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ABSTRACT

The Modal-Shift Transportation Planning Problem (MSTPP)
is the problem that finds a feasible schedule for carriers
with the minimum total cost when sets of facilities, delivery
orders, and carriers are given. In this paper, we propose a fas
steepest descent algorithm to solve the MSTPP. Our solution
generates a set of candidate routes for each delivery order as
preprocess. Then, it finds a schedule by iteratively updating
selections of the candidate routes in descent directions
while computing a configuration of carrier movements at
each iteration by a greedy algorithm. Intensive numerical
study using artificial data modeled from the manufacturing
industry in Japan is also presented.

1 INTRODUCTION

In the manufacturing and distribution industries, the trans-
formation of logistics is attracting attention due to the recent
requirements triggered by a new management trend calle
supply chain management, which aims to supply products
with the minimum total cost. As supply chains are span-
ning a variety of parts suppliers, plants, and distributors
all over the world, cost reduction for the transportation is
becoming a major concern. For example, the options for
transportation modes (carriers) are expanding from trucks
and trains to ships and airplanes, and the best choices o
the modes, i.e.,modal shifts, have a great impact on the
total cost.

In this paper, a transportation problem between fa-
cilities in a supply chain, referred to as theModal-Shift
Transportation Planning Problem (MSTPP), is described,
and a fast solution for the problem is proposed. By “plan-
ning,” we mean that the problem is to find movements of
carriers considering practical constraints, such as their time
windows or diagram, their capacities, and the number of
available carriers, such that the total cost for the carriers
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used is minimized. The present problem also deals wi
movements of goods between facilities in a supply chai
such as plants, depots, and cross-docking points. Each ca
of goods is associated with a delivery order which specifie
the starting and destination facilities, and also the relea
and due dates at these facilities. (Hereafter,ordersare used
to mean delivery orders and the associated goods.) The t
facilities, the starting point and the destination, may not b
consecutive, which means a direct carrier may not be ava
able between them. In such a case, the problem seeks
choose intermediate facilities (cross-docking points) whic
the order should go through, and the route for the ord
is composed of two or more legs. Conversely, multipl
types of carriers may be available between arbitrary pai
of facilities. In such a case, the problem seeks to choose o
type of carrier. This problem, therefore, involves decision
of modal shifts and cross-dockings (Fig. 1).

When the problem is for designing the transportatio
network, meaning that no time window is considered fo
orders and carriers, the problem can be simplified by aggr

Figure 1: Schematic Figure of Modal-
Shift Transportation Planning
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gating the orders up to carrier capacities (truckloads). This
simplified problem is called the Less-Than-Truckload (LTL)
Network Design problem, and has been discussed by Pow
ell and other researchers (Crainic and Roy 1992; Hoppe e
al. 1999; Katayama and Yurimoto 2002; Powell and Sheffi
1989). The present problem, the MSTPP, includes the LTL
as a special case, and therefore is more difficult. Note that
the MSTPP includes the bin-packing problem, and thus it
is an NP-hard combinatorial optimization problem.

The solution for the MSTPP proposed in this paper con-
sists of two steps: 1) generation of a set of candidate routes
for each order, and 2) selection of a candidate route for
each order. The latter step involves the planning of carrier
movements. The two-step solution allows input of specific
candidate routes, and insures that it is easy to incorporate
business requirements without expanding the problem. For
the candidate routes generation step, an algorithm using
the k-shortest path algorithm is proposed. For the candi-
date routes selection step, a steepest descent algorithm
proposed.

