
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds

RUNWAY SCHEDULE DETERMINATION BY SIMULATION OPTIMIZATION

Thomas Curtis Holden
Frederick Wieland

The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102, U.S.A.

ABSTRACT

Many airport runway expansion projects are restricted by
space limitations imposed by development in the vicinity
of the airport. This often causes planners to choose con-
figurations for new runways that limit the use of these
runways in time and/or space. Studies that model airports
with new runways that are not yet operational need to de-
velop plausible operational models for these new runways
since historical data is not available. We look at a runway
schedule problem encountered during the configuration
and validation step of an earlier study. We develop a
method using simulation optimization to approach the
runway schedule problem and compare it to a manual ap-
proach developed in the earlier study. We use the Total
Airspace and Airport Modeler to model the airport and air-
space operations and Fast Simulated Annealing for the op-
timization.

1 INTRODUCTION

Economic and aviation industry analysis suggests that pas-
senger air travel demand in the United States will grow in
the medium and long term despite the recent slowdown
(FAA 2002a). The plans to deal with this growth involve
the addition of new runways to airports in congested areas
(FAA 2002b). Some airports are severely constrained by
geography and local development causing planners to
choose configurations for new runways that limit the use of
the new runways in time and/or space. Integrating these
constrained runways into the existing aviation infrastruc-
ture is a challenging task that has been the focus of a sig-
nificant amount of research.

We look at a runway schedule problem encountered
during the configuration and validation step of an earlier
study. The previous study models an airport with a new
runway that is restricted to either departures or arrivals, but
not both, at any given time. Since no historical data ex-
isted for the new runway at the time of the previous study,
the analysts needed to develop a plausible schedule for the

new runway. We use simulation optimization to find such
a schedule. The method developed here is offered as an
alternative to a manual optimization approach used in the
previous study.
 The airport model used in this study is taken from the
previous study. This model is built for the Total Airspace
and Airport Modeler (TAAM). TAAM is a deterministic,
fast-time, time-stepped simulation that models airports, air-
space and flights. Airports can be modeled as simple point
sources or in great detail as a network of taxiways connect-
ing runways to gates. Flights are modeled as individual
physical airplanes that have state (altitude, location, veloc-
ity, mass, etc.) and properties (average climb rate, fuel ca-
pacity, maximum speed, etc.) that depend on the type of
the airplane. The state of each flight evolves in simulation
time and is determined by the flight’s schedule, its interac-
tion with other flights and the airport and airspace rules.
Simplified laws of kinetics that depend on the properties of
each airplane govern the incremental movement of flights.
Airport and airspace rules can be added to make simulated
flights conform to standard departure, enroute and ap-
proach paths.
 The rest of this paper is organized as follows. In sec-
tion 2 the previous study and the runway schedule optimi-
zation problem are discussed in more detail. In section 3
the simulation optimization approach to the runway sched-
ule optimization problem is developed. Section 4 dis-
cusses the simulation optimization results and contrasts
them with the previous study approach. In section 5 we
summarize with a conclusion.

2 THE RUNWAY SCHEDULE
PROBLEM SETTING

2.1 Runway Operations

The runway considered in this study is restricted to opera-
tions at one end. We refer to each end of the runway by
directional orientation, 0φ and 1φ . The three possible

Holden and Wieland

states of the runway are illustrated in Figure 1. These
states are the following:

1. , the)0(σ 0φ direction is open for departure.

2. , the)1(σ 1φ direction is open for arrival.

3. , the runway is closed.)(cσ
When the runway is open for departure in the 0φ direction
it obviously cannot accept arrivals in the 1φ direction. To
prevent operational conflict between departures and arri-
vals the runway is not allowed to be open for arrival or de-
parture simultaneously.
 Limiting the runway to arrivals or departures at any
one time forces controllers to decide when 0φ should be
open for departures and when 1φ should be open for arri-
vals. A “good” schedule for the runway that optimizes
some metric like runway utilization or delay will involve
tradeoffs between satisfying arrival and departure de-
mands. The relationship between theses tradeoffs is quite
complex since the arrival and departure demand as a func-
tion of time depends on many factors.

