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ABSTRACT 

Many airport runway expansion projects are restricted by 
space limitations imposed by development in the vicinity 
of the airport.  This often causes planners to choose con-
figurations for new runways that limit the use of these 
runways in time and/or space.  Studies that model airports 
with new runways that are not yet operational need to de-
velop plausible operational models for these new runways 
since historical data is not available.  We look at a runway 
schedule problem encountered during the configuration 
and validation step of an earlier study.  We develop a 
method using simulation optimization to approach the 
runway schedule problem and compare it to a manual ap-
proach developed in the earlier study.   We use the Total 
Airspace and Airport Modeler to model the airport and air-
space operations and Fast Simulated Annealing for the op-
timization. 

1 INTRODUCTION 

Economic and aviation industry analysis suggests that pas-
senger air travel demand in the United States will grow in 
the medium and long term despite the recent slowdown 
(FAA 2002a).  The plans to deal with this growth involve 
the addition of new runways to airports in congested areas 
(FAA 2002b).  Some airports are severely constrained by 
geography and local development causing planners to 
choose configurations for new runways that limit the use of 
the new runways in time and/or space.  Integrating these 
constrained runways into the existing aviation infrastruc-
ture is a challenging task that has been the focus of a sig-
nificant amount of research. 

We look at a runway schedule problem encountered 
during the configuration and validation step of an earlier 
study.  The previous study models an airport with a new 
runway that is restricted to either departures or arrivals, but 
not both, at any given time.  Since no historical data ex-
isted for the new runway at the time of the previous study, 
the analysts needed to develop a plausible schedule for the 
  
new runway.  We use simulation optimization to find such 
a schedule.  The method developed here is offered as an 
alternative to a manual optimization approach used in the 
previous study. 
 The airport model used in this study is taken from the 
previous study.  This model is built for the Total Airspace 
and Airport Modeler (TAAM).  TAAM is a deterministic, 
fast-time, time-stepped simulation that models airports, air-
space and flights.  Airports can be modeled as simple point 
sources or in great detail as a network of taxiways connect-
ing runways to gates.  Flights are modeled as individual 
physical airplanes that have state (altitude, location, veloc-
ity, mass, etc.) and properties (average climb rate, fuel ca-
pacity, maximum speed, etc.) that depend on the type of 
the airplane.  The state of each flight evolves in simulation 
time and is determined by the flight’s schedule, its interac-
tion with other flights and the airport and airspace rules.  
Simplified laws of kinetics that depend on the properties of 
each airplane govern the incremental movement of flights.  
Airport and airspace rules can be added to make simulated 
flights conform to standard departure, enroute and ap-
proach paths. 
 The rest of this paper is organized as follows.  In sec-
tion 2 the previous study and the runway schedule optimi-
zation problem are discussed in more detail.   In section 3 
the simulation optimization approach to the runway sched-
ule optimization problem is developed.  Section 4 dis-
cusses the simulation optimization results and contrasts 
them with the previous study approach.  In section 5 we 
summarize with a conclusion.   

2 THE RUNWAY SCHEDULE  
PROBLEM SETTING 

2.1 Runway Operations 

The runway considered in this study is restricted to opera-
tions at one end.  We refer to each end of the runway by 
directional orientation, 0φ  and 1φ .  The three possible 
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states of the runway are illustrated in Figure 1.  These 
states are the following:  

1.  , the )0(σ 0φ  direction is open for departure. 

2. , the )1(σ 1φ  direction is open for arrival. 

3. , the runway is closed. )(cσ
When the runway is open for departure in the 0φ  direction 
it obviously cannot accept arrivals in the 1φ  direction.  To 
prevent operational conflict between departures and arri-
vals the runway is not allowed to be open for arrival or de-
parture simultaneously. 
 Limiting the runway to arrivals or departures at any 
one time forces controllers to decide when 0φ  should be 
open for departures and when 1φ  should be open for arri-
vals.  A “good” schedule for the runway that optimizes 
some metric like runway utilization or delay will involve 
tradeoffs between satisfying arrival and departure de-
mands.  The relationship between theses tradeoffs is quite 
complex since the arrival and departure demand as a func-
tion of time depends on many factors.  

