency of one week. For 
a simulation experiment with a simulation time of one year 
and with 10 producers using the APS weekly, 520 planning 
problems need to be solved. With an average runtime of 
one minute, the APS runtimes would sum up to nine hours.  
APS execution in one second per problem would lead to an 
overall APS time of only nine minutes.  

3.2 Integration of FD Solver and Java Application  

The APS constraint model was developed in the language 
OPL by use of the integrated development environment 
ILOG OPLStudio. OPLStudio allows to compile OPL 
models after development and tuning. Compiled OPL 
models can be used from Java applications via the ad-
vanced programming interface (API) ILOG provides for 
it’s library ILOG Solver.  

The solver appears as a Java class. This class provides 
mainly the following methods: 

Solver.init: create an instance of the class Solver • 
• 

• 

• 

• 

Solver.loadCompiledModel: feed a compiled 
OPL model to the solver object. The compiled 
model can be read from a file or a string.  
Solver.loadData: feed data initializations for the 
compiled model to the solver object. The data can 
also be read from a file or a string.  
Solver.solve: trigger the solving mechanism for 
the previously fed problem specification.  
Solver.getVariableValue: returns the value of a 
constraint variable at the current solution.  

The APS system is integrated to SNS by use of this 
API. A very critical detail which made this approach pos-
sible is the distinction between model and data in the prob-
lem  specification. It allows to use the same constraint 
model for all Solver instances. The problem specifications 
are customized only by the data initializations. This re-
quired the constraint model to be generic with regard to all 
input data, even to planning time line and products. Since 
OPL supports such generic constraint specifications this 
requirement could be easily met.  
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For efficiency reasons both the constraint model and 
the data are fed from strings. The compiled OPL model 
will be read into a global string variable during initializa-
tion of the simulation. The DPP takes the model from this 
global string when it has to perform an APS run. Further, 
the DPP  collects all input data from the agents of it’s pro-
ducer site and glues it to a data string. After that, the DPP 
feeds model and data to it’s solver object.  

After solving, the DPP gathers the values of the output 
variables and fills it’s own corresponding variables.   

4 SAMPLE SCENARIO 

The simulation experiments for the proof of concept were 
based on an artificial, but realistic scenario. Figure 2 shows 
the structure of the supply net and the product graph.  

 
Supplier 1

Products    Parts
A p1, p2, p3
B p1, p2, p4
C p1, p2, p5

Products    Parts
p1 ...

Supplier 2

Products    Parts
p2 ...

Supplier 3

Products    Parts
p3 ...

Supplier 4

Products    Parts
p4 ...

Supplier 5

Products    Parts
p5 ...

OEM

Competitor

Products    Parts
X ..., p5, ...

Market

 
Figure 2: Structure of the Sample Supply Network 
 
An OEM produces 3 products, A, B, and C. Each 

product consists of three parts. While parts p1 and p2 are 
contained in each product type, parts p3, p4 and p5 occur 
only in products A, B, and C, respectively. They differenti-
ate the products. The OEM has 5 suppliers, one for each 
part type. Further, a competitor of the OEM belongs to the 
supply network. This competitor produces a product X 
which also contains part p5. Unfortunately, the competitor 
also obtains p5 from supplier 5.  

Supplier 5 has aligned it’s capacity with the demand 
from it’s customers in a way that it’s production system is 
almost completely utilized. To increase capacity, Supplier 
5 would need to build a new production line. Supplier 5 
would not hesitate to do this if it would recognize a stable 
demand increase. But installing a new production facility 
lasts several weeks.   

For arbitrary reason, competitors demand for p5 in-
creases rapidly and suddenly. Supplier 5 starts to build the 
new production line, but the demand increase starts six 
weeks before the capacity is adjusted. During this period, 
Supplier 5 cannot fulfill all orders. Supplier 5 has to dis-
tribute it’s production amount between it’s two customers. 
A usual policy is to calculate delivery amounts in propor-
tion of demand. Since the competitor increased demand, 
the proportion of OEMs demand decreased. The delivery 
amount decreases too. As a consequence, the inventory 
level of p5 at OEM falls, and in case of constant produc-
tion rate released production orders for product C cannot 
start due to missing parts. This may lead to unused produc-
tion capacity and to falling product inventories. In worst 
case, customer orders cannot be fulfilled in time.  

We investigated many different simulation experi-
ments  based on that scenario. Mainly we compared the 
question if use of an APS could help the OEM to mitigate 
the effects of this situation. We assumed that a supplier 
would inform the OEM in case of such demand increase, 
or any other kind of capacity shortage. This could be real-
ized either by setting the simulation parameters accord-
ingly or by using the APS at supplier 5 and communicating 
the recognized capacity shortage automatically. Since APS 
communication is not implemented completely now, we 
used the first alternative. That is, we defined the supplier 
capacity parameter of the OEM according to the expected 
supply situation. This parameter is used by the OEM’s 
APS system to calculate part availability. Figures 3 and 4 
show the result charts of two simulation experiments. 

 

 
Figure 3: Scenario Results without APS Use 

 

 
Figure 4: Scenario Results with APS Use 

 
The main result of the experiments is that the APS 

system was able to cope with the situation in a way that no 
customer order became late, no capacity was lost and part 
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orders remained relatively stable. The APS computed a 
production plan like an experienced human planner. As 
soon as the material for product C was not available com-
pletely, the remaining production capacity was planned to 
be used to produce other products which were not affected 
by the shortage. These products are produced to stock, i.e. 
inventory level was increased. As soon as Supplier 5 deliv-
ers the missing parts, the production ratio between the 
products is changed. Production of the stocked products is 
now reduced and orders are delivered from stock, reducing 
inventory level to the initial value. The remaining capacity 
is now used to produce product C and to fill the product 
inventory up to optimal level. The sum over all products in 
product inventory remained constant. Figure 3 documents 
the experiment without APS. The graphs in the upper chart 
shows the product inventory and work-in-process amount 
for all products of OEM. The charts below split these in-
formation for each single product. The lower chart shows 
the part inventory for p5. It is not necessary to go into de-
tail to see that the situation in Figure 4 is much smoother. 
Table 2 provides a comparison of few selected KPIs of 
both scenarios.    

 
Table 2: KPI Measurement of APS Usage Effects  

Simulation result comparison 
 OEM without 

APS 
OEM with 

APS 
Orders backlog (peak) 260 0 
Order backlog (total) 18000 0 
Product inventory de-

viation from opt (peak)  
800 25 

Product inventory de-
viation (total) 

180000 156 

Product mix in inven-
tory deviation (total) 

180000 27000 

 
The average solving time of the APS was 2.24 sec-

onds, the complete scenario with APS was simulated for a 
half year with weekly APS run in three minutes.  

5 CONCLUSION 

In this paper, we have presented an approach to simulate 
supply chain planning processes which include the use of 
advanced planning systems. The specific aggregation level 
of the simulation allows on the one hand concentration to 
the main processes and effects of supply net collaboration 
and on the other hand the extremely efficient execution of 
simulation experiments. Only this efficiency allows to ex-
plore large experiment spaces and to use the simulator in 
an interactive manner.  

We have proven that simulation of collaborative sup-
ply net processes is possible and can be used to support 
business process design and assessment for innovative col-
laboration approaches for supply networks.  
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