Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

THE MODAL-SHIFT TRANSPORTATION PLANNING PROBLEM
AND ITS FAST STEEPEST DESCENT ALGORITHM

Masami Amano
Takayuki Yoshizumi
Hiroyuki Okano

IBM Research, Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, JAPAN

ABSTRACT

The Modal-Shift Transportation Planning Problem (MSTPP)
is the problem that finds a feasible schedule for carriers
with the minimum total cost when sets of facilities, delivery

used is minimized. The present problem also deals with
movements of goods between facilities in a supply chain,
such as plants, depots, and cross-docking points. Each cargo
of goods is associated with a delivery order which specifies
the starting and destination facilities, and also the release

orders, and carriers are given. Inthis paper, we propose a fastand due dates at these facilities. (Hereaftedersare used

steepest descent algorithm to solve the MSTPP. Our solution

to mean delivery orders and the associated goods.) The two

generates a set of candidate routes for each delivery order as dacilities, the starting point and the destination, may not be

preprocess. Then, it finds a schedule by iteratively updating
selections of the candidate routes in descent directions,
while computing a configuration of carrier movements at
each iteration by a greedy algorithm. Intensive numerical
study using artificial data modeled from the manufacturing
industry in Japan is also presented.

1 INTRODUCTION

In the manufacturing and distribution industries, the trans-
formation of logistics is attracting attention due to the recent
requirements triggered by a new management trend called
supply chain management, which aims to supply products
with the minimum total cost. As supply chains are span-
ning a variety of parts suppliers, plants, and distributors
all over the world, cost reduction for the transportation is
becoming a major concern. For example, the options for
transportation modes (carriers) are expanding from trucks
and trains to ships and airplanes, and the best choices of
the modes, i.e.modal shifts have a great impact on the
total cost.

In this paper, a transportation problem between fa-
cilities in a supply chain, referred to as tihdodal-Shift
Transportation Planning Problem (MSTPH}¥ described,
and a fast solution for the problem is proposed. By “plan-
ning,” we mean that the problem is to find movements of
carriers considering practical constraints, such as their time
windows or diagram, their capacities, and the number of
available carriers, such that the total cost for the carriers

1720

consecutive, which means a direct carrier may not be avail-
able between them. In such a case, the problem seeks to
choose intermediate facilities (cross-docking points) which
the order should go through, and the route for the order
is composed of two or more legs. Conversely, multiple
types of carriers may be available between arbitrary pairs
of facilities. In such a case, the problem seeks to choose one
type of carrier. This problem, therefore, involves decisions
of modal shifts and cross-dockings (Fig. 1).

When the problem is for designing the transportation
network, meaning that no time window is considered for
orders and carriers, the problem can be simplified by aggre-

Carrier 4287
) o

Order i [7>

Carrier

Figure 1. Schematic Figure of Modal-
Shift Transportation Planning

Amano, Yoshizumi, and Okano

gating the orders up to carrier capacities (truckloads). This This paper is organized as follows. In Section 2, the
simplified problem is called the Less-Than-Truckload (LTL) MSTPP is described, and its formulation is shown. In
Network Design problem, and has been discussed by Pow- Section 3, a fast steepest descent method for the problem
ell and other researchers (Crainic and Roy 1992; Hoppe et and a cost estimation function for candidate routes are
al. 1999; Katayama and Yurimoto 2002; Powell and Sheffi described. The numerical study is presented in Section 4.
1989). The present problem, the MSTPP, includes the LTL Finally, conclusions are summarized in Section 5.
as a special case, and therefore is more difficult. Note that
the MSTPP includes the bin-packing problem, and thus it 2 THE MODAL-SHIFT TRANSPORTATION
is an NP-hard combinatorial optimization problem. PLANNING PROBLEM

The solution for the MSTPP proposed in this paper con-
sists of two steps: 1) generation of a set of candidate routes The Modal-Shift Transportation Planning Problem (MSTPP)
for each order, and 2) selection of a candidate route for is described as follows: Given sets of facilities, orders,
each order. The latter step involves the planning of carrier and carriers, find a feasible schedule for carriers with the
movements. The two-step solution allows input of specific minimum total cost. Each order has a starting facility,
candidate routes, and insures that it is easy to incorporate a destination facility, an earliest starting time (EST), i.e.,
business requirements without expanding the problem. For a release date and time, and a deadline, i.e., a due date
the candidate routes generation step, an algorithm using and time. Each carrier has a starting facility, a destination
the k-shortest path algorithm is proposed. For the candi- facility, a transportation cost, and so onfeasibleschedule
date routes selection step, a steepest descent algorithm ismeans that every order is delivered to its destination facility
proposed. using the given carriers no later than its deadline, and the