2.2 The Manual Optimization Approach 

The manual approach involves running the simulation 
with two baseline schedules, one with the runway in state 

all-day, and the other with the runway in state  
 

)0(σ )1(σ

 

)1(σ

)0(σ

)(cσ

0φ1φ

0φ1φ

0φ1φ

- Runway is open for arrival 

- Runway is open for departure

Figure 1: Runway States 
all-day.  The arrival delay associated with the  all day 
schedule and the departure delay associated with the  all 
day schedule is plotted vs. time of day on one graph.  This 
graph for the model used in this study is shown in Figure 2.  
The estimate of the best schedule is developed by picking 
the time periods when delay for the  all day schedule is 
high and making 

)0(σ
)1(σ

)0(σ
1φ  open for arrival during those times.  

During the rest of the day 0φ  is set open for departure. 
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Figure 2: Arrival and Departure Delay 

3 THE SIMULATION OPTIMIZATION 
APPROACH 

The relationship between the runway schedule and delay is 
probably non-linear.  Because of this, the manual approach 
to minimize delay is probably limited in terms of how 
much delay can be reduced.  Here is a list of some addi-
tional factors that may limit the manual approach: 

1. Certain flights in the model cannot use the run-
way, so delay contributions by these flights 
should not be considered in the same way as 
flights that can use the runway.    

2. It is not clear which runway should be open when 
delay peaks for the  all-day schedule and the 

 all-day schedule occur during the same pe-
riod and are of comparable magnitude. 

)0(σ
)1(σ

 A simulation optimization technique may be able to 
account for all of these factors. 

3.1 Overview of Simulation Optimization 

Simulation optimization is the use of search methods to 
find input parameter settings that improve selected output 
measures of a simulated system (Boesel 2001).   The moti-
vation for doing simulation optimization is to support ana-
lytical studies that use simulation to study real world sys-
tems.  Applications of this technique include transportation 
systems, manufacturing systems, supply chains, call cen-
ters and finance (Fu 2001). 
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 Most simulation optimization approaches include the 
following components: an optimization algorithm, an ob-
jective function, a set of constraints and a simulation en-
gine.  The optimization algorithm attempts to find a mini-
mum or maximum value for the objective function.  The 
objective function is a wrapper for the simulation that 
translates parameters from the optimization algorithm to a 
configuration object that the simulation uses.  The objec-
tive function also gathers values from the simulation output 
to generate a single result.  The constraints define valid so-
lutions based on the objective function input parameters 
and/or results. 

3.2 Runway Schedule Objective Function 

The runway schedule objective function creates a new 
TAAM runway preferences configuration file (a .prf file) 
each time it is called.  The TAAM runway preferences file 
defines a set of consecutive time windows and correspond-
ing states for each runway at the airport.  Each time entry 
in the preferences file defines the end time of one window 
and the starting time of the next window. 
 The runway schedule objective function needs to 
translate the values passed to it by the optimization algo-
rithm into a valid runway preferences file.  These values 
are represented by a vector we will call θ .   Each element 
in  is represented by θ , where i  is the index of the 
value.  The θ  are indexed in the following manner: 

θ

1,

i

i

−n 120 ,,,θ θθθ …
θ

θ

 where  is the number of elements in 
.  It is clear that two classes of things need to be repre-

sented in : time windows and the corresponding runway 
states.  To address these requirements, each θ  value is 
taken to be the end time for the ith  time window and the 
state for the ith  time window is taken to be a state 

n

i

iσ .  
The start time of each time window is the end time of the 
previous time window; therefore, the period spanned by 
time window  is 1+i iiθ θ−+1

τ
.  A fixed active time period 

during one day is defined:  is the start time for the first 
time window while   is the end time of the last time 
window.  Each  represents a number of minutes past 

.  The time resolution of the preferences file is to the 
minute, so the objective function essentially operates on a 
discrete set of parameters.  

