
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SEMICONDUCTOR SUPPLY NETWORK SIMULATION

Gary W. Godding

Component Automation Systems
Intel Corporation

5000 W. Chandler Blvd � MS CH3-68
Chandler, AZ 85226, U.S.A.

 Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
Computer Science & Engineering Dept.

Arizona State University
Tempe, AZ 85287-5406, U.S.A.

Karl G. Kempf

Decision Technologies
Intel Corporation

5000 W. Chandler Blvd � MS CH3-111
Chandler, AZ 85226, U.S.A.

ABSTRACT

More efficient and effective control of supply networks is
conservatively worth billions of dollars to the national and
world economy. Developing improved control requires
simulation of physical flows of materials involved and de-
cision policies governing these flows. This paper describes
our initial work on modeling each of these flows as well as
simulating their integration through the synchronized inter-
change of data. We show the level of abstraction that is ap-
propriate, formulate and test a representative model, and
describe our findings and conclusions.

1 PROBLEM DESCRIPTION

Improving the operational efficiency of supply networks
for physical goods is one way to boost the national and
global economies. Understanding the control physics of
this kind of network is key to providing continuous im-
provement. Developing such an understanding requires ex-
tensive experimentation to formulate and validate control
policies. Since this type of network generates enormous
wealth, direct experimentation involves untenable financial
risk. Some form of modeling and simulation is required.
 Simulating supply networks requires the modeling of
different but interrelated flows. Physical flows represent
the goods being produced, stored, and shipped including
raw materials, work in progress, and finished goods. Data
flow represents the past, present, and forecast future state
of the physical flows as well as the demands from the mar-
ketplace. Such data is used by policies controlling the bal-
ance between variable demand and variable supply to

maximize efficiency. The resulting decision flows describe
when and how much of which materials to release into
manufacturing facilities and transportation links as well as
how much inventory to hold in warehouses.
 The goal is to provide customer service to maximize
revenue (the right quantity of the right product in the right
place at the right time) while minimizing costs (materials,
production, storage, transport, obsolesce) to maximize
profits now and in the future. This requires a number of
difficult tradeoffs. For example, to maximize customer
service, high volumes of finished product might be stored
close to the customer. But for products with short effective
lives, costs are minimized by holding raw materials at the
beginning of manufacturing lines until firm orders are
placed. Decision policies are required to manage such
tradeoffs over time, and the quality measure of policies is
supply network profitability.
 We have developed a software architecture to model
and simulate material, data, and decision flows and the inter-
actions between them. Using this architecture a wide variety
of experiments can be implemented to explore the behavior
of supply networks that we demonstrate with a typical prob-
lem from semiconductor manufacturing. This test problem
shows our approach to the granularity of the objects to be
modeled and the granularity of time over which to simulate.
We address the division of functionality between the physi-
cal module and the decision module as well as the data pass-
ing requirements including synchronization. We explore the
ease of modifying the physical entities (in both parameters
and topology) and the decision policy.

Although this initial demonstration covers multiple
time periods, during a simulation the network topology and

Godding, Sarjoughian, and Kempf

products (to mention but a few) are fixed. We believe
however, that the architecture will support the dynamics of
actual semiconductor supply networks where new factories
come on line and new products are introduced (and other
dynamic changes) as a simulation unfolds over time. Fur-
thermore, we are preparing to test the architecture over
multiple dimensions of scalability. The first is size scal-
ability in terms of number of factories, products, custom-
ers, warehouses, transport links, etc., included in the mate-
rial flow. The second is complexity scalability as the
relationships between product age and product pricing, or
between multiple customers for the same scarce product, or
other such complexities are included in the decision flow.

2 RELATED WORK

A number of methods have been explored to model and
simulate supply networks. These include principally dis-
crete event simulation, agent-based simulation, and sys-
tems dynamics simulation. Other less well explored ap-
proaches include fuzzy sets and spreadsheet analysis.

2.1 Discrete Event Simulation

For modeling and simulation of the physical flows in a
supply network, discrete event simulation (DES) might be
considered the most obvious choice since it has been used
extensively in the study of material flow in manufacturing
systems at the tool and factory level (Law and Kelton
1991) . It has been shown that using the appropriate ab-
straction, DES can be used for the factory components of a
supply network (Godding and Kempf 2001; Kempf,
Knutson, Fowler, Armbruster, Babu, Duarte 2001). How-
ever, DES does not lend itself as easily to decision flows.
While there are DES systems that include the simple kinds
of dispatching rules that can be used to control a set of
tools, more complex policies generally require user exits
and coding in some basic programming language. Rapid
experimentation with control policies across complex sup-
ply networks is not within the grasp of DES.

2.2 Agent-Based Modeling

Agent-based modeling is intended to support a variety of
behaviors that depend on autonomy, mobility, and rational-
ity where handling independent and cooperative decision-
making is necessary. However, unlike some other model-
ing approaches (e.g., discrete-event), to date there does not
exist any universally accepted theory for modeling agent
dynamics. Agent-based modeling, nonetheless, plays a
principal role in describing behavior that does not lend it-
self to a priori reasoning. In particular