In the steepest descent algorithm, the costs of used
carriers are apportioned to relevant legs of the candidate
routes, and descent directions of the total cost with respec
to the selection of candidate routes are estimated using
the apportioned costs. The algorithm repeatedly updates
the selection of a candidate route for each of the orders
in the descent direction, while a greedy-type algorithm
is repeatedly called to obtain the unique configuration of
carrier movements that corresponds to the updated selectio
of the candidate routes. That is, the whole solution space,
including all the configurations of carrier movements and
all the configurations of candidate selections, is mapped to
an abstract solution space which only involves candidate
selections. This type of gradient method, in which solutions
are mapped to an abstract solution space, was addressed b
Okano and Koda (2003) for the traveling salesman problem
(TSP). They mapped TSP tours to a real space using a
greedy-type algorithm, and proposed a stochastic gradien
method. Crawford et al. (1998) mapped a problem of task
scheduling to an abstract solution space of task priorities,
and discussed success factors of the algorithmic framework
for local search. Powell et al. (1995) addressed a gradien
descent algorithm for an analogous transportation problem,
in which they iteratively call a greedy-type algorithm in
each step of descending. The algorithm proposed in this
paper focuses on estimating the costs of candidate route
and also on designing a greedy algorithm with which the
steepest descent algorithm can converge efficiently.

Intensive numerical study is presented using an arti-
ficial data instance, including up to 5,000 orders, about
300,000 carriers, and about 400 facilities, modeled from
the manufacturing industry in Japan. The present solution
can find local optimal solutions in about 50 seconds, which
is fast enough to be used for real-time planning.
-
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This paper is organized as follows. In Section 2, the
MSTPP is described, and its formulation is shown. In
Section 3, a fast steepest descent method for the proble
and a cost estimation function for candidate routes ar
described. The numerical study is presented in Section
Finally, conclusions are summarized in Section 5.

2 THE MODAL-SHIFT TRANSPORTATION
PLANNING PROBLEM

The Modal-Shift Transportation Planning Problem (MSTPP
is described as follows: Given sets of facilities, orders
and carriers, find a feasible schedule for carriers with th
minimum total cost. Each order has a starting facility,
a destination facility, an earliest starting time (EST), i.e.,
a release date and time, and a deadline, i.e., a due da
and time. Each carrier has a starting facility, a destinatio
facility, a transportation cost, and so on. Afeasibleschedule
means that every order is delivered to its destination facility
using the given carriers no later than its deadline, and th
load of each carrier does not exceed its capacity.

There may be no carriers that move directly between
the starting and the destination facilities of a given order
In such a case, the problem seeks to choose intermedia
facilities (cross-docking points) that the order should go
through. Conversely, multiple types of carriers may be
available between two facilities, with differences such as th
capacities. In such a case, the problem seeks to choose o
type of carrier. This problem, therefore, involves decisions
of cross-dockings and modal shifts.

2.1 The Input Data

The setN of facilities and the setD of orders are given.
Each facility i ∈ N is associated with a handling timehi ,
and each orderi ∈ D has the following properties:

• The starting facility :si ∈ N ,
• The destination facility :ei ∈ N ,
• The earliest starting time :ESTi ,
• The deadline :di ,
• The weight :wi ,
• The penalty coefficient used when the order canno

be delivered :pi .
The setV of carriers is also given, and each carrierj ∈ V
has the following properties:

• The starting facility :sj ∈ N ,
• The destination facility :ej ∈ N ,
• The travel time between the starting and destination

facilities : tj ,
• The earliest starting time :ESTj ,
• The latest starting time :LSTj ,
• The capacity :qj ,
• The transportation cost :cj .
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TheESTj andLSTj may express the working hours of a
truck or a departure time specified by a diagram. The co
cj is added to the transportation cost if the carrier is use
irrespective of the amount of its load, and no cost is adde
if the carrier is not used.