)s

)(eτ

(

iθ
(τ )s

 In the previous study it was determined that the run-
way needs to be closed for a short period of time when op-
erations transition from arrivals to departures or departures 
to arrivals. This closure is required to flush out any flights 
from the old state so that interference between flights is 
avoided.  It was determined that the runway needs to be 
closed for 5 minutes when transitioning from departures on 
0φ  to arrivals on 1φ , and 10 minutes when transitioning 
from arrivals on 1φ  to departures on 0φ . 
 Since we are interested in a solution that takes the 
form of  a set of time windows that each represent one of 
two states { , the simplest form of any solution 
will be a sequence of consecutive time windows that alter-
nate state between  and  with the appropriate 
flush periods included in each time window.  We mimic 
this form by alternating the 

}, )1()0( σσ

(σ )0 )1(σ

iσ  states in the following way: 
 







=
even. is   when ,
odd is    when ,

)0(

)1(

i
i

i σ
σσ  

 
Each time window includes the appropriate flush period, 
which we will call , at the end of the time window.  

is determined by the states 
iδ

iδ iσ  and 1+iσ .   The state be-

fore  is )(sτ 1−σ  and is set to the state of the first time win-

dow, 0σ , while the state after  is )(eτ nσ  and is set to the 
state of the last time window, 1−nσ . 
 Figure 3 is a diagram of the information represented by 
three hypothetical elements of .  The values are: θ

500 ,460 ,430 21 === ++ iii θθθ .   The axis at the bottom of 
Figure 3 represents the time of day in minutes past midnight 
while the shading represents the state of the runway at a par-
ticular time.  The time spanned by each of the three θ  ele-
ments and the flush periods are marked on the diagram. 

 

+iσ 3+ iσ 2+iσ 1iσ

σ ( )1(σ 0) c(σ )

)( +iθ 2 1+− iθ )( iθ +1 iθ−)( iθ 1−− iθ

400 420 440 460 480 500 520
Time of day (minutes past midnight)

Figure 3: Example of θ  Information 
 
 It is possible that the difference between a set of con-
secutive  values will be less than the intervening  pe-

riods causing the  to overlap.  When overlap clusters 
like this form, the time windows represented by  θ  are re-
placed in the TAAM preferences file by a single time win-
dow with a new state 

iθ iδ

iδ

i

σ ′ and  flush period δ ′  that depend 
on the iσ  and  values.  When these overlap clusters 
form, the states represented by θ  are squeezed out and the 
resulting preferences file will have less than  time win-
dows.  Since the absolute optimal schedule may have fewer 
than  time windows, allowing time windows to be 

iδ

i

n

n
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squeezed out will allow the optimal solution to exist in the 
solution space of θ . 

−
−θ

iθ

−1

  when 

(sτ

 The overlap clusters mentioned in the paragraph above 
are defined by any contiguous set  { }nmimi <′≤≤≤0|θ  
where the following hold: 
 

mmm δθθ >−1  when , 0≠m

11 +′′+′ > mmm δθ  when , 1−≠′ nm

11 ++ ≤− ii δθ   i  in . ∀ mim ′<≤
 
The first two inequalities define conditions on the bounds 

 and , which span all the θ  in a overlap cluster, 
while the last inequality indicates that only the  that 
qualify for the overlap cluster are permitted in the set.  The 
window used in the runway preferences file in place of a 
overlap cluster is a window with state 

m m′ i

iθ

mσσ =′  and flush 
period δ ′  which is set to: 
 

m′′=′ δδ  
 

where m′′δ  is defined by the recursive relation, 
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when 1+′≠′ mσσ .  The total period of the window used in 
the preferences file is mm θθ −′ .   This method of squeez-
ing out time windows provides for smooth variation in the 
size of the overlapping flush periods, δ ′ , with respect to 
the time difference between the squeezed time windows in 
the cluster.  
 It is possible that the optimal schedule may have more 
than  time windows.  In this case the absolute optimal 
schedule will not be in the solution space of θ .  The 
choice for the size of θ  will be limited by the number of 
times a runway can practically change state in the period of 
time defined by { . 