In the steepest descent algorithm, the costs of used load of each carrier does not exceed its capacity.
carriers are apportioned to relevant legs of the candidate There may be no carriers that move directly between
routes, and descent directions of the total cost with respect the starting and the destination facilities of a given order.
to the selection of candidate routes are estimated using In such a case, the problem seeks to choose intermediate
the apportioned costs. The algorithm repeatedly updates facilities (cross-docking points) that the order should go
the selection of a candidate route for each of the orders through. Conversely, multiple types of carriers may be
in the descent direction, while a greedy-type algorithm available between two facilities, with differences such as the
is repeatedly called to obtain the unique configuration of capacities. In such a case, the problem seeks to choose one
carrier movements that corresponds to the updated selectiontype of carrier. This problem, therefore, involves decisions
of the candidate routes. That is, the whole solution space, of cross-dockings and modal shifts.
including all the configurations of carrier movements and
all the configurations of candidate selections, is mapped to 2.1 The Input Data
an abstract solution space which only involves candidate
selections. This type of gradient method, in which solutions The setN of facilities and the seD of orders are given.
are mapped to an abstract solution space, was addressed byach facilityi € N is associated with a handling tinieg,
Okano and Koda (2003) for the traveling salesman problem and each order € D has the following properties:
(TSP). They mapped TSP tours to a real space using a * The starting facility :s; € N,
greedy-type algorithm, and proposed a stochastic gradient * The destination facility ¢; € N,
method. Crawford et al. (1998) mapped a problem of task * The earliest starting time EST;,
scheduling to an abstract solution space of task priorities, e The deadline d;,
and discussed success factors of the algorithmic framework e The weight : w;,
for local search. Powell et al. (1995) addressed a gradient » The penalty coefficient used when the order cannot
descent algorithm for an analogous transportation problem, be delivered :p;.
in which they iteratively call a greedy-type algorithm in The setV of carriers is also given, and each carrjee V
each step of descending. The algorithm proposed in this has the following properties:
paper focuses on estimating the costs of candidate routes » The starting facility :s; € N,

and also on designing a greedy algorithm with which the * The destination facility ¢; € N,

steepest descent algorithm can converge efficiently. » Thetravel time between the starting and destination
Intensive numerical study is presented using an arti- facilities : ¢;,

ficial data instance, including up to, 800 orders, about * The earliest starting time EST;,

300, 000 carriers, and about 400 facilities, modeled from » The latest starting time LST;,

the manufacturing industry in Japan. The present solution » The capacity ig;,

can find local optimal solutions in about 50 seconds, which * The transportation costc;.

is fast enough to be used for real-time planning.

1721

Amano, Yoshizumi, and Okano

The EST; and LST; may express the working hours of a is load(j) =)_;.p wivij, Wherev;; is a binary decision
truck or a departure time specified by a diagram. The cost variable to indicate whether ordeiis carried by carrier.

c¢;j is added to the transportation cost if the carrier is used The apportioned cost for the ordemay be calculated
irrespective of the amount of its load, and no cost is added asc;w;/load(j). Further, the cost of a candidate route for
if the carrier is not used. the orderi may be computed as the sum of the apportioned

costs for each of the legs included in the route. Then the
2.2 The Problem Definition objective of (1) can be rewritten as

The MSTPP, in its general setting, is to determine the

movements of carriers and orders without any predetermined min > (> a Y Lu+pd-z)|.

routes of the orders. The objective is the minimization of ieD \keR; !

the sum of the total transportation cost and the penalty for

the orders which cannot be delivered. The constraints are: Wherer;; is a binary decision variable to indicate whether
1. Time window constraint: Each carrier must start the candidate route € R; is used for the ordei, and L

within its time window. is the apportioned cost of the carrier used for Ateleg of
2. Order release and due constraint: Each order is the candidate routé of the orderi.
delivered to its destination no later than its due Further rearrangement of (2) gives

date and time.
3. Temporal order constraint: Each order does not
miss its next carrier at cross-docking points. Z min Z(rik Z L) + P |, 3
4. Route constraint: Each order is carried along a ieD keR; !
feasible route.
5. Indivisible constraint: Each order has to be carried Where the penalty terit = p; (1—z;) istreated as a constant

by only one carrier for each of its legs. factor, assuming its variation is relatively much smaller than

