
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

A PROTOTYPE OBJECT-ORIENTED SUPPLY CHAIN SIMULATION FRAMEWORK

Manuel D. Rossetti
Hin-Tat Chan

4207 Bell Engineering Center

Department of Industrial Engineering
University of Arkansas

Fayetteville, AR 72701, U.S.A.

ABSTRACT

In this paper, we discuss the design, development and test-
ing of a prototype object-oriented framework for perform-
ing supply chain simulations. We define the primary ob-
jects required for supply chain simulations and design how
each of these objects are related to each other to form a
supply chain network. We also present how persistence is
handled for instantiating supply chain network simulations
from a database. Finally, we present a small example
simulation to validate and illustrate the concepts.

1 INTRODUCTION

Logistics is now a 900 billion dollar industry within the
United States and results in over 3.5 trillion dollars in
worldwide activity. The modeling, analysis, and optimiza-
tion of logistical supply chains has become increasingly
important as Internet commerce forces fundamental
changes within industry. The goal of this research is to
analyze and identify the fundamental elements necessary
for modeling generic supply chain situations via simula-
tion. We develop a prototype Supply Chain Simulation
Framework (SCSF) to facilitate the dynamic analysis of
supply chain systems. We classify and organize the mod-
eling elements into a coherent set of objects having attrib-
utes, behaviors, and inter-relationships to form a frame-
work for simulating supply chains. In addition, this
research also provides a standardized model of the object-
oriented supply chain framework using the Unified Model-
ing Language (UML) for documentation and dissemination
of the framework. We tested and evaluated the prototype
implementation on an example simulation scenario.

In this research, the UML was used during the object
oriented development process to analyze and visualize the
design. We implemented the framework in a prototype
form using the Java computer language to provide a proof
of concept for the framework. Because of the complexity
of the data elements within a supply chain, we designed

and developed a persistent storage framework for storing
supply chain model instances within a database. Java Data
Object (JDO), the PointBase database system and the Java
Forte development environment was used to develop and
implement the object to relational database mapping. Dur-
ing the simulation phase, the Java Simulation Library
(JSL) is used to provide simulation support to each supply
chain element. The JSL provides resources, such as gen-
erator, event calendar, scheduler, response variables, model
element, etc.

In this paper, we give a brief introduction to the area
of object-oriented modeling and the research literature as it
applies to our effort. We then present the Supply Chain
Simulation Framework (SCSF). In this, we detail the ob-
jects, their behaviors, and their interactions. We also dis-
cuss the implementation of the framework within the Java
computer language. Finally, we illustrate the use of the
framework on a simple multi-echelon inventory scenario.

2 BACKGROUND

Researchers and practitioners have several definitions for
the supply chain. Each definition contains common key
words such as logistics network, supplier, end-customer,
raw material, information, goods/products, services, and
facilities. From a management view, Tan (1998) defines a
supply chain as encompassing material/supply manage-
ment from the supply of basic raw materials to final prod-
uct; it also focuses on how firms utilize their suppliers�
processes, technology and capability to enhance competi-
tive advantage. From a logistics view, Saunders (1997) de-
fines a supply chain as an external chain that is the total
chain of exchange from original source of raw material,
through the various firms involved in extracting and proc-
essing raw materials, manufacturing, assembling, distribut-
ing and retailing to ultimate end customers. Ellram (1991)
defines �a supply chain as a network of firms interacting to
deliver product or service to end customer, linking flows
from raw material supply to final delivery�. Likewise, Lee

Rossetti and Chan

and Billington (1992) define a supply chain as networks of
manufacturing and distribution sites that procure new ma-
terials, transform them into intermediate and finished
products to customers. Kopczak (1997) group suppliers,
logistics services providers, manufacturers, distributors and
resellers as a set of entities, through which materials, prod-
ucts and information flow. Based on our research, a supply
chain consists of two networks, which are the relationship
network between a set of elements (facilities and end-
customers) which have functions associated with the crea-
tion or consumption of the products/services, and a trans-
portation or distribution network that delivers the ultimate
products/services between elements. This research project
concentrates on implementing the classes involved in the
relationship network within a supply chain.