n

}, )) (eτ
 The constraints on  are: θ
1.  niie

i
s <≤∀≤≤ 0in    )()( τθτ

2. niiii <≤∀≤ + 0in    1θθ . 
 The first constraint is a simple projection that limits 
the range of the values in θ , while the second constraint 
requires the elements to be in ascending order which is re-
quired by the representation of the {  states. }, )1()0( σσ
 The result of the runway schedule objective function is 
a single number, ρ , that represents average total delay.  
The average total delay is calculated by averaging the se-
quencing and departure delay values for all flights arriving 
and departing from the airport.  The flight delay values are 
taken from the ‘seq/dep delay’ field of the TAAM report 
(.rep) file. 

3.3 Optimization Strategy 

The optimization strategy used in this study utilizes a vari-
ant of Simulated Annealing (SAN) called Fast Simulated 
Annealing (FSAN) (Szu and Hartley 1987).  SAN is a 
technique for random search optimization based on an 
analogy to the condensed matter process of annealing.  
SAN was formalized for combinatorial optimization by 
Kirkpatrick et al. (1981) and was later extended to apply to 
general continuous and discrete optimization problems.  
Annealing is the process of heating a solid to a high tem-
perature and then cooling it at a slow rate so that the final 
state is at or near the lowest energy state.  The ground 
state, or lowest energy state, for many solids has a special 
form such as a crystalline structure.  Physical annealing 
occurs naturally in magma intrusions in the crust of Earth 
and is also used in the laboratory and in industrial produc-
tion to create solid materials with very specific properties 
such as specialized metals and silicon wafers.    
  The basic SAN algorithm has three main functional 
components: the acceptance function, the generation func-
tion and the cooling schedule.  SAN is an iterative algo-
rithm that successively calls the objective function with a 
point in the solution space returned by the generation func-
tion.  The generation function picks a random point from a 
unimodal distribution which samples the entire solution 
space with non-zero probability.  This distribution is cen-
tered on a reference point, θ , which is taken as the current 
estimate of the optimum.  The unimodal distribution biases 
the search to a neighborhood around θ .  At each iteration 
new points are accepted as  with probability: 

ˆ

θ̂

ˆ

 

},1min{),ˆ(
)ˆ()(





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A etA
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where  is the value of the objective function at  and 
 is the acceptance temperature.   is often referred 

)(θL θ

At )(θL
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to as the “energy” in the context of SAN.  The value of  
is controlled by the cooling schedule and is a decreasing 
function of the iteration k.   This acceptance function al-
lows SAN to accept new solutions with higher energy than 
the reference solution with non-zero probability. 

kAt

The non-zero probability of accepting points with 
higher energy as the new reference point prevents SAN 
from searching only one neighborhood of the solution 
space.  This can be beneficial when searching objective 
functions that have many undesirable local minima since 
SAN will tend to wander from the vicinity of one local 
minimum to another.  This wandering behavior allows 
SAN to converge to a global minimum as  when 
certain conditions are met (Locatelli 2002). 