2.2 The Problem Definition

The MSTPP, in its general setting, is to determine th
movements of carriers and orders without any predetermin
routes of the orders. The objective is the minimization o
the sum of the total transportation cost and the penalty f
the orders which cannot be delivered. The constraints are

1. Time window constraint: Each carrier must star
within its time window.

2. Order release and due constraint: Each order
delivered to its destination no later than its due
date and time.

3. Temporal order constraint: Each order does no
miss its next carrier at cross-docking points.

4. Route constraint: Each order is carried along
feasible route.

5. Indivisible constraint: Each order has to be carrie
by only one carrier for each of its legs.

6. Load capacity constraint: The load of each carrie
does not exceed its capacity.

2.3 A Decomposable Formulation

The original MSTPP described in the last subsection
difficult to handle directly. To make it decomposable into
subproblems regarding the orders, we assume that a setRi
of candidate routes is given for each of the ordersi ∈ D.
The candidate routes may be provided to the problem
an input, or they may be generated as described later. T
assumption makes our solution more practical, since speci
routes may be provided for some orders in practice.

We will use a heuristic procedure to make our solutio
fast enough for real-time use. To be more explicit, rewrit
the problem definition in the last subsection as follows:

min
∑
j∈V cj xj +

∑
i∈D pi(1− zi)

such that every order is delivered to its destination
facility using one of its candidate routes
no later than its deadline, and the load of
each carrier does not exceed its capacity,

(1)

wherexj is a binary decision variable to indicate whethe
carrier j is used, andzi is a binary decision variable to
indicate whether orderi is delivered.

Suppose that the cost of each of the used carrie
can be apportioned to the loaded orders according to th
contributions to the carrier cost. For example, when orderi

is loaded onto carrierj , the total weight of the loaded orders
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is load(j) = ∑i∈D wivij , wherevij is a binary decision
variable to indicate whether orderi is carried by carrierj .

The apportioned cost for the orderi may be calculated
ascjwi/ load(j). Further, the cost of a candidate route for
the orderi may be computed as the sum of the apportione
costs for each of the legs included in the route. Then th
objective of (1) can be rewritten as

min
∑
i∈D

∑
k∈Ri

(rik
∑
l

Likl)+ pi(1− zi)
 , (2)

whererik is a binary decision variable to indicate whether
the candidate routek ∈ Ri is used for the orderi, andLikl
is the apportioned cost of the carrier used for thelth leg of
the candidate routek of the orderi.

Further rearrangement of (2) gives

∑
i∈D

min
∑
k∈Ri

(rik
∑
l

Likl)+ P
 , (3)

where the penalty termP = pi(1−zi) is treated as a constant
factor, assuming its variation is relatively much smaller tha
the term for the transportation cost. The objective functio
(3) can be minimized by local minimization of the route
cost for each order, if the apportioned cost of the candida
routes,

∑
l Likl , can be estimated to reflect the overall cost

In Section 3, we also discuss algorithm to estimate the cos
of the candidate routes for each order.

3 PROPOSED SOLUTION

In this section, a fast solution for the MSTPP is described
The algorithmic framework and our main approach, i.e.
a steepest descent algorithm, are described here, and
details are in the subsequent subsections.

The algorithmic components of our solution are shown
in Fig. 2. As described in Section 1, the solution consist
of two steps: 1) the generation of a set of candidate route
for each order (candidate generation), and 2) the selection
of a candidate route for each order and the determinatio
of a configuration of carrier movements (routing). Step 2
also involves the allocation of orders to carriers and th
determination of a departure time for each carrier. For th
candidate generation step, an algorithm using the k-shorte
path algorithm generates the candidate routes between ea
pair of starting and destination facilities. This detailed
algorithm is shown in Subsection 3.1. For the routing step
our approach is separated into two stages: stage a) use
steepest descent algorithm for selection of a candidate rou
for each order, and b) obtain a configuration of carrier
by a greedy algorithm as shown in Fig. 3. The decisio
variables in this step are quite small, just the selection
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Figure 2: Algorithmic Components and Input and Output
Data of Our Solution

of the candidate routes for the orders. The solution spa
mapped from the original solution space with only such
limited number of variables is called the abstract solutio
space.