Ingalls and Kasales (1999) discuss the development of
Compaq Computer�s Supply Chain Analysis Tool (CSCAT)
based on the Arena simulation-modeling environment. The
tool is able to analyze the profitability of a product for a
given supply chain scenario and is able to predict the cus-
tomer service levels. Umeda and Jones (1988) present an
architecture for integrating supply chain simulation with en-
terprise information systems and decision support systems
through a communication data interface. The approach
taken for the supply chain simulation is hierarchical and al-
lows modeling at the operational, tactical, and strategic lev-
els. Bagchi et al. (1998) discuss the IBM's Supply Chain
Simulator. Supply chain simulation involves the simulation
of both inter-facility and intra-facility operations. For ex-
ample, a supply chain simulation tool may model MRP
processes, planning and scheduling, capital acquisition, labor
and other resources, transportation policies, stocking poli-
cies, etc. Bagchi et al. (1998) indicates that the key to the
usefulness of a supply chain simulator is the ability to trans-
late the simulation information into costs and financial re-
ports. This is typically achieved through the use of activity
base costing models. Schunk and Plott (2000) discuss the
use of Supply Solver, which was developed in an effort to
provide supply chain solutions using simulation as the foun-
dation. In addition, this simulation tool is capable of simu-
lating a supply chain design that has many different possible
combinations of process options and determines the best
combination of options in term of lowest overall costing and
feasible flow times.

Swaminathan (1988) discusses using a multi-agent ap-
proach to solve supply chain dynamics. He indicates that
simulation does provide an effective practical approach to
modeling supply chain dynamics; however, the customized
simulation models are specific on a particular problem and
have a limited reuse; in addition, it takes a long time to
build a new simulation model. Hence, he proposes a multi-
agent approach to overcome these two problems. The
multi-agent system is a software component-based system,
which contains a number of supply chain software agents
such as retailers, manufacturers, transporters, inventory
policy, etc. These agents will be activated if certain events
in the supply chain system occur. Thus, each agent has the
self-reactor behaviors to respond to the event occurring.
Because of these advantages, our programming framework
will attempt to support an agent approach.

Object-Oriented Modeling (OOM) is an approach that
can describe a particular system domain down to the object
level. Generally, an object-oriented system will usually be
composed of many objects; these objects may have rela-
tionships with other objects. An object-oriented system can
be organized by classes to build a hierarchy of objects.
The Unified Modeling Language (UML) has emerged as a
standard for object-oriented modeling of software devel-
opment and general systems modeling. The UML has a set
of graphical notations and well-defined set of semantics to
enable us to depict a particular domain in object-oriented
model, such as a supply chain system. An object-oriented
model usually has the abstractions of real world objects.
These abstractions can be described or represented in a
UML model by classes, attributes, behaviors, objects, as-
sociations, and states. Within the UML, each class is indi-
cated with a rectangle divided into three areas for the class
name, attributes and operations. An object attribute is a
named property of a class that describes a value held by
each object of the class. Each class can have some opera-
tions. An operation is the implementation of a service that
can be requested from any object of the class. Operations
affect the behavior of an object instance. Associations are
indicated by an adorned line between classes.

In this research, we develop an object-oriented frame-
work. A framework presents a reusable design of all or
part of a system that is represented by a set of abstract
classes and the way their instances interact. The instances
or components of a framework can be easily connected to
make a new application. Thus, the resulting application
will be efficient, easy to maintain, and reliable. Develop-
ing a robust supply chain simulation framework is our ob-
jective in this research.

3 SUPPLY CHAIN SIMULATION
FRAMEWORK

In this section, we present the classes within our sup-
ply chain simulation framework. In addition, we discuss
how they are organized and their behavior. The current
prototype framework consists of 29 classes representing
various elements within a supply chain. The set of classes
is given in Table 1. In order for us to show the object-
oriented conceptual model of a supply chain system, we
partition the supply chain model into several small concep-
tual sub-models. Figure 1 illustrates the Relationship Net-
work conceptual of the supply chain system which is the
emphasis of this paper.

Rossetti and Chan

Table 1: Class List of SCSF
Container Parameter
ContinuousReorderQuantity PeriodicReorderPoint
ContinuousReorderUpToLevel PeriodicReview
ContinuousReview Product
Demand ProductFamily
DemandGenerator Region
DistributionCenter Relationship
Facility RelationshipNetwork
Inventory Shipment
InventoryPolicy Shipper
Location StorageLocation
ManufactureringCenter TransportationCenter
Node Variable
Order Warehouse
OrderGenerator

Location
geodeticDatum : String
latitude : Float
longitude : Float
zipcode : String