6. Load capacity constraint: The load of each carrier the term for the transportation cost. The objective function
does not exceed its capacity. (3) can be minimized by local minimization of the route

cost for each order, if the apportioned cost of the candidate

2.3 A Decomposable Formulation routes,> ", L;x;, can be estimated to reflect the overall cost.

In Section 3, we also discuss algorithm to estimate the costs

The original MSTPP described in the last subsection is Of the candidate routes for each order.

difficult to handle directly. To make it decomposable into

subproblems regarding the orders, we assume that B;set 3 PROPOSED SOLUTION

of candidate routes is given for each of the ordees D.

The candidate routes may be provided to the problem as In this section, a fast solution for the MSTPP is described.
an input, or they may be generated as described later. This The algorithmic framework and our main approach, i.e.,
assumption makes our solution more practical, since specific @ steepest descent algorithm, are described here, and the

routes may be provided for some orders in practice. details are in the subsequent subsections.

We will use a heuristic procedure to make our solution The algorithmic components of our solution are shown
fast enough for real-time use. To be more explicit, rewrite in Fig. 2. As described in Section 1, the solution consists
the problem definition in the last subsection as follows: of two steps: 1) the generation of a set of candidate routes

) for each orderdandidate generation and 2) the selection

min 2jev ¢j¥j + 2iep Pil = 2) of a candidate route for each order and the determination

such that every order is delivered to its destination
facility using one of its candidate routes (1)
no later than its deadline, and the load of
each carrier does not exceed its capacity,

of a configuration of carrier movements(ting). Step 2

also involves the allocation of orders to carriers and the
determination of a departure time for each carrier. For the
candidate generation step, an algorithm using the k-shortest
path algorithm generates the candidate routes between each
pair of starting and destination facilities. This detailed
algorithm is shown in Subsection 3.1. For the routing step,
our approach is separated into two stages: stage a) uses a
steepest descent algorithm for selection of a candidate route
for each order, and b) obtain a configuration of carriers
by a greedy algorithm as shown in Fig. 3. The decision
variables in this step are quite small, just the selections

wherex; is a binary decision variable to indicate whether
carrier j is used, and; is a binary decision variable to
indicate whether order is delivered.

Suppose that the cost of each of the used carriers
can be apportioned to the loaded orders according to their
contributions to the carrier cost. For example, when oider
is loaded onto carrief, the total weight of the loaded orders

1722

Amano, Yoshizumi, and Okano

Order data
Carrier data

Generate candidate routes
using the k-shortest path algorithm
(candidate generation)

Candidate routes

Select candidate routes and
determine configuration of carriers
(routing)

—— Schedule result

Figure 2: Algorithmic Components and Input and Output
Data of Our Solution

of the candidate routes for the orders. The solution space
mapped from the original solution space with only such a

limited number of variables is called the abstract solution

space.

Compute the gradient, and update
the candidate routes in the descent
direction

A

Select a route for
each order

Apportion carrier costs
to candidate routes

A4

Determine a configuration of carriers
by the greedy algorithm

Figure 3: Algorithmic Framework of the
Routing Step of Our Solution

cost estimation is redone each time after routing. If all
of the selected candidate routes do not differ from those

This separation makes the solution space much smaller. j, he previous iteration, the search terminates, and the
Therefore the search space of our steepest descent methog,ast solution found so far is output. Figure 4 shows the

shrinks. The whole solution space, including all the con-
figurations of carrier movements and all the configurations
of candidates selection, is roughly estimated as

((#candidatesfox (#carriers/)#€gs/r#orders,

4)

procedure of our descent algorithm.

Our method changes the solutions drastically iteration
by iteration. A candidate route for each order is updated at
each iteration either to the same value or to a new value, and
thus the number of the neighborhood solutions#o5Jers.