2.2 The Manual Optimization Approach

The manual approach involves running the simulation
with two baseline schedules, one with the runway in state

all-day, and the other with the runway in state

)0(σ)1(σ

)1(σ

)0(σ

)(cσ

0φ1φ

0φ1φ

0φ1φ

- Runway is open for arrival

- Runway is open for departure

Figure 1: Runway States
all-day. The arrival delay associated with the all day
schedule and the departure delay associated with the all
day schedule is plotted vs. time of day on one graph. This
graph for the model used in this study is shown in Figure 2.
The estimate of the best schedule is developed by picking
the time periods when delay for the all day schedule is
high and making

)0(σ
)1(σ

)0(σ
1φ open for arrival during those times.

During the rest of the day 0φ is set open for departure.

0

20

40

60

80

100

120

140

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Time of day (hour)

D
el

ay
 p

er
 1

5-
m

in
ut

e
pe

rio
d

(m
in

ut
es

)

Departure Delay for sigma 1 All Day Schedule
Arrival Delay for sigma 0 All Day Schedule

Figure 2: Arrival and Departure Delay

3 THE SIMULATION OPTIMIZATION
APPROACH

The relationship between the runway schedule and delay is
probably non-linear. Because of this, the manual approach
to minimize delay is probably limited in terms of how
much delay can be reduced. Here is a list of some addi-
tional factors that may limit the manual approach:

1. Certain flights in the model cannot use the run-
way, so delay contributions by these flights
should not be considered in the same way as
flights that can use the runway.

2. It is not clear which runway should be open when
delay peaks for the all-day schedule and the

 all-day schedule occur during the same pe-
riod and are of comparable magnitude.

)0(σ
)1(σ

 A simulation optimization technique may be able to
account for all of these factors.

3.1 Overview of Simulation Optimization

Simulation optimization is the use of search methods to
find input parameter settings that improve selected output
measures of a simulated system (Boesel 2001). The moti-
vation for doing simulation optimization is to support ana-
lytical studies that use simulation to study real world sys-
tems. Applications of this technique include transportation
systems, manufacturing systems, supply chains, call cen-
ters and finance (Fu 2001).

Holden and Wieland

 Most simulation optimization approaches include the
following components: an optimization algorithm, an ob-
jective function, a set of constraints and a simulation en-
gine. The optimization algorithm attempts to find a mini-
mum or maximum value for the objective function. The
objective function is a wrapper for the simulation that
translates parameters from the optimization algorithm to a
configuration object that the simulation uses. The objec-
tive function also gathers values from the simulation output
to generate a single result. The constraints define valid so-
lutions based on the objective function input parameters
and/or results.

3.2 Runway Schedule Objective Function

The runway schedule objective function creates a new
TAAM runway preferences configuration file (a .prf file)
each time it is called. The TAAM runway preferences file
defines a set of consecutive time windows and correspond-
ing states for each runway at the airport. Each time entry
in the preferences file defines the end time of one window
and the starting time of the next window.
 The runway schedule objective function needs to
translate the values passed to it by the optimization algo-
rithm into a valid runway preferences file. These values
are represented by a vector we will call θ . Each element
in is represented by θ , where i is the index of the
value. The θ are indexed in the following manner:

θ

1,

i

i

−n 120 ,,,θ θθθ …
θ

θ

 where is the number of elements in
. It is clear that two classes of things need to be repre-

sented in : time windows and the corresponding runway
states. To address these requirements, each θ value is
taken to be the end time for the ith time window and the
state for the ith time window is taken to be a state

n

i

iσ .
The start time of each time window is the end time of the
previous time window; therefore, the period spanned by
time window is 1+i iiθ θ−+1

τ
. A fixed active time period

during one day is defined: is the start time for the first
time window while is the end time of the last time
window. Each represents a number of minutes past

. The time resolution of the preferences file is to the
minute, so the objective function essentially operates on a
discrete set of parameters.

)s

)(eτ

(

iθ
(τ)s

 In the previous study it was determined that the run-
way needs to be closed for a short period of time when op-
erations transition from arrivals to departures or departures
to arrivals. This closure is required to flush out any flights
from the old state so that interference between flights is
avoided. It was determined that the runway needs to be
closed for 5 minutes when transitioning from departures on
0φ to arrivals on 1φ , and 10 minutes when transitioning
from arrivals on 1φ to departures on 0φ .
 Since we are interested in a solution that takes the
form of a set of time windows that each represent one of
two states { , the simplest form of any solution
will be a sequence of consecutive time windows that alter-
nate state between and with the appropriate
flush periods included in each time window. We mimic
this form by alternating the