RelationshipNetwork
name : String

Node
name : String
nodeType : String

sendOrder()
receiveShipment()

nn

nn

Relationship
shippingTime : Integer
travelDistance : Integer
cost : Integer

nn

nn+supplier
nn+customer

Product
name : Stringn

n 1..nn

n

1..n

May Order

Figure 1: Conceptual Relationship Network

This conceptual network has a set of Nodes and Rela-

tionships. RelationshipNetwork is a complex system of
interconnected network nodes that exchange material and
information in order to provide material, products, or ser-
vices to end-users. A Node in this RelationshiopNetwork
can represent a Facility, Region, or OrderGenerator. These
three types of Node are not in Figure 1 but they will be
discussed shortly. In Figure 1, each Node may have many
Relationships with another Node. A Relationship repre-
sents a conceptual connection between two Nodes and in-
dicates the possible flow of information or material be-
tween the Nodes. Within the RelationshipNetwork, each
Relationship is a unique conceptual connection because
this connection indicates that a supplier supplies a cus-
tomer with a specific Product. These three classes form a
unique connection to identify a Relationship. In Figure 1,
aggregation is used in this model to achieve the contain-
ment of Nodes and Relationships in the relationship net-
work. From this conceptual model, a customer and a sup-
pler may know who their suppliers and customers are.
Therefore, they know to send orders to their suppliers and
to send shipments to their customers. The Node class in
RelationshipNetwork is attached to a Location class, which

Facility
facilityType : String

receiveOrder()
sendShipment()
makeReplenishment()
makeOrder()
updateInventory()

OrderGenerator

makeOrder()
updateInventory()

Region

Node
name : String
nodeType : String

sendOrder()
receiveShipment()

nn

Figure 2: Types of Node

indicates the actual position of a Node in a physical net-
work. The Physical network is not presented in this paper.

Figure 2 presents the classification of nodes. A Node
represents a customer or supplier in a supply chain network.
It is not a physical location in the network. Facility, Order-
Generator and Region are specializations of Node. These
three types derive from the Node class so that they can in-
herit the Node attributes and operations. In this conceptual
model, each type of Node inherits the send orders and the
receive shipments method from Node. On the other hand,
Facility is the only Node type that knows how to receive or-
ders and send shipments, because it can act as a product
manufacturer in a network. OrderGenerator can be consid-
ered as a single customer or as a set of aggregate customers.
The conceptual model in Figure 2 shows a composite pattern
representing a Region. This pattern indicates that a Region
can be formed by a group of any type of these three types of
Nodes. Likewise, the region is the aggregation of an entire
area (zone), which can be zoned using zoning criteria such
as the postal code. These aggregations provide flexibility in
modeling supply chain networks.

A supply chain network consists of many facilities.
Facility in the supply chain provides products or services
to customers. The role of a Facility in the network is to
manufacture products, distribute products, consolidate
shipments, and deliver shipments. Each type of Facility
knows how to receive orders from customers and send
shipments to customers. Facility plays several roles in a
network; as a result, we categorized a Facility into five dif-
ferent concepts in the framework design. They are Manu-
facturingCenter, DistributionCenter, TransportationCenter,
Shipper, and Contractor. Each of these concepts performs
different tasks in a network. The class diagram in Figure 3
shows five types of facilities.

A ManufacturingCenter is usually responsible for
manufacturing finished Products or unfinished Products
from raw materials. The produced Products are sent to

Rossetti and Chan

Facility
facilityType : String

receiveOrder()
sendShipment()
makeOrder()
makeReplenishment()
updateInventory()

ManufacturingCenter DistributionCenter TransportationCenter
freightRate : Integer

consolidateShipment()

Shipper

deliver()
pickUp()

Contractor

Figure 3: Types of Facility

customers whenever orders are received. The Products are
made to satisfy the market demand within the network. The
primary purpose of a DistributionCenter is to provide in-
ventory replenishment and Product delivery to other facili-
ties. DistributionCenters are primarily holding points and
do not manufacture Products from raw materials. A
TransportationCenter is a place where shipments of cus-
tomer orders can be consolidated to obtain efficiencies in
transportation. While it may hold inventory items tempo-
rarily, a TransportationCenter does not directly supply
other facilities. A Shipper is mainly responsible for deliv-
ery of shipments to customers. It knows how to pick up
the shipment from the TransportationCenter and deliver the
shipments to customers. The contractor concept serves as
a entity that has an infinite supply of material such that a
contractor supplies the material after a lead time delay.

Figure 4 shows the conceptual model of Facility In-
ventory System, which indicates a Facility has one Ware-
house Manager. A Warehouse Manager is more likely to
store many Products; for each Product in a Warehouse,
there will be an Inventory attached to it to keep track of the
Product status in Warehouse. Therefore, Warehouse has
many Inventorys; each Inventory keeps track of a Product
status in every transaction.