The best solution in the neighborhood is selected uniquely

where “#candidates/o” denotes the number of candidate for the next current solution, that is, the decision variables
routes per order, “#carriers/I” denotes the number of carriers ,; are updated in the steepest descent direction. Note that
per leg, and “#legs/r” denotes the number of legs per route. the actual objective function value cannot be obtained until
Note that, once a route selection and allocation of all the carrier movements are scheduled, and that it is not known
orders to carriers are determined, the departure time for whether the selected move is downbhill or uphill. That is,
each carrier is scheduled as early as possible. That is why the descending move based on the estimated costs may
the number of the candidates for the departure times for pe an uphill move. Therefore, this method can efficiently
each carrier was not included in (4). This solution space is escape from bad local optimum and find good solutions.
huge. For example, suppose that the number of candidate The key success factors of this method are how to define
routes per order is 10, the number of carriers per leg is 100, the evaluation function and how to compute the descent
the number of legs per route is 4, and the number of orders direction using the estimated costs. Our approaches to
is 5,000. Then, the solution space is roughly estimated as solving these issues are shown in detail in Subsections 3.2
(10 x 100%)°090 = 10#5000 On the other hand, the abstract and 3.3.

solution space, i.e., the selections of candidate routes for One more key success factor of our solution is a greedy
each order, is roughly estimated as algorithm to obtain a configuration of carriers when the route
for each order is given. The greedy algorithm should be
very fast, and should also find a good solution. The greedy
algorithm is shown in Subsection 3.4.

l{r}| = (#candidates/§Orders (%)

which is much smaller than the whole solution space. For

example, the abstract solution space i8°¥®for the above
example.

However, our abstract solution space is still huge. Since
we intend to do real-time planning, such as one minute or
less of computational time, a fast search method which
finds good solutions is needed. As mentioned in Section
2, the overall objective function can be minimized by local
minimization of the candidate route for each order. Thus,
we propose an iterative algorithm with the above-mentioned
two-stage structure that performs the following: Estimate
the costs of the candidate routes byesaluation function

3.1 Generating Candidate Routes

Taking modal shift into consideration, we adopt two kinds
of cost definition for the leg, the travel time of each carrier
and the transportation cost per unit weight for each carrier.
(Since a leg may have multiple carriers, the minimum value
for those carriers is regarded as the representative value of
the leg.)

When the travel time is used as the costs of the legs,
calculated routes are likely to include carriers which have a
relatively high cost and a short travel time, such as trucks.

select a candidate route for each order on the basis of On the other hand, when the transportation cost per unit
the estimated costs, and route the carriers. The candidateweight is used as the costs of the legs, carriers which

1723

Amano, Yoshizumi, and Okano

have relatively large capacity and low transportation cost where cost (i, k) is the cost apportioned to the order
per unit weight, such as ships, are selected for candidate which uses the candidate route time(i, k) is the time
routes. For modal shift, therefore, it is desirable to consider hardness of the candidate routeor the orderi, and wy
that different kinds of candidate routes that have different andws are the weight of the above two indices, respectively.
characteristic. Let cost (i, k, 1) denote the apportioned cost of the carrier
In particular, the besk routes which have shorter used in thelth leg of routek, and letm be the number
travel times and another bektroutes which have lower of legs of the routek, then L;; in (2) corresponds to
transportation cost per unit weight are calculated, and then, w1 - cost (i, k, 1) + w2 - time(i, k) /m.
the union of the two of route sets are defined as candidate The first index, i.e., the cost apportioned to the order,

routes for an order. is updated when the candidate route is used for the current
schedule. If the order is carried by an efficient carrier whose
3.2 Evaluating Candidate Routes transportation cost per unit weight is relatively low and the

load ratio is high, then the index value will be small and it

As mentioned before, the evaluation function is important will be hard for the route to switch to the other candidate
since it is used to determine the descent direction. The routes. Conversely, if the order is carried by an inefficient
evaluation value (estimated cost) is initialized first, and carrier whose transportation cost per unit weight is relatively
updated when the candidate route is used for the current high and the load ratio is low, then the index value will be
schedule, as shown in Fig. 4. large and it will be easy for the route to switch to one of