This separation makes the solution space much smal
Therefore the search space of our steepest descent me
shrinks. The whole solution space, including all the con
figurations of carrier movements and all the configuration
of candidates selection, is roughly estimated as

((#candidates/o)× (#carriers/l)(#legs/r))(#orders), (4)

where “#candidates/o” denotes the number of candida
routes per order, “#carriers/l” denotes the number of carrie
per leg, and “#legs/r” denotes the number of legs per rou
Note that, once a route selection and allocation of all th
orders to carriers are determined, the departure time
each carrier is scheduled as early as possible. That is w
the number of the candidates for the departure times f
each carrier was not included in (4). This solution space
huge. For example, suppose that the number of candid
routes per order is 10, the number of carriers per leg is 10
the number of legs per route is 4, and the number of orde
is 5,000. Then, the solution space is roughly estimated
(10× 1004)5000= 1045000. On the other hand, the abstrac
solution space, i.e., the selections of candidate routes
each order, is roughly estimated as

|{r}| = (#candidates/o)(#orders), (5)

which is much smaller than the whole solution space. F
example, the abstract solution space is 105000 for the above
example.

However, our abstract solution space is still huge. Sin
we intend to do real-time planning, such as one minute
less of computational time, a fast search method whic
finds good solutions is needed. As mentioned in Sectio
2, the overall objective function can be minimized by loca
minimization of the candidate route for each order. Thu
we propose an iterative algorithm with the above-mentione
two-stage structure that performs the following: Estima
the costs of the candidate routes by anevaluation function,
select a candidate route for each order on the basis
the estimated costs, and route the carriers. The candid
e
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Figure 3: Algorithmic Framework of the
Routing Step of Our Solution

cost estimation is redone each time after routing. If al
of the selected candidate routes do not differ from thos
in the previous iteration, the search terminates, and th
best solution found so far is output. Figure 4 shows the
procedure of our descent algorithm.

Our method changes the solutions drastically iteration
by iteration. A candidate route for each order is updated a
each iteration either to the same value or to a new value, an
thus the number of the neighborhood solutions is 2(#orders).
The best solution in the neighborhood is selected uniquel
for the next current solution, that is, the decision variable
ri are updated in the steepest descent direction. Note th
the actual objective function value cannot be obtained unt
carrier movements are scheduled, and that it is not know
whether the selected move is downhill or uphill. That is,
the descending move based on the estimated costs m
be an uphill move. Therefore, this method can efficiently
escape from bad local optimum and find good solutions
The key success factors of this method are how to defin
the evaluation function and how to compute the descen
direction using the estimated costs. Our approaches
solving these issues are shown in detail in Subsections 3
and 3.3.

One more key success factor of our solution is a greed
algorithm to obtain a configuration of carriers when the route
for each order is given. The greedy algorithm should be
very fast, and should also find a good solution. The greed
algorithm is shown in Subsection 3.4.

3.1 Generating Candidate Routes

Taking modal shift into consideration, we adopt two kinds
of cost definition for the leg, the travel time of each carrier
and the transportation cost per unit weight for each carrie
(Since a leg may have multiple carriers, the minimum value
for those carriers is regarded as the representative value
the leg.)

When the travel time is used as the costs of the legs
calculated routes are likely to include carriers which have
relatively high cost and a short travel time, such as trucks
On the other hand, when the transportation cost per un
weight is used as the costs of the legs, carriers whic
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have relatively large capacity and low transportation co
per unit weight, such as ships, are selected for candida
routes. For modal shift, therefore, it is desirable to conside
that different kinds of candidate routes that have differen
characteristic.

In particular, the bestk routes which have shorter
travel times and another bestk routes which have lower
transportation cost per unit weight are calculated, and the
the union of the two of route sets are defined as candida
routes for an order.

3.2 Evaluating Candidate Routes

As mentioned before, the evaluation function is importan
since it is used to determine the descent direction. Th
evaluation value (estimated cost) is initialized first, an
updated when the candidate route is used for the curre
schedule, as shown in Fig. 4.