Inventory

onHand : Integer
onOrder : Integer
backLog : Integer
position : Integer
initialLevel : Integer
safetyStockLevel : Integer
holdingCost : Double
backLogCost : Double
orderingCost : Double
setupCost : Double
unitCost : Double

makeReplenishment()
updateInventory()
checkInventory()

Facility
facilityType : String

receiveOrder()
sendShipment()
makeOrder()
makeReplenishment()
updateInventory()
receiveShipment()

Warehouse

checkInventory()
makeShipment()
updateInventory()
makeReplenishment()

1..*1..* 11

Figure 4: Facility and Inventory System

 Warehouse has several important operations; checkIn-
ventory(), makeReplenishment(), and updateInventory().
These operations are to maintain the Product inventories.
Whenever an order is received, the checkInventory() op-
eration checks for every demand in the order. It sends a
request to Inventory to check for the inventory status of the
demanded Product. When the shipment for the replenish-
ment order arrives, Warehouse calls updateInventory().
This operation allows the inventory to be updated and pre-
vious orders to be fulfilled if appropriate.

Each Facility in the supply chain network may store
many products in its warehouse; it needs an inventory sys-
tem to keep track of each product. Inventory is established
and updated when Products are stored at a Facility. The
Inventory tracking system helps to update inventory infor-
mation during every transaction. Figure 5 is a conceptual
model of Inventory and InventoryPolicy.

InventoryPolicy
policyType : String
reorderPoint : Integer
reorderQTY : Integer

Inventory
onHand : Integer
onOrder : Integer
backLog : Integer
position : Integer
initialLevel : Integer
safetyStockLevel : Integer
holdingCost : Double
backLogCost : Double
orderingCost : Double
setupCost : Double
unitCost : Double

makeReplenishment()
updateInventory()
checkInventory()

1..*11 1..*

Figure 5: Inventory and Inventory Policies

 Inventory policies allow the encapsulation of rules to
control the associated inventory. In Warehouse, each In-
ventory is unique because it only keeps track of inventory
status for a Product such as on-hand, backlog, position, etc.
Every Inventory class is associated with one Inventory-
Policy; yet this policy does not have to be unique because
inventory policy only provides information about the pol-
icy type, reorder point, and reorder quantity, etc. The way
we designed the InventoryPolicy class can allow the inven-
tories in a warehouse to use the same policy for different
Products. On the other hand, inventory policy is a rule,
policy, or strategy that governs the re-ordering behavior for
inventory of a certain type at a particular Facility. The in-
ventory policy determines when to order and how much to
order. The former is referred to the reorder point and the
later is referred to the reorder quantity.

A product indicates that a specific item has been
commissioned for supply from a facility on an order. Fig-
ure 6 shows the conceptual model for the relationships of a
product. The relationship between Product and Node is
many-to-many. This relationship indicates that each Node
in the network has a set of products that it can order. On
the other hand, a product can be ordered by different
nodes. Figure 6 also illustrates that each facility knows to
store products in its warehouse�s storage locations. Each
product has an inventory system attached to it to keep track
of the product status in a warehouse. In the network, every
Relationship can exist only when a Product is associated
with it. In addition, a relationship also requires having a

Rossetti and Chan

Figure 6: Relationships of Product

supplier and a customer reference. For example, a supplier
supplies a product to a customer.

An order is a group of demands that have been com-
missioned for supply from a facility. A demand is the need
for a quantity of product. A shipment is a quantity of
products shipped together as part of the same cargo. Fig-
ure 7 indicates that the order has multiple relationships. A
node can make many orders. Each order may have several
demands in it. Once a supplier is capable of filling an or-
der, its warehouse will make a shipment that contains the
demanded products. These three supply chain elements are
the entities that flow around the chain.

Shipment

Facili ty
facil ityType : String

receiveOrder()
sendShipment()
makeReplenishment()
makeOrder()
updateInventory()

Node
name : Strin g
nodeType : String

sendOrder()
receiveShipmen t()

Order

n

n

n

n

nn

Supply

nn Makes
Demand

quantity : Integer
nn

Figure 7: Relationships of Order and Demand

 The conceptual model in Figure 2 shows that Order-
Generator is a type of node. The purpose of an OrderGen-
erator is to generate multiple demands within an order dur-
ing the simulation. OrderGenerator acts as an end-
customer in the relationship network. This class has sev-
eral simulation attributes: time until next Order, time until
last Order, time until first Order, and maximum number of
Order. Each OrderGenerator has a set of DemandGenera-
tors. Each DemandGenerator always generates demand for
the same product but the demanded quantity follows a

Parameter
name : String
value : Integer

Variable
name : Strin g
type : String

nn

Ord erGenera tor

makeOrder()
updateInventory()

11 11
11 11

11 11

11 11

DemandGeneratornn

nnn n

Figure 8: Order Generator Distribution

specific statistical distribution. Thus, the demanded quan-
tity could be different in every generation. In Figure 8,
each DemandGenerator has an attached Variable which
provides the information about the statistical distribution.
Variable specifies the distribution name and type and it
stores a minimum of one parameter value as a Parameter.