We use two indices for the evaluation criteria, and the others. Therefore, we expect that this index will work
compute the weighted sum of each index as the evaluation well.
value for the candidate route. One is the cost apportioned The other important issue is to determine how to ini-
to the order, and the other is théne hardnessof the tialize the first index. It is initialized as the lower bound
candidate route for the order. As described in Section 2, when the order is carried using the candidate route. The
the cost apportioned to the order is calculated as the sum lower bound is calculated as the cost apportioned to the order
of the apportioned cost of the carrier used in each leg to when the order is carried by the carrier whose transportation
carry the order. The time hardness of the candidate route cost per unit weight is the lowest in that leg and with the

for an orderi is calculated as the difference betweBST; load ratio one, for each of the legs in the candidate route.
and the latest starting time by which the order has to depart Therefore, for the first iteration of the search, it is easiest
from the starting facilitys; to meet the deadling; at the to select a candidate route such that the number of legs is

destination facilitye; when the candidate route is used to small and each leg has the carrier whose transportation cost
carry the order. This value has to be a negative value or per unit weight is small.

zero, and can be calculated in advance for all the pairs of the The second index, the time hardness, is introduced to
candidate routes and the orders. The evaluation function incorporate the idea that the probability of orders failing

eval(i, k) for the candidate routé < R; for orderi is to be delivered is high if the order uses a candidate route
denoted as whose time constraint is hard. It is not certain at this stage
of our research whether or not this index works well. The

eval(i, k) = w1 - cost(i, k) + wyp - time(i, k), (6) experiments in Section 4 include tests with and without the

time-hardness constraint of the second index.

Initialize eval(i, k)* for all pairs of (i, k), i € D, k € R; 3.3 Selecting Candidate Routes
do
foreach orderi € D The candidate route of each ordelis selected as; :=
Select the router; := arg min.cg, eval(i, k). arg min.eg, eval(i, k). Suppose that ordérhas three can-
Calculate schedule using selected routes. didate routesR; = {1, 2, 3}, and their estimated costs are
foreach order i € D eval(i, 1) = 5, eval (i, 2) = 10, andeval (i, 3) = 15. Then,
_Update eval(,ry). Route 1 is selected as the route for the ondere., r; = 1.
while (at least one selection is changed). After the schedule is calculated using Route 1 for the order
Output the best solution found so far.
i, eval(i, 1) is updated on the basis of the schedule result.

If the updated valuegval(i, 1), is equal to or smaller than
10, Route 1 is selected as the route for the olidagain
Figure 4: Procedure of the Steepest Descent Algorithm for the next iteration. If the updated value is grater than
10, Route 2 is selected as the route for the oidfr the
next iteration. Note that Route 3 is not selected for the next
iteration, becauseval(i, 2) is smaller thareval(i, 3), and

1724

*eval(i, k) denotes the estimated cost of roéte R; of order:.

Amano, Yoshizumi, and Okano

these values are not updated when Route 1 is used as theH.. The algorithm also uses pre-calculated sorted lists of

route for the ordet. Thus,r; is updated at each iteration
either to the same route or to the second route. The size
of the neighborhood solutions is therefor@@ders,

3.4 Calculating a Configuration of Carriers

The configuration of carriers is a set of loaded orders and a
departure time for each of the carriers. Given orders and the
routes of the orders, the problem to find this configuration
is still NP-hard, since it involves the bin-packing problem.
The procedure of our greedy algorithm is shown in Fig.
5. The algorithm has two heaps. One is the heap to store
the orders, denoted b¥,,, and the other is the heap to store
the carriers onto which the orders are loaded, denoted by
H.. Suppose that the earliest starting time and the latest
starting time to meet the deadline for the facility where order
i is currently located are denoted bysr (i) and clst (i),
respectively. The value afesz (i) can be calculated as the
sum of the arrival time of the ordérat the current facility
and the handling time for the current facility. The value of
clst (i) is calculated in advance by tracing backward from
the destination facility. Note that the order might fail to be
delivered even if the orderarrives byclst (i), because the
carriers associated wittisz (i) might not be available.
Suppose that the available earliest starting time and
the available latest starting time for carrigrare denoted
by cest(j) andclst(j), respectively. The initial value of
cest(j) is EST;. If orderi is loaded onto the carrigr and
cest (i) is greater thamest(j), thencesr(j) is changed to
cest(i). In the same way, the initial value efsz(j) is
LST;, and if the orderi is loaded onto the carrief and
clst (i) is smaller tharcist(j), thenclst(j) is changed to
clst(i).
The element extracted from the order héapis always
the order whoseest is the earliest of all the orders iH,,,
and the element extracted from the carrier hBajis always
the carrier whoselsz is the earliest of all the carriers in

Initialize
insert all orders intoH, and H. = {.
while H, # ¢
extract orderi from H, and carrierj from H,.
if (cest(i) < clst(j) or He =)
then insert j into H, andfind carrierc for i. (5-1)
insert ¢ into H,.
else
insert i into H, and
find carrierd for reloading orders ory. (5-2)
if (d is not found)
then j departs andnsert orders onj into H,.
else insertd into H,.