},)1()0(σσ

(σ)0)1(σ

iσ states in the following way:







=
even. is when ,
odd is when ,

)0(

)1(

i
i

i σ
σσ

Each time window includes the appropriate flush period,
which we will call , at the end of the time window.

is determined by the states
iδ

iδ iσ and 1+iσ . The state be-

fore is)(sτ 1−σ and is set to the state of the first time win-

dow, 0σ , while the state after is)(eτ nσ and is set to the
state of the last time window, 1−nσ .
 Figure 3 is a diagram of the information represented by
three hypothetical elements of . The values are: θ

500 ,460 ,430 21 === ++ iii θθθ . The axis at the bottom of
Figure 3 represents the time of day in minutes past midnight
while the shading represents the state of the runway at a par-
ticular time. The time spanned by each of the three θ ele-
ments and the flush periods are marked on the diagram.

+iσ 3+ iσ 2+iσ 1iσ

σ ()1(σ 0) c(σ)

)(+iθ 2 1+− iθ)(iθ +1 iθ−)(iθ 1−− iθ

400 420 440 460 480 500 520
Time of day (minutes past midnight)

Figure 3: Example of θ Information

 It is possible that the difference between a set of con-
secutive values will be less than the intervening pe-

riods causing the to overlap. When overlap clusters
like this form, the time windows represented by θ are re-
placed in the TAAM preferences file by a single time win-
dow with a new state

iθ iδ

iδ

i

σ ′ and flush period δ ′ that depend
on the iσ and values. When these overlap clusters
form, the states represented by θ are squeezed out and the
resulting preferences file will have less than time win-
dows. Since the absolute optimal schedule may have fewer
than time windows, allowing time windows to be

iδ

i

n

n

Holden and Wieland

squeezed out will allow the optimal solution to exist in the
solution space of θ .

−
−θ

iθ

−1

 when

(sτ

 The overlap clusters mentioned in the paragraph above
are defined by any contiguous set { }nmimi <′≤≤≤0|θ
where the following hold:

mmm δθθ >−1 when , 0≠m

11 +′′+′ > mmm δθ when , 1−≠′ nm

11 ++ ≤− ii δθ i in . ∀ mim ′<≤

The first two inequalities define conditions on the bounds

 and , which span all the θ in a overlap cluster,
while the last inequality indicates that only the that
qualify for the overlap cluster are permitted in the set. The
window used in the runway preferences file in place of a
overlap cluster is a window with state

m m′ i

iθ

mσσ =′ and flush
period δ ′ which is set to:

m′′=′ δδ

where m′′δ is defined by the recursive relation,

() mimi
i

ii
iii ′<≤∀







 ′+
=′

+

+
++ in

1

1
1 δ

δδ
θθδ ,

and

mm δδ =′

when 1+′=′ mσσ or







==′
==′

=′
+′

+′

, and ,5
 and when ,10

)1(
1m

)0(

)0(
1m

)1(

σσσσ
σσσσδ

when 1+′≠′ mσσ . The total period of the window used in
the preferences file is mm θθ −′ . This method of squeez-
ing out time windows provides for smooth variation in the
size of the overlapping flush periods, δ ′ , with respect to
the time difference between the squeezed time windows in
the cluster.
 It is possible that the optimal schedule may have more
than time windows. In this case the absolute optimal
schedule will not be in the solution space of θ . The
choice for the size of θ will be limited by the number of
times a runway can practically change state in the period of
time defined by { .

n

},)) (eτ
 The constraints on are: θ
1. niie

i
s <≤∀≤≤ 0in)()(τθτ

2. niiii <≤∀≤ + 0in 1θθ .
 The first constraint is a simple projection that limits
the range of the values in θ , while the second constraint
requires the elements to be in ascending order which is re-
quired by the representation of the { states. },)1()0(σσ
 The result of the runway schedule objective function is
a single number, ρ , that represents average total delay.
The average total delay is calculated by averaging the se-
quencing and departure delay values for all flights arriving
and departing from the airport. The flight delay values are
taken from the ‘seq/dep delay’ field of the TAAM report
(.rep) file.