4 FRAMEWORK IMPLEMENTATION
AND TESTING

In the previous section, we presented an overview of the
classes and their associations within the prototype supply
chain network simulation framework. Supply chains are
complex systems and require detailed specification for in-
stantiating their components. We implemented the above
mentioned classes within the Java computer language. Al-
though these classes can be directly constructed into a model
within the Java language, we felt that the capability to store
the modeled supply chain within a database for latter re-
instantiation and use would be of benefit; therefore, we pro-
vide within the framework the mechanisms to store and re-
construct supply chain network models from a persistent
storage mechanism. This is similar to the work discussed by
Chatfield et. al. (2001) in their explanation of SISCO (Simu-
lator for Integrated Supply Chain Operations).

Due to space limitations, we will only give a brief dis-
cussion of how the classes in the SCSF are made persis-
tent. We implemented a set of persistent classes that mir-
ror their underlying non-persistent counterparts. Thus, we
have two networks that work together, a persistent and a
non-persistent network. The persistent network is a set of
abstract classes that provide the access methods to the da-
tabase. The non-persistent network is a set of abstract
classes that provides interfaces to build and to simulate a
supply chain network as discussed in the previous section.
The classes that require persistent storage were mapped to
a relational data store using a standard object to relational
mapping. Persistent classes using the JDO (Java Data Ob-
ject) framework are used to interact with the database. Fig-
ure 9 illustrates the overall process for instantiating a sup-
ply chain network simulation.

In order for a simulation to be executed, the supply
chain network classes must have the capability to perform
simulation functions (schedule events, generate random

Rossetti and Chan

Figure 9: Flow Chart of Supply Chain Simulation Frame-
work

numbers, etc.). The SCNF described in Section 3 could be
implemented within any object-oriented language. We
chose Java because of its wide acceptance, ease of use, and
freely available development tools. To provide simulation
capability to the SCNF, we utilized the JSL (a Java Simu-
lation Library). Rossetti et. al. (2000) discusses the JSL.
Each of the classes that need simulation capabilities are
implemented in an inheritance hierarchy as illustrated in
Figure 10.

Figure 10: Inheritance Structure of Relationship Network

 A ModelElement is a base class within the JSL that en-
ables the simulation capabilities. Every simulation resource
or element in JSL package is a specification of ModelEle-
ment. In the figure, the dots between SupplyChainElement
class and Model class represent the rest of the JSL classes.
Each class in the Relationship Network becomes a Mod-
elElement, and each is then able to use any simulation re-
source. The SupplyChainElement class has an abstract
method named addChildren(). The addChildren() method is
responsible for ensuring that and related (child) model ele-
ments are added to the (parent) supply chain element. Each
class in RelationshipNetwork will have to implement the
addChildren() method. Usually, this method is used to add
related ModelElements into a simulation object collection, so
that all the related ModelElements will be set before every
simulation. In this method, every possible child ModelEle-
ment is required to add to the collection by calling the add-
ModelElement(object). The object is the child ModelEle-
ment. However, not every class is required to have behavior
in the method, such as Product, Relationship, and Inventory-
Policy. Only those classes that have a containment or crea-
tion relationship with other supply chain elements will re-
quire behavior within the addChildren() method. For
example, the RelationshipNetwork creates Nodes and Rela-
tionships, and then both Node and Relationship have to be
added into the simulation object collection because of the
creation relationship. In this case, every object in the simula-
tion collection will be called before every replication to reset
some of the simulation attribute values.

To simulate a supply chain network model, we created
a class called SCNModel, which is the trigger of the simu-
lation. Within SCNModel, an instance of DatabaseMan-
ager is made to access the database and build a network
model. In addition, the addChildren() method of Relation-
shipNetwork is called, and then this call will be propagated
down to its children such as nodes and relationships. The
addChildren() method of Node and Relationship will be
called and so forth. When the addChildren() methods are
done, it means all the simulation elements are added into
the simulation collection, and the simulation is ready. The
simulation will not run correctly unless we add all the nec-
essary supply chain elements and simulation elements to
their own simulation collection. Exhibit 1 shows the Java
code of a supply chain simulation model. This code dem-
onstrates how to get the simulation setup and run.