Figure 5: Procedure of Our Greedy Algorithm

1725

the available carriers for each leg. The first key for sorting
is in the ascending order of the transportation cost per unit
weight, and the second key for sorting is in the ascending
order of the earliest starting time for each carrier.

The procedure of our greedy algorithm is described in
Fig. 5. Initially, the carrier heaf, is empty, and all the
orders are inserted into the order hedp Then, the loop
continues until the order hedi, becomes empty. The loop
starts by extracting the elements from both heaps. Note
that the element extracted from the order heap is the order
whosecest is the earliest and the element extracted from
the carrier heap is the carrier whosbk: is the earliest.
Suppose that the element extracted from the order kgap
is orderi and the element extracted from the carrier h&iap
is carrierj. If cest(i) is equal to or smaller thaeisz (),
or the heapH, is empty, then the carrier to load the order
on is found by the first fit algorithm ((5-1) in Fig. 5). The
first fit algorithm searches the sorted list associated with the
next leg for the ordeid from the top of the list and loads
it onto the first carrier found without violatingest (i) and
clst(i). If a carrier is not found in the sorted list, the order
i cannot be delivered. From the characteristics of the sorted
list, it is easiest to find the carrier whose transportation cost
per unit weight is lowest and whose earliest starting time is
earliest. The found carrier is inserted into the carrier heap
H.,.

If clst(j) is greater tharvest (i), the algorithm tries
to find another carrier onto which the orders on the carrier
j are reloaded, ((5-2) in Fig. 5), because there is no other
order which can be loaded onto the carrjerlf the orders
are reloaded onto a carrier whose capacity is smaller or
whose latest starting time is later, the total transportation
cost might be reduced but the possibility that the orders
cannot be delivered will become higher. Our algorithm tries
to find the carrier onto which the orders are reloaded by
the first fit algorithm from the next carrier of the original
carrier in the sorted list as long as the selected carrier can
carry all the orders without missing theitsz. If the carrier
is not found, the carriej departs, the departure time is
cest(j), and if the carried orders are not arriving at their
destination facilities, theest andclst of each order carried
by the carrierj are updated, and the orders are inserted
into the order heayH,. If the carrier is found, the found
carrier is inserted into the carrier hef.

4 NUMERICAL STUDY

4.1 The Instance Data

The instance data was generated for an imaginary manufac-
turing company in Japan. The total number of facilities is

about 400, the number of starting facilities, i.e., production
facilities, is about 20, the number of destination facilities,

Amano, Yoshizumi, and Okano

i.e., stores or dealers, is about 350, and the number of solutions. Comparing the carrier instance with ships to
intermediate facilities, i.e., cross-docking points, is about the instance without ships, the instance with ships always
30. The number of legs which have available carriers is gave better objective values. However, as the number of
915, which means some orders must be transported via sev-orders gets small, the difference between them became small.
eral intermediate facilities because the number of pairs of This might be caused by the fact that the order instance
starting and destination facilities is about:2850 = 7000. does not include any order whose time window is longer
The handling time for each facility was fixed at 60 minutes. than the scheduling horizon. Therefore, if the scheduling
Three order instances were generated. The three in- horizon is short, it is easier for generated orders to have
stances involve 5,000 orders whose scheduling horizon is destination facilities that are geographically close to their
10 days, 4,000 orders whose scheduling horizon is 8 days, starting facilities. Such orders do not need to be carried by
and 3,000 orders whose scheduling horizon is 6 days, re- ships.
spectively. Next, we examined how the solution is improved by our
Each carrier type is defined by the starting facility, the steepest descent algorithm. Table 2 shows the improvement
destination facility, the travel time, the EST, the LST, the ratio using our steepest descent algorithm. The improvement
transportation cost, the capacity, and the amount (e.g., tenratio is calculated as 100 (final objective valuey (initial
2-ton trucks). Each parameter for each carrier type was objective value). It is easy to see that the carrier instances
generated by supposing two modes of transportation, trucks with ships are more likely to be improved than the instances
and ships. To be more specific, the travel times for ships without ships. As mentioned in Subsection 3.2, it is easiest
are longer than those for trucks, but the transportation costs for the route which has the lowest transportation cost per
per unit weight for ships are lower and the capacities of unit weight of all the candidate routes to be selected as
ships are higher than for trucks. Therefore the more orders the initial route for each order. Therefore, it seems that
transported by one ship, the cheaper the total transportation many ships are used with low load ratio. That is why the
cost becomes. The ESTs of trucks were set to 9:00, 12:00, initial objective values are worse for the carrier instances
and 15:00. All the LSTs of trucks were set to their EST with ships. Further, it can be observed that for the carrier
plus two hours. The ESTs and LSTs of ships were all set instances with ships, the improvement ratio of Setting (1) is
to 12:00, so the departure time of the ships was fixed. higher than that of Setting (2), because the initial objective