3.3 Optimization Strategy

The optimization strategy used in this study utilizes a vari-
ant of Simulated Annealing (SAN) called Fast Simulated
Annealing (FSAN) (Szu and Hartley 1987). SAN is a
technique for random search optimization based on an
analogy to the condensed matter process of annealing.
SAN was formalized for combinatorial optimization by
Kirkpatrick et al. (1981) and was later extended to apply to
general continuous and discrete optimization problems.
Annealing is the process of heating a solid to a high tem-
perature and then cooling it at a slow rate so that the final
state is at or near the lowest energy state. The ground
state, or lowest energy state, for many solids has a special
form such as a crystalline structure. Physical annealing
occurs naturally in magma intrusions in the crust of Earth
and is also used in the laboratory and in industrial produc-
tion to create solid materials with very specific properties
such as specialized metals and silicon wafers.
 The basic SAN algorithm has three main functional
components: the acceptance function, the generation func-
tion and the cooling schedule. SAN is an iterative algo-
rithm that successively calls the objective function with a
point in the solution space returned by the generation func-
tion. The generation function picks a random point from a
unimodal distribution which samples the entire solution
space with non-zero probability. This distribution is cen-
tered on a reference point, θ , which is taken as the current
estimate of the optimum. The unimodal distribution biases
the search to a neighborhood around θ . At each iteration
new points are accepted as with probability:

ˆ

θ̂

ˆ

},1min{),ˆ(
)ˆ()(









 −−

= At
LL

A etA
θθ

θθ, ,

where is the value of the objective function at and
 is the acceptance temperature. is often referred

)(θL θ

At)(θL

Holden and Wieland

to as the “energy” in the context of SAN. The value of
is controlled by the cooling schedule and is a decreasing
function of the iteration k. This acceptance function al-
lows SAN to accept new solutions with higher energy than
the reference solution with non-zero probability.

kAt

The non-zero probability of accepting points with
higher energy as the new reference point prevents SAN
from searching only one neighborhood of the solution
space. This can be beneficial when searching objective
functions that have many undesirable local minima since
SAN will tend to wander from the vicinity of one local
minimum to another. This wandering behavior allows
SAN to converge to a global minimum as when
certain conditions are met (Locatelli 2002).

∞→k

FSAN uses a generation function that picks points
from the Cauchy distribution while the classic form of
SAN, sometimes known as Boltzmann annealing, picks
points from the Normal distribution. The implementation
used in this study scales the Cauchy distribution with a
generation temperature, t , which decays as a function of
the iteration k. This reduces the size of the neighborhood
that is searched as the number of iterations increases, al-
lowing the algorithm to eventually focus its search on one
neighborhood (presumably a neighborhood that contains
the global minimum). Szu and Hartley (1987) showed that
when the Cauchy distribution is used to generate candidate
points, the temperature schedules and t can decay as

fast as 1 and still guarantee convergence. This is much
faster than the 1 decay schedule required for clas-
sic Boltzmann annealing.

kG

)

kAt
kG

k/
log(/ k

 We also ran the objective function against a simple
blind random search optimization algorithm. The blind
random search picks points from a uniform distribution
that samples the entire solution space with equal probabil-
ity. The blind random search does not focus its search on a
particular neighborhood of the solution space. If the
neighborhood search behavior of FSAN is any benefit
when FSAN is applied to the runway schedule objective
function, we will expect FSAN to perform better than the
blind random search.

Since both FSAN and blind random search evaluate
the objective function once for each iteration, the number
of objective function evaluations is equivalent between
FSAN and blind random search when the number of itera-
tions is the same. This point is important because the
computational time required to evaluate the objective func-
tion is orders of magnitude longer than the time taken by
any other part of the optimization algorithm.

3.4 TAAM Simulation

The version of TAAM used in this study is TAAM Plus
V1.2.1, Release 1 compiled on SunOS 5.8 for i86pc. The
results from the runway schedule optimization used in the
previous study cannot be compared directly to the results
obtained using the simulation optimization technique de-
veloped in this study because this study used a different
version of TAAM. Therefore, to facilitate a comparison
with the simulation optimization method developed in this
study, we use the method developed in the previous study
to create a schedule.

3.5 Model Setup

The TAAM model was set up based on the model defined
in the previous study. The model defines one full day of
traffic which includes 784 departures and 783 arrivals. All
TAAM runs were done with the airport ground model
turned off. This is consistent with the previous study and
eliminates any delay associated with taxiing and gate us-
age. The runtime of the model was about 200 seconds on a
700 MHz Xeon machine.