Application application = new Applica-
tion("Eddy", "SCN Test");
Model model = application.createModel();
model.turnOnDefaultReplicationReport();
model.turnOnDefaultSummaryReport();
model.turnOnDefaultTraceReport();
model.setLengthOfWarmUp(1800);
model.setLengthOfReplication(18000);
model.setNumberOfReplications(30);
SCNModel scnModel = new SCNModel();
model.addModelElement(scnModel);
model.startSimulation();

Exhibit 1: The Java Code of a Simulation Model

 In order for the SCNModel to run, we created an Appli-
cation instance. Each Application can make a Model. To
collect the statistical report for a model, the Replication Re-
port, Summary Report, and Trace Report have to be turned
on. Before simulation starts, the length of warm up, run
length, and number of replications for the simulation must be
set. The last thing to do is to add the SCNModel as a simula-
tion element to Model so that SCNModel will get called
when the simulation starts. To run the simulation applica-
tion, we just need to call the model.startSimulation() method.
This method will start the simulation.

To provide initial testing for our prototype framework,
we built an object-oriented simulation of a two echelon in-

Rossetti and Chan

ventory system and compared the results to analytically
available results. The multi-echelon inventory system is il-
lustrated in Figure 11.

Figure 11: Multi-Echelon Inventory System

 For the conditions involved within this study, we are
interested in the following steady state performance meas-
ures: the expected inventory on-hand at the retailers and at
the warehouse, and the expected number of items backor-
dered at the retailers. The model is based on the work in
Tee and Rossetti (2001). The demand process at the re-
tailer is established through the specification of the time
between arrivals and the demand quantity. A general re-
newal process with the time between orders governed by a
specific probability distribution as given in the experimen-
tal design was used. Every demand from OrderGenerators
was assumed to be constant (one unit of product). All un-
satisfied demand will be backordered and no partial filling
of an order is allowed. The replenishment lead-time of the
supplier and contractor is constant (1 day), and the contrac-
tor has an unlimited capacity to supply any product.

The flowchart in Figure 12 illustrates the activities in an
inventory system at a single facility location. When the in-
ventory system receives a demand (Order from customers),
the demanded quantity is determined, and then the system
checks for on-hand inventory status. If the stock on-hand
is sufficient to fill the demand, the quantity on-hand will be
decreased by the demanded quantity. However, if the

Determine the
number units
demanded

Enough stock
on-hand?

Fill demand/
update stock

Backorder
the demand

Check Inventory
Position: < s?

Fill
backorders

END

Order arrive/
update stock

Delay for
replenishment

Check Inventory
Position: < s?

New
Customer

Order
Arrival

No
reorder

Queue:
Accumulate
backorders

Place
replenishment order

Yes

 No

No

No

 Yes

Release Signal to release

Yes

Send order info

 Return to Queue

Figure 12: Flowchart of the Single Location Inventory
Control Activities.
stock on- hand cannot fill the demand, the demand will be
held in a queue in the inventory system. This means the
order becomes a backorder. The backorders are held in a
queue in Warehouse system. The backorder queue is im-
plemented as a first-in-first-out (FIFO) queue. Whenever
the on-hand, on-order, and backlog are updated, the inven-
tory position (inventory on-hand + on-order � backorders)
will be updated. The inventory position is checked each
time whenever a demand is filled, or a backlog occurs, or a
shipment arrives. When the inventory position falls below
the reorder point, the inventory system will make a replen-
ishment order. The inventory system can fill the backor-
ders only when the replenishment orders (shipments) arrive.
There is a time delay for the shipments to arrive.
 The major activities at the retailer are the same are the
single location model. The only different behavior is when
the retailer makes a replenishment order. The replenish-
ment orders will be sent to its supplier (manufacturing cen-
ter). If the replenishment order occurs in a supplier, the
supplier will send the replenishment order to its Contrac-
tor. The Contractor is at the top of the supply chain and it
has unlimited capacity on the supply of any product. This
also means the Contractor does not need an inventory sys-
tem. The demand process at the supplier depends on the
order frequency and order quantity at the retailers. The in-
ventory system in the supplier and retailers are similar.
When the demand is filled at the supplier, a shipment will
be transferred (via a delay) to retailer.

The multi-echelon exact results from Axsater (2000)
and our multi-echelon results based on supply chain frame-
work simulation model are given in Table 2 for the expected
number of backorders at the retailer. The thirty-two test
cases are based on multi-echelon model (4 and 32 Retailers).
Comparing the results from Axsater (2000) and our simula-
tion results in Table 2, we can conclude that there is no sta-
tistical difference between the results. Each simulation is
based on 30 replications of 50 years run-length and 5 years
of warm-up period. The problem descriptions and optimal
policies are given in Chan (2002). Similar results were ob-
tained for the other performance measures. Thus, the
framework has be verified and validated for these types of
scenarios. We conclude that our framework can model
multi-echelon supply chain scenarios with little difficulty
and it seems reasonable to conclude that it can be expanded
to model additional supply chain scenarios.