Two carrier instances were generated. In one instance,
some legs are associated with ships and others with trucks.
In another instance, all of the legs are associated with trucks.
The mixed instance is intended to observe modal shift.

4.2 Experimental Results

The experiments were conducted using an IBM ThinkPad
T21 with a Pentium Il 800 MHz CPU and 128 MB of
memory. The penalty coefficient, which is used when
orders are not delivered, was fixed at 10,000 for all of the
orders. The number of candidate routes for each order is
ten.

We evaluated our steepest descent algorithm. Two
weight settings for the evaluation function of each candidate
route were experimented with. They are (@) = 1,
w2 =0 and (2)wy = 1, wp = 0.01. Setting (1) ignore the
time hardness, and Setting (2) includes it. Table 1 shows
the experimental results using these settings. Three order

values of Setting (2) are better than those of Setting (1).

Figure 6 shows the variation of the objective values
obtained at each iteration by our steepest descent algorithm.
The upper figure shows the overall variation and the lower
figure shows the variation for the objective values ranging
from 850,000 to 1,100,000. The horizontal axis shows the
number of iterations and the vertical axis shows the objective
values. The results of Setting (1) and Setting (2) for both
carrier instances and the order instance with 5,000 orders
are plotted. The overall behavior is almost the same for
every case. During the early iterations, the objective values
fluctuate a lot and the fluctuation gradually gets smaller.
The large fluctuations for early iterations might be because
the initial evaluation value for each route is set to the ideal
value. Thus, even hopeless routes are selected for early
iterations. From the figure on the right, it can be observed
that the objective value is being improved as the search
continues, and finally converges.

instances whose numbers of orders are 5,000, 4,000, and5 CONCLUSIONS

3,000 were used with the two carrier instances. The columns
“ini”, “fin”, and “time” show the objective values for the
initial solution, the objective value for the final solution, and
the calculation time taken by our steepest descent algorithm.
From Table 1, we cannot see any significant differences
regarding their solution qualities. Regarding the calculation
times, Setting (2) was relatively slower to converge, but
the slow convergence did not insure obtaining good final

1726

In this paper, we have defined the MSTPP, and proposed a fast
steepest descent algorithm for this problem. Our approach

consists of two steps: candidate generation and routing.

The routing is separated into two stages: routes selection

by a steepest descent algorithm, and the determination of a
configuration of carriers by a greedy algorithm. Our steepest

descent algorithm converges very quickly; it finds solutions

Amano, Yoshizumi, and Okano

Table 1: Result of Our Steepest Descent Algorithm

#order carrier (1) ini (1) fin (1) time (2) ini (2) fin (2) time
5,000 SHIP | 1,061,943 898,637 40 1,016,080 924,756 45
5,000 NO SHIP| 1,089,006 1,009,964 46 1,091,364 1,003,879 51

4,000 SHIP 827,207 685,170 22 783,279 711,411 25
4,000 NO SHIP| 801,877 749,413 25 809,747 739,996 38
3,000 SHIP 581,742 497,323 13 565,123 487,111 16
3,000 NO SHIP| 535,102 499,946 16 539,045 499,409 15

(time scale: seconds)

variation of objective value
3e+006

Table 2: Ratio of Improvement by Steepest ‘ sHip %}3 —
Descent Algorithm NO SHIP (1)
25e+006 NO SHIP (2) B

#order carrier | (1) ratio (2) ratio
5,000 SHIP 84.6% 91.0%
5,000 NO SHIP| 92.7% 91.9%
4,000 SHIP 82.8% 90.8%
4,000 NO SHIP| 93.5% 91.4%
3,000 SHIP 85.4% 86.2%
3,000 NO SHIP| 93.4% 92.6%
(ratio) = 100 = (final obj) / (initial obj).