We use two indices for the evaluation criteria, and
compute the weighted sum of each index as the evaluati
value for the candidate route. One is the cost apportione
to the order, and the other is thetime hardnessof the
candidate route for the order. As described in Section
the cost apportioned to the order is calculated as the su
of the apportioned cost of the carrier used in each leg
carry the order. The time hardness of the candidate rou
for an orderi is calculated as the difference betweenESTi
and the latest starting time by which the order has to depa
from the starting facilitysi to meet the deadlinedi at the
destination facilityei when the candidate route is used to
carry the order. This value has to be a negative value
zero, and can be calculated in advance for all the pairs of t
candidate routes and the orders. The evaluation functio
eval(i, k) for the candidate routek ∈ Ri for order i is
denoted as

eval(i, k) = w1 · cost (i, k)+ w2 · t ime(i, k), (6)

Initialize eval(i, k)∗ for all pairs of (i, k), i ∈ D, k ∈ Ri
do

foreach order i ∈ D
Select the routeri := arg mink∈Ri eval(i, k).

Calculate schedule using selected routes.
foreach order i ∈ D

Update eval(i, ri ).
while (at least one selection is changed).
Output the best solution found so far.

*eval(i, k) denotes the estimated cost of routek ∈ Ri of order i.

Figure 4: Procedure of the Steepest Descent Algorithm
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where cost (i, k) is the cost apportioned to the orderi
which uses the candidate routek, t ime(i, k) is the time
hardness of the candidate routek for the orderi, andw1
andw2 are the weight of the above two indices, respectively
Let cost (i, k, l) denote the apportioned cost of the carrie
used in thelth leg of routek, and letm be the number
of legs of the routek, then Likl in (2) corresponds to
w1 · cost (i, k, l)+ w2 · t ime(i, k)/m.

The first index, i.e., the cost apportioned to the orde
is updated when the candidate route is used for the curre
schedule. If the order is carried by an efficient carrier whos
transportation cost per unit weight is relatively low and the
load ratio is high, then the index value will be small and it
will be hard for the route to switch to the other candidate
routes. Conversely, if the order is carried by an inefficien
carrier whose transportation cost per unit weight is relativel
high and the load ratio is low, then the index value will be
large and it will be easy for the route to switch to one o
the others. Therefore, we expect that this index will work
well.

The other important issue is to determine how to ini
tialize the first index. It is initialized as the lower bound
when the order is carried using the candidate route. Th
lower bound is calculated as the cost apportioned to the ord
when the order is carried by the carrier whose transportatio
cost per unit weight is the lowest in that leg and with the
load ratio one, for each of the legs in the candidate rout
Therefore, for the first iteration of the search, it is easies
to select a candidate route such that the number of legs
small and each leg has the carrier whose transportation co
per unit weight is small.

The second index, the time hardness, is introduced
incorporate the idea that the probability of orders failing
to be delivered is high if the order uses a candidate rou
whose time constraint is hard. It is not certain at this stag
of our research whether or not this index works well. The
experiments in Section 4 include tests with and without th
time-hardness constraint of the second index.

3.3 Selecting Candidate Routes

The candidate route of each orderi is selected asri :=
arg mink∈Ri eval(i, k). Suppose that orderi has three can-
didate routes,Ri = {1,2,3}, and their estimated costs are
eval(i,1) = 5, eval(i,2) = 10, andeval(i,3) = 15. Then,
Route 1 is selected as the route for the orderi, i.e., ri = 1.
After the schedule is calculated using Route 1 for the orde
i, eval(i,1) is updated on the basis of the schedule resul
If the updated value,eval(i,1), is equal to or smaller than
10, Route 1 is selected as the route for the orderi again
for the next iteration. If the updated value is grater than
10, Route 2 is selected as the route for the orderi for the
next iteration. Note that Route 3 is not selected for the nex
iteration, becauseeval(i,2) is smaller thaneval(i,3), and



Amano, Yoshizumi, and Okano

t

iz

d
th
n
.

g.
or
e
b

es
er

f
m
e

nd

f

it
g

n

te
er

e

d
st
s
p

r
er

or
n
s
s
y

n

d

c-

,

these values are not updated when Route 1 is used as
route for the orderi. Thus,ri is updated at each iteration
either to the same route or to the second route. The s
of the neighborhood solutions is therefore 2(#orders).