5 SUMMARY AND CONCLUSION

In this research, we developed a supply chain simulation
framework to facilitate the dynamic analysis of supply
chain systems. The purpose of this research was to analyze
and identify the fundamental elements necessary for mod-
eling generic supply chain situations via simulation. We
classified and organized the modeling elements into a co-
herent set of objects having attributes, behaviors, and inter-

Rossetti and Chan

Table 2: Example Two Echelon Results
Average Retailer Backorder

 Axsater Simulation
Case # Exact Average 95% C.I.W. Error

1 0.019 0.018 0.000 -0.001
2 0.009 0.009 0.000 0.000
3 0.005 0.005 0.000 0.000
4 0.034 0.034 0.000 0.000
5 0.118 0.117 0.001 -0.001
6 0.130 0.130 0.001 0.000
7 0.055 0.055 0.000 0.000
8 0.160 0.160 0.002 0.000
9 0.006 0.006 0.000 0.000

10 0.007 0.007 0.000 0.000
11 0.028 0.028 0.000 0.000
12 0.029 0.029 0.000 0.000
13 0.105 0.105 0.000 0.000
14 0.105 0.105 0.000 0.000
15 0.055 0.055 0.000 0.000
16 0.054 0.054 0.000 0.000
17 0.036 0.036 0.000 0.000
18 0.046 0.046 0.000 0.000
19 0.025 0.025 0.000 0.000
20 0.031 0.031 0.000 0.000
21 0.172 0.172 0.001 0.000
22 0.164 0.165 0.001 0.001
23 0.214 0.214 0.001 0.000
24 0.248 0.248 0.001 0.000
25 0.030 0.031 0.000 0.001
26 0.030 0.030 0.000 0.000
27 0.041 0.041 0.000 0.000
28 0.046 0.046 0.000 0.000
29 0.130 0.130 0.000 0.000
30 0.128 0.128 0.000 0.000
31 0.160 0.160 0.000 0.000
32 0.174 0.175 0.000 0.001

relationships to form a framework for simulating supply
chains. We also provided a standardized model of the ob-
ject-oriented supply chain framework using the UML for
documentation and dissemination of the framework. This
simulation framework can be used to model the complexity
of supply chain systems. We also used our supply chain
simulation framework to simulate a validated model from
the literature. The results indicate that the framework can
easily model the simple scenario. This simple scenario can
be easily expanded to include multiple products and multi
echelons. In addition, the inventory policies can vary by
product, and by echelon.

Future work within the framework will involve the
further development of an agent based architecture so that
rules and behavior can be easily plugged into the simula-
tion. In addition, further work is planned on making the
persistent network easier to use. Finally, we are currently
investigating the transportation elements within a supply
chain simulations with finer detail than provided in the cur-
rent prototype.
ACKNOWLEDGMENTS

This material is based upon work supported by the Arkan-
sas Science and Technology Authority (ASTA) under Pro-
ject No. 01-B-08. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Arkansas Science and Technology Authority.

REFERENCES

Axsater, S. 2000. Exact Analysis of Continuous Review
(R, Q) Policies in Two-Echelon Inventory Systems
with Compound Poisson Demand, Operation Re-
search, Vol. 48, No. 5, pp. 686-696.

Bagchi, S., S. J., Buckley, and G. Lin. 1998. Experience
using the IBM supply chain simulator. In Proceedings
of the 1999 Winter Simulation Conference, ed.
Medeiros, D.J.; Watson, E.F.; Carson, J.S.; Manivan-
nan, M.S, 1387-1394, Piscataway, New Jersey: Insti-
tute of Electrical and Electronic Engineers.

Chan, H. T. 2002. Object-Oriented Supply Chain Frame-
work. Unpublished Masters Project Report. Depart-
ment of Industrial Engineering, University of Arkan-
sas, Fayetteville AR 72701.

Chatfield, D. C., T. P. Harrison,., and, J. C. Hayya. 2001.
Sisco: A Supply Chain Simulation Tool Utilizing
Silk� And Xml. In Proceedings of the 2001 Winter
Simulation Conference, ed. B. A. Peters, J. S. Smith,
D. J. Medeiros, and M. W. Rohrer, 614-622, Piscata-
way, New Jersey: Institute of Electrical and Electronic
Engineers.

Ellram, L. M. 1991. Supply chain management: The indus-
trial organization perspective. International Journal
of Physical Distribution and Logistics Management,
Vol. 21 No. 1, 13-22.