2e+006

objective value

1.5e+006 [

16+006 |

500000 - - - - -
0 20 40 60 80 100 120

varialionlgrggier::tive value
within one minute for large instances whose solution space 1.16+006 —e— ‘ ‘ SHIP (1) ——
is about 18°0%n size. Our solution can be used for both %%g No SHiP (&)
daily operations and logistics design, since the MSTPP 1.05¢+006 | :z NO SHIP (2)

handles many practical constraints, such as time windows
or diagram, capacities, and the amount for available carriers.
Further, our fast steepest descent algorithm allows real-time
planning.

Future work is to make our problem more practical. So
far, we have not considered inventory control and delivery
lead time in the MSTPP, but they should be considered in
real situations and the importance of these metrics will be 850000) 20 20 60 80 100 120
different for various customers. Therefore, our solution has iteration
to be able to accommodate the differences of each customer’s _)
policies. Another extension of our work is to consolidate Figure 6: Convergence Behavior of Our Steepest Descent

modal-shift transportation with regional routing. Algorithm

3

)

R

g RS
%0
ik

1e+006 | 7
%

950000 -

objective value

900000

REFERENCES . .

and a Solution Approachin Proceedings of the 7th
Crainic, T. G. and J. Roy. 1992. Design of regular inter- International Symposium on Logistics, 567-572.
city driver routes for the LTL motor carrier industry. ~ ©%ano, H. and M. Koda. 2003. An optimization algorithm

Transportation Scienge26: 280—295. based on stochastic sensitivity analysis for noisy ob-

Crawford, J. M., M. Dalal and J. P. Walser. 1998. Abstract jective landscapesJournal of Reliability Engineering

Local Search. IfProceedings of the AIPS-98 Workshop and System Safety9: 245-252. _
on Planning as Combinatorial Search Powell, W. B. and Y. Sheffi. 1989. Design and implementa-

Hoppe, B., E. Z. Klampfl, C. McZeal and J. Rich. 1999. tion of an interactive optimization system for network

Strategic Load-Planning for Less-Than-Truckload design in the motor carrier industryOperations Re-

Trucking Technical Report CRPC-TR99812-S, Center search 37: 12-29. ,
for Research on Parallel Computation, Rice University. POWell, W.B., T. Carvalho, G. Godfrey and H. Simao. 1995.

Katayama, N. and S. Yurimoto. 200ZThe Load Plan- Dynamic fleet management as a logistics queueing net-
ning Problem for Less-than-Truckload Motor Carriers work. Annals of Operations Researoh: 165-188.

1727

Amano, Yoshizumi, and Okano
AUTHOR BIOGRAPHIES

MASAMI AMANO s a researcher of Tokyo Research Lab-
oratory of IBM Japan. He received a B.S. degree (1999)
and a M.S. degree (2001) in Informatics from Kyoto Uni-
versity. He joined Tokyo Research Laboratory, IBM Japan,
in 2001, and researched on production planning and lo-
gistics. His research interests include the supply chain
management and the business strategy. His e-mail address
is <amanom@jp.ibm.com> .

TAKAYUKI YOSHIZUMI is a researcher of Tokyo Re-
search Laboratory of IBM Japan. He received a B.S. degree
(2000) and a M.S. degree (2002) in Informatics from Kyoto
University. He joined Tokyo Research Laboratory, IBM
Japan, in 2002, and joined operations research group. His
research interests include the artificial intelligence. His
e-mail address isyszm@jp.ibm.com>

HIROYUKI OKANO is a researcher of Tokyo Research
Laboratory of IBM Japan. He received a B.S. degree (1988)
and a M.S. degree (1990) in Information Science from the
Tokyo University of Agriculture and Technology. He joined
Tokyo Research Laboratory, IBM Japan, in 1990, and re-
searched on user interface and system software. In 1995, he
joined operations research group, and started to research on
combinatorial optimization. His research interests include
the traveling salesman problem and the vehicle routing prob-
lem. His e-mail address isokanoh@jp.ibm.com>

1728

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1720
	02: 1721
	03: 1722
	04: 1723
	05: 1724
	06: 1725
	07: 1726
	08: 1727
	09: 1728