4 RESULTS

We obtain a solution using FSAN that result in lower aver-
age total delay than the blind random search and the man-
ual method (see Figure 4). We ran 15 replications of
FSAN, blind random search and the manual method using
the runway schedule objective function. The parameters
for the FSAN runs are listed in Table 1 while the blind
random search parameters are listed in Table 2. The start
time for the active period, , is set to 360 because there
is very little traffic before 360.

)(sτ

900

1000

1100

1200

1300

1400

0 50 100 150 200 250 300 350 400 450 500
Iteration

A
ve

ra
ge

 to
ta

l d
el

ay
 (s

ec
on

ds
)

Simulated Annealing
Blind Random Search
Manual Approach

Figure 4: FSAN and Blind Random Search Results

Table 1: Parameters Used for FSAN Runs

FSAN Objective function
Iterations

0Gt
0At Size of θ)(sτ)(eτ

500 1000 1000 13 360 1080

Holden and Wieland

Table 2: Parameters Used for Blind Random Search Runs

Blind random search Objective function
Iterations Size of θ)(sτ)(eτ
500 13 360 1080

 The manual data was generated by 15 runs of TAAM
with 15 different variations of the TAAM preferences file.
The preferences files were generated using the procedure
described in section 2.2. The number of time windows
used in the preferences file varied from 9 to 13.
 The sample mean of the average total delay for the
reference solution of the FSAN runs and the sample mean
of the average total delay for the best solution of the blind
random search runs are plotted as a function of iteration in
Figure 4. The sample mean value of the manual runs also
appears in Figure 4. The 500th iteration sample mean value
is significantly lower for the FSAN runs than the blind ran-
dom search runs. The sample mean delay for the FSAN
reference solution matches the manual solution after about
75 iterations, while the blind random search matches it af-
ter about 150 iterations. The FSAN curve appear to be de-
creasing at iteration 500, which suggests that FSAN was
still not close to convergence at iteration 500. This is sup-
ported by the fact that FSAN runs that were allowed to run
out to 800 iterations achieved solutions with average total
delay as low as 888.621 seconds.

Table 3 summarizes statistics on the runs. is the
value of the mean average total delay of all the manual
runs and is the mean average total delay of the reference
solution at iteration 500 for the FSAN and blind random
search runs. The confidence interval was generated using
95% confidence interval t-statistics. Notice that the FSAN
95% confidence interval does not overlap with either the
blind random search or the manual 95% confidence inter-
val. This confidence interval data provides further statisti-
cal evidence that the improvement of the FSAN approach
over the blind random search and manual approaches is
significant. The confidence interval for the manual runs is
much larger than the FSAN and blind random search runs
which suggests that the optimization algorithms generate
more consistent results than the manual method. Although
this is true for these particular runs, it is important to note
that the manual confidence interval and sample mean may
vary depending on who picks the schedule since the results
will depend significantly on the judgment of the person
picking the candidate schedules. The mean total runtime is

mρ

Table 3: Summary of Results
Optimization

Approach mρ (s) Confidence
Interval

Mean Total
Runtime (s)

FSAN 956.5275 ±mρ 12.77 94775.9

Blind search 1067.802 ±mρ 11.93 101102.6

Manual
approach

1082.946 ±mρ 43.50 198.93
the mean total time required to do one run of an optimiza-
tion method. The FSAN approach is somewhat faster than
the blind search. This is because TAAM runs faster with
schedules that produce lower average total delay. The
manual solution required only one run, so it obviously ran
much faster than the FSAN and blind random search runs.
The mean total runtime data for the manual runs do not
take into account the time required to do the two runs
needed to make Figure 2.
 The 500th iteration reference solutions for the 15
FSAN runs appear in Figure 5 and the initial (or 0th itera-
tion) reference solution for all the FSAN and blind random
search runs appear in Figure 6. The states for each time
window follow the shading scheme defined in Figure 3 and
the flush periods are not included. As we would expect,
500th iteration solutions have a bias towards the state
after around 16:00 when the arrival delay for the all
day schedule is high (see Figure 2). The manual schedules
developed based on the delay graph shown in Figure 2 also
have this bias, but the FSAN mean average total delay is
lower. The differences between the schedules developed
using the manual method and the FSAN runs may be due
to the limitations discussed in Section 3.