Ingalls, R.G., and C. Kasales, 1999. CSCAT: The Compaq
supply chain analysis tool. In Proceedings of the 1999
Winter Simulation Conference, ed. Farrington, P.A.;
Black Nembhard, H.; Sturrock, D.T.; Evans, G.W,
1201-1206, Piscataway, New Jersey: Institute of Elec-
trical and Electronic Engineers.

Kopczak, L.R. 1997. Logistics partnership and supply
chain restructuring: survey results from US computer
industry. Production and Operations Management,
Vol. 6 No. 3, 226-247.

Lee, H.L, and C. Billington, 1995. The evolution of supply
chain management models and practice at Hewlett-
Packard. Interfaces, Vol. 25 No. 5, 42-63.

Rossetti, M. D., B., Aylor, R., Jacoby, A. Prorock, and A.
White, 2000. SIMFONE: An object-oriented frame-
work. In Proceedings of 2000 Winter Simulation Con-
ference. ed. Joines, J.A.; Barton, R.R.; Kang, K.;
Fishwick, P.A., 1855-1864. Piscataway, New Jersey:
Institute of Electrical and Electronic Engineers.

Rossetti a

Saunders, M.J. 1997. Strategic Purchasing and Supply

Chain Management, Pitman.
Schunk, D. and B. Plott. 2000. Using simulation to analyze

supply chain. In Proceedings of 2000 Winter Simula-
tion Conference. ed. Joines, J.A.; Barton, R.R.; Kang,
K.; Fishwick, P.A., 1095-1099. Piscataway, New Jer-
sey: Institute of Electrical and Electronic Engineers.

Swaminathan, J.M. 1998. Modeling supply chain dynam-
ics: A multi-agent approach. Decision Sciences, Vol.
29 No. 3, Summer, 607-632.

Tan, K.C. 2001 A framework of supply chain management
literature. European Journal of Purchasing & Supply
Management, July, 39-48.

Tee, Y.S. and M.D. Rossetti. 2001. Using Simulation To
Evaluate A Continuous Review (R,Q) Two-Echelon
Inventory Model. In The Proceedings of the 6 Annual
International Conference on Industrial Engineering,
November, San Francisco, CA, USA.

Umeda, S. and A. Jones. 1998. An integration test-bed sys-
tem for supply chain management. In Proceedings of
the 1998 Winter Simulation Conference, ed. Medeiros,
D.J.; Watson, E.F.; Carson, J.S.; Manivannan, M.S.,
1377-1385, Piscataway, New Jersey: Institute of Elec-
trical and Electronic Engineers.

AUTHOR BIOGRAPHIES

MANUEL D. ROSSETTI, Ph. D., P. E. is an Associate
Professor in the Industrial Engineering Department at the
University of Arkansas. He received his Ph.D. in Indus-
trial and Systems Engineering from The Ohio State Uni-
versity. Dr. Rossetti has published over thirty journal and
conference articles in the areas of transportation, manufac-
turing, health care and simulation and he has obtained over
$1 million dollars in extra-mural research funding. His re-
search interests include the design, analysis, and optimiza-
tion of manufacturing, health care, and transportation sys-
tems using stochastic modeling, computer simulation, and
artificial intelligence techniques. He was selected as a
Lilly Teaching Fellow in 1997/98 and has been twice
nominated for outstanding teaching awards. He is cur-
rently serving as Departmental ABET Coordinator. He
serves as an Associate Editor for the International Journal
of Modeling and Simulation and is active in IIE,
INFORMS, ASEE, and SCS. Dr. Rossetti is an Associate
Member of the Institute of Industrial Engineers and a
member of the IIE OR Division. Dr. Rossetti is also a
member of INFORMS and SCS. He will be serving as co-
editor for the WSC 2004 conference. His email and web
addresses are <rossetti@uark.edu> and <www.
uark.edu/~rossetti>.

�EDDY� HIN-TAT CHAN graduated from Industrial
Engineering at the University of Arkansas in August 2002.
He received his MS degree in Industrial Engineering and
nd Chan

bachelor degree in Computer Systems Engineering from
University of Arkansas. Currently, he is working in May-
nard Inc, Arkansas and can be reached via email address at
<eddyhtc@yahoo.com>.

http://www.uark.edu/~rossetti
http://www.uark.edu/~rossetti
http://www.uark.edu/~rossetti
http://www.uark.edu/~rossetti

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1612
	02: 1613
	03: 1614
	04: 1615
	05: 1616
	06: 1617
	07: 1618
	08: 1619
	09: 1620