3.4 Calculating a Configuration of Carriers

The configuration of carriers is a set of loaded orders an
departure time for each of the carriers. Given orders and
routes of the orders, the problem to find this configuratio
is still NP-hard, since it involves the bin-packing problem

The procedure of our greedy algorithm is shown in Fi
5. The algorithm has two heaps. One is the heap to st
the orders, denoted byHo, and the other is the heap to stor
the carriers onto which the orders are loaded, denoted
Hc. Suppose that the earliest starting time and the lat
starting time to meet the deadline for the facility where ord
i is currently located are denoted bycest (i) and clst (i),
respectively. The value ofcest (i) can be calculated as the
sum of the arrival time of the orderi at the current facility
and the handling time for the current facility. The value o
clst (i) is calculated in advance by tracing backward fro
the destination facility. Note that the order might fail to b
delivered even if the orderi arrives byclst (i), because the
carriers associated withclst (i) might not be available.

Suppose that the available earliest starting time a
the available latest starting time for carrierj are denoted
by cest (j) and clst (j), respectively. The initial value of
cest (j) is ESTj . If order i is loaded onto the carrierj and
cest (i) is greater thancest (j), thencest (j) is changed to
cest (i). In the same way, the initial value ofclst (j) is
LSTj , and if the orderi is loaded onto the carrierj and
clst (i) is smaller thanclst (j), thenclst (j) is changed to
clst (i).

The element extracted from the order heapHo is always
the order whosecest is the earliest of all the orders inHo,
and the element extracted from the carrier heapHc is always
the carrier whoseclst is the earliest of all the carriers in

Initialize
insert all orders intoHo andHc = ∅.

while Ho 6= ∅
extract order i from Ho and carrierj from Hc.
if (cest (i) ≤ clst (j) or Hc = ∅)

then insert j into Hc and find carrier c for i. (5-1)
insert c into Hc.

else
insert i into Ho and

find carrier d for reloading orders onj . (5-2)
if (d is not found)

then j departs andinsert orders onj into Ho.
else insertd into Hc.

Figure 5: Procedure of Our Greedy Algorithm
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Hc. The algorithm also uses pre-calculated sorted lists o
the available carriers for each leg. The first key for sorting
is in the ascending order of the transportation cost per un
weight, and the second key for sorting is in the ascendin
order of the earliest starting time for each carrier.

The procedure of our greedy algorithm is described i
Fig. 5. Initially, the carrier heapHc is empty, and all the
orders are inserted into the order heapHo. Then, the loop
continues until the order heapHo becomes empty. The loop
starts by extracting the elements from both heaps. No
that the element extracted from the order heap is the ord
whosecest is the earliest and the element extracted from
the carrier heap is the carrier whoseclst is the earliest.
Suppose that the element extracted from the order heapHo
is orderi and the element extracted from the carrier heapHc
is carrierj . If cest (i) is equal to or smaller thanclst (j),
or the heapHc is empty, then the carrier to load the orderi
on is found by the first fit algorithm ((5-1) in Fig. 5). The
first fit algorithm searches the sorted list associated with th
next leg for the orderi from the top of the list and loads
it onto the first carrier found without violatingcest (i) and
clst (i). If a carrier is not found in the sorted list, the order
i cannot be delivered. From the characteristics of the sorte
list, it is easiest to find the carrier whose transportation co
per unit weight is lowest and whose earliest starting time i
earliest. The found carrier is inserted into the carrier hea
Hc.