∞→k

FSAN uses a generation function that picks points 
from the Cauchy distribution while the classic form of 
SAN, sometimes known as Boltzmann annealing, picks 
points from the Normal distribution.  The implementation 
used in this study scales the Cauchy distribution with a 
generation temperature, t , which decays as a function of 
the iteration k.  This reduces the size of the neighborhood 
that is searched as the number of iterations increases, al-
lowing the algorithm to eventually focus its search on one 
neighborhood (presumably a neighborhood that contains 
the global minimum).  Szu and Hartley (1987) showed that 
when the Cauchy distribution is used to generate candidate 
points, the temperature schedules  and t  can decay as  

fast as 1  and still guarantee convergence.  This is much 
faster than the 1  decay schedule required for clas-
sic Boltzmann annealing. 

kG

)

kAt
kG

k/
log(/ k

 We also ran the objective function against a simple 
blind random search optimization algorithm.  The blind 
random search picks points from a uniform distribution 
that samples the entire solution space with equal probabil-
ity.  The blind random search does not focus its search on a 
particular neighborhood of the solution space.  If the 
neighborhood search behavior of  FSAN is any benefit 
when FSAN is applied to the runway schedule objective 
function, we will expect FSAN to perform better than the 
blind random search.  

Since both FSAN and blind random search evaluate 
the objective function once for each iteration, the number 
of objective function evaluations is equivalent between 
FSAN and blind random search when the number of itera-
tions is the same.  This point is important because the 
computational time required to evaluate the objective func-
tion is orders of magnitude longer than the time taken by 
any other part of the optimization algorithm. 

3.4 TAAM Simulation 

The version of TAAM used in this study is TAAM Plus 
V1.2.1, Release 1 compiled on SunOS 5.8 for i86pc.  The 
results from the runway schedule optimization used in the 
previous study cannot be compared directly to the results 
obtained using the simulation optimization technique de-
veloped in this study because this study used a different 
version of TAAM.  Therefore, to facilitate a comparison 
with the simulation optimization method developed in this 
study, we use the method developed in the previous study 
to create a schedule. 

3.5 Model Setup 

The TAAM model was set up based on the model defined 
in the previous study.  The model defines one full day of 
traffic which includes 784 departures and 783 arrivals.  All 
TAAM runs were done with the airport ground model 
turned off.  This is consistent with the previous study and 
eliminates any delay associated with taxiing and gate us-
age.  The runtime of the model was about 200 seconds on a 
700 MHz Xeon machine. 

4 RESULTS 

We obtain a solution using FSAN that result in lower aver-
age total delay than the blind random search and the man-
ual method (see Figure 4).  We ran 15 replications of 
FSAN, blind random search and the manual method using 
the runway schedule objective function.  The parameters 
for the FSAN runs are listed in Table 1 while the blind 
random search parameters are listed in Table 2.  The start 
time for the active period, , is set to 360 because there 
is very little traffic before 360. 
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Figure 4: FSAN and Blind Random Search Results 

 
Table 1: Parameters Used for FSAN Runs 

FSAN Objective function 
Iterations 

0Gt  
0At  Size of θ  )(sτ  )(eτ  

500 1000 1000 13 360 1080 
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Table 2: Parameters Used for Blind Random Search Runs 

Blind random search Objective function 
Iterations Size of θ  )(sτ  )(eτ  
500 13 360 1080 

 
 The manual data was generated by 15 runs of TAAM 
with 15 different variations of the TAAM preferences file.  
The preferences files were generated using the procedure 
described in section 2.2.  The number of time windows 
used in the preferences file varied from 9 to 13. 
 The sample mean of the average total delay for the 
reference solution of the FSAN runs and the sample mean 
of the average total delay for the best solution of the blind 
random search runs are plotted as a function of iteration in 
Figure 4.  The sample mean value of the manual runs also 
appears in Figure 4.  The 500th iteration sample mean value 
is significantly lower for the FSAN runs than the blind ran-
dom search runs.  The sample mean delay for the FSAN 
reference solution matches the manual solution after about 
75 iterations, while the blind random search matches it af-
ter about 150 iterations.  The FSAN curve appear to be de-
creasing at iteration 500, which suggests that FSAN was 
still not close to convergence at iteration 500.  This is sup-
ported by the fact that FSAN runs that were allowed to run 
out to 800 iterations achieved solutions with average total 
delay as low as 888.621 seconds. 