)1(σ
(σ)0

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

50
0t

h
ite

ra
tio

n
FS

A
N

 R
ef

er
en

ce
 S

ol
ut

io
n

Time of day (hour)
Figure 5: 500th Iteration FSAN Solutions

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00

Time of day (hour)

Figure 6: Initial FSAN Solution

5 CONCLUSIONS

In this study we developed a method to do runway sched-
ule optimization using simulation optimization. This
method used the TAAM simulation in conjunction with
Fast Simulated Annealing (Szu and Hartley 1987). The
method applies when there are two possible states for the
runway. The method results compare favorably to a man-

Holden and Wieland

ual method developed by a previous study and results from
a blind random search algorithm.

The time and resources required to do simulation op-
timization using TAAM are not trivial. The sample mean
runtime of 15 500-iteration runs of FSAN using the
TAAM-based objective function is about 26 hours on a
700 MHz Xeon machine. If simulation optimization is to
be used to calibrate and validate TAAM models, the time
and effort must be carefully weighed against an alternative
approach (such as a manual approach).
 It would be interesting to explore the possibility of us-
ing a runway schedule simulation optimization technique
in a real-world setting. This could be used to help ground
controllers decide what runway schedule to use. This ap-
plication would require a fast, high fidelity simulation and
a simulation optimization procedure that can be updated as
the real time state evolves. It would also require that actual
airline schedules, including provisions for general aviation
traffic that have filed flight plans, be used by the model
during the optimization phase. As external changes to the
schedule take place (cancellations, substitutions, addi-
tions), then the optimization procedure may need to be re-
peated with the changed traffic.

ACKNOWLEDGMENTS

We would like to thank Preston Aviation for providing the
TAAM software for this project. We would also like to
thank Mike Yablonski for providing the model used in the
study. Mike also provided crucial tips and insight on the
basic and not so basic aspects of using TAAM. John Ku-
chenbrod provided us with additional vital tips and tricks
about using TAAM. The contents of this material reflect
the views of the authors. Neither the Federal Aviation
Administration nor the Department of Transportation
makes any warranty or guarantee, or promised, expressed
or implied, concerning the content or accuracy of the views
expressed herein.

REFERENCES

Boesel, J., R.O. Bowden Jr., F. Glover, J.P. Kelly, and E.
Westwig, 2001. Future of Simulation Optimization. In
Proceeding of the 2001 Winter Simulation Conference,
J.A. Joines, R.R. Barton, K. Kang, and P.A. Fishwick,
eds., pp. 1466-1469. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

Federal Aviation Administration (FAA), 2002a. FAA
Aerospace Forecasts: Fiscal Year 2002-2013, Wash-
ington, DC: US Department of Transportation.

Federal Aviation Administration (FAA), 2002b. National
Airspace System Operational Evolution Plan, Wash-
ington, DC: US Department of Transportation.

Fu, M.C., 2001. Simulation Optimization. In Proceeding
of the 2001 Winter Simulation Conference, J.A. Joines,
R.R. Barton, K. Kang, and P.A. Fishwick, eds. pp. 53-
61. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Kirkpatrick, S., C.D. Gellatt, and M.P. Vwecchi, 1981.
Optimization by simulated annealing. Science 220:
671-680.

Locatelli, M., 2002. Simulated annealing algorithms for
continuous global optimization, Handbook of Global
Optimization volume 2, P.M. Pardalos, H.E. Romeijn,
eds., Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Szu, H. and R. Hartley, 1987. Fast Simulated Annealing,
Physics Letters A 122: No. 3, 157-162.

AUTHOR BIOGRAPHYS

THOMAS CURTIS HOLDEN is a Senior Simulation
and Modeling Engineer at The MITRE Corporation’s Cen-
ter for Advanced Aviation Systems Design (CAASD). His
e-mail address is <tholden@mitre.org>.

FREDERICK WIELAND holds a PhD in information
technology/applied probability theory from George Mason
University. He is the developer of numerous simulations
for the U.S. Department of Defense as well as the Federal
Aviation Administration, including CTLS, DPAT, Matrix
and others, and has done extensive research in the paral-
lelization of large-scale simulations such as TAAM. He
has been working in the simulation field for 20 years. His
e-mail address is <fwieland@mitre.org>.

mailto:<tholden@mitre.org>
mailto:<tholden@mitre.org>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1670
	02: 1671
	03: 1672
	04: 1673
	05: 1674
	06: 1675
	07: 1676