If clst (j) is greater thancest (i), the algorithm tries
to find another carrier onto which the orders on the carrie
j are reloaded, ((5-2) in Fig. 5), because there is no oth
order which can be loaded onto the carrierj . If the orders
are reloaded onto a carrier whose capacity is smaller
whose latest starting time is later, the total transportatio
cost might be reduced but the possibility that the order
cannot be delivered will become higher. Our algorithm trie
to find the carrier onto which the orders are reloaded b
the first fit algorithm from the next carrier of the original
carrier in the sorted list as long as the selected carrier ca
carry all the orders without missing theirclst . If the carrier
is not found, the carrierj departs, the departure time is
cest (j), and if the carried orders are not arriving at their
destination facilities, thecest andclst of each order carried
by the carrierj are updated, and the orders are inserte
into the order heapHo. If the carrier is found, the found
carrier is inserted into the carrier heapHc.

4 NUMERICAL STUDY

4.1 The Instance Data

The instance data was generated for an imaginary manufa
turing company in Japan. The total number of facilities is
about 400, the number of starting facilities, i.e., production
facilities, is about 20, the number of destination facilities
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i.e., stores or dealers, is about 350, and the number
intermediate facilities, i.e., cross-docking points, is abou
30. The number of legs which have available carriers i
915, which means some orders must be transported via se
eral intermediate facilities because the number of pairs o
starting and destination facilities is about 20∗ 350= 7000.
The handling time for each facility was fixed at 60 minutes

Three order instances were generated. The three i
stances involve 5,000 orders whose scheduling horizon
10 days, 4,000 orders whose scheduling horizon is 8 day
and 3,000 orders whose scheduling horizon is 6 days, r
spectively.

Each carrier type is defined by the starting facility, the
destination facility, the travel time, the EST, the LST, the
transportation cost, the capacity, and the amount (e.g., te
2-ton trucks). Each parameter for each carrier type wa
generated by supposing two modes of transportation, truc
and ships. To be more specific, the travel times for ship
are longer than those for trucks, but the transportation cos
per unit weight for ships are lower and the capacities o
ships are higher than for trucks. Therefore the more orde
transported by one ship, the cheaper the total transportati
cost becomes. The ESTs of trucks were set to 9:00, 12:0
and 15:00. All the LSTs of trucks were set to their EST
plus two hours. The ESTs and LSTs of ships were all se
to 12:00, so the departure time of the ships was fixed.

Two carrier instances were generated. In one instanc
some legs are associated with ships and others with truck
In another instance, all of the legs are associated with truck
The mixed instance is intended to observe modal shift.

4.2 Experimental Results

The experiments were conducted using an IBM ThinkPa
T21 with a Pentium III 800 MHz CPU and 128 MB of
memory. The penalty coefficient, which is used when
orders are not delivered, was fixed at 10,000 for all of th
orders. The number of candidate routes for each order
ten.

We evaluated our steepest descent algorithm. Tw
weight settings for the evaluation function of each candidat
route were experimented with. They are (1)w1 = 1,
w2 = 0 and (2)w1 = 1, w2 = 0.01. Setting (1) ignore the
time hardness, and Setting (2) includes it. Table 1 show
the experimental results using these settings. Three ord
instances whose numbers of orders are 5,000, 4,000, a
3,000 were used with the two carrier instances. The column
“ini”, “fin”, and “time” show the objective values for the
initial solution, the objective value for the final solution, and
the calculation time taken by our steepest descent algorithm

From Table 1, we cannot see any significant difference
regarding their solution qualities. Regarding the calculatio
times, Setting (2) was relatively slower to converge, bu
the slow convergence did not insure obtaining good fina
f
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solutions. Comparing the carrier instance with ships to
the instance without ships, the instance with ships alway
gave better objective values. However, as the number o
orders gets small, the difference between them became sma
This might be caused by the fact that the order instanc
does not include any order whose time window is longe
than the scheduling horizon. Therefore, if the scheduling
horizon is short, it is easier for generated orders to hav
destination facilities that are geographically close to thei
starting facilities. Such orders do not need to be carried b
ships.