Table 3 summarizes statistics on the runs.   is the 
value of the mean average total delay of all the manual 
runs and is the mean average total delay of the reference 
solution at iteration 500 for the FSAN and blind random 
search runs.  The confidence interval was generated using 
95% confidence interval t-statistics.  Notice that the FSAN 
95% confidence interval does not overlap with either the 
blind random search or the manual 95% confidence inter-
val.  This confidence interval data provides further statisti-
cal evidence that the improvement of the FSAN approach 
over the blind random search and manual approaches is 
significant.  The confidence interval for the manual runs is 
much larger than the FSAN and blind random search runs 
which suggests that the optimization algorithms generate 
more consistent results than the manual method.  Although 
this is true for these particular runs, it is important to note 
that the manual confidence interval and sample mean may 
vary depending on who picks the schedule since the results 
will depend significantly on the judgment of the person 
picking the candidate schedules.  The mean total runtime is 
 

mρ

Table 3: Summary of Results 
Optimization 

Approach mρ  (s) Confidence 
Interval 

Mean Total 
Runtime (s) 

FSAN 956.5275 ±mρ 12.77 94775.9 

Blind search 1067.802 ±mρ 11.93 101102.6 

Manual  
approach 

1082.946 ±mρ 43.50 198.93 
the mean total time required to do one run of an optimiza-
tion method.  The FSAN approach is somewhat faster than 
the blind search.  This is because TAAM runs faster with 
schedules that produce lower average total delay.  The 
manual solution required only one run, so it obviously ran 
much faster than the FSAN and blind random search runs.  
The mean total runtime data for the manual runs do not 
take into account the time required to do the two runs 
needed to make Figure 2. 
 The 500th iteration reference solutions for the 15 
FSAN runs appear in Figure 5 and the initial (or 0th itera-
tion) reference solution for all the FSAN and blind random 
search runs appear in Figure 6.  The states for each time 
window follow the shading scheme defined in Figure 3 and 
the flush periods are not included.  As we would expect, 
500th iteration solutions have a bias towards the   state 
after around 16:00 when the arrival delay for the  all 
day schedule is high (see Figure 2).  The manual schedules 
developed based on the delay graph shown in Figure 2 also 
have this bias, but the FSAN mean average total delay is 
lower.  The differences between the schedules developed 
using the manual method and the FSAN runs may be due 
to the limitations discussed in  Section 3.  

)1(σ
(σ )0
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Figure 6: Initial FSAN Solution 

5 CONCLUSIONS 

In this study we developed a method to do runway sched-
ule optimization using simulation optimization.  This 
method used the TAAM simulation in conjunction with 
Fast Simulated Annealing (Szu and Hartley 1987). The 
method applies when there are two possible states for the 
runway.  The method results compare favorably to a man-
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ual method developed by a previous study and results from 
a blind random search algorithm.  

The time and resources required to do simulation op-
timization using TAAM are not trivial.  The sample mean 
runtime of 15 500-iteration runs of FSAN using the 
TAAM-based objective function is about 26 hours on a 
700 MHz Xeon machine.  If simulation optimization is to 
be used to calibrate and validate TAAM models, the time 
and effort must be carefully weighed against an alternative 
approach (such as a manual approach). 
 It would be interesting to explore the possibility of us-
ing a runway schedule simulation optimization technique 
in a real-world setting.  This could be used to help ground 
controllers decide what runway schedule to use.  This ap-
plication would require a fast, high fidelity simulation and 
a simulation optimization procedure that can be updated as 
the real time state evolves.  It would also require that actual 
airline schedules, including provisions for general aviation 
traffic that have filed flight plans, be used by the model 
during the optimization phase.  As external changes to the 
schedule take place (cancellations, substitutions, addi-
tions), then the optimization procedure may need to be re-
peated with the changed traffic. 
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