Next, we examined how the solution is improved by our
steepest descent algorithm. Table 2 shows the improveme
ratio using our steepest descent algorithm. The improveme
ratio is calculated as 100∗ (final objective value)/ (initial
objective value). It is easy to see that the carrier instance
with ships are more likely to be improved than the instance
without ships. As mentioned in Subsection 3.2, it is easies
for the route which has the lowest transportation cost pe
unit weight of all the candidate routes to be selected a
the initial route for each order. Therefore, it seems tha
many ships are used with low load ratio. That is why the
initial objective values are worse for the carrier instance
with ships. Further, it can be observed that for the carrie
instances with ships, the improvement ratio of Setting (1) is
higher than that of Setting (2), because the initial objective
values of Setting (2) are better than those of Setting (1).

Figure 6 shows the variation of the objective values
obtained at each iteration by our steepest descent algorithm
The upper figure shows the overall variation and the lowe
figure shows the variation for the objective values ranging
from 850,000 to 1,100,000. The horizontal axis shows th
number of iterations and the vertical axis shows the objectiv
values. The results of Setting (1) and Setting (2) for both
carrier instances and the order instance with 5,000 orde
are plotted. The overall behavior is almost the same fo
every case. During the early iterations, the objective value
fluctuate a lot and the fluctuation gradually gets smaller
The large fluctuations for early iterations might be becaus
the initial evaluation value for each route is set to the idea
value. Thus, even hopeless routes are selected for ea
iterations. From the figure on the right, it can be observe
that the objective value is being improved as the searc
continues, and finally converges.

5 CONCLUSIONS

In this paper, we have defined the MSTPP, and proposed a fa
steepest descent algorithm for this problem. Our approac
consists of two steps: candidate generation and routing
The routing is separated into two stages: routes selectio
by a steepest descent algorithm, and the determination of
configuration of carriers by a greedy algorithm. Our steepes
descent algorithm converges very quickly; it finds solutions
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Table 1: Result of Our Steepest Descent Algorithm

#order carrier (1) ini (1) fin (1) time (2) ini (2) fin (2) time
5,000 SHIP 1,061,943 898,637 40 1,016,080 924,756 45
5,000 NO SHIP 1,089,006 1,009,964 46 1,091,364 1,003,879 51
4,000 SHIP 827,207 685,170 22 783,279 711,411 25
4,000 NO SHIP 801,877 749,413 25 809,747 739,996 38
3,000 SHIP 581,742 497,323 13 565,123 487,111 16
3,000 NO SHIP 535,102 499,946 16 539,045 499,409 15
(time scale: seconds)
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Table 2: Ratio of Improvement by Steepest
Descent Algorithm

#order carrier (1) ratio (2) ratio
5,000 SHIP 84.6% 91.0%
5,000 NO SHIP 92.7% 91.9%
4,000 SHIP 82.8% 90.8%
4,000 NO SHIP 93.5% 91.4%
3,000 SHIP 85.4% 86.2%
3,000 NO SHIP 93.4% 92.6%
(ratio) = 100 ∗ (final obj) / (initial obj).

within one minute for large instances whose solution spac
is about 1045000 in size. Our solution can be used for both
daily operations and logistics design, since the MSTP
handles many practical constraints, such as time window
or diagram, capacities, and the amount for available carrie
Further, our fast steepest descent algorithm allows real-tim
planning.

Future work is to make our problem more practical. S
far, we have not considered inventory control and deliver
lead time in the MSTPP, but they should be considered
real situations and the importance of these metrics will b
different for various customers. Therefore, our solution ha
to be able to accommodate the differences of each custome
policies. Another extension of our work is to consolidate
modal-shift transportation with regional routing.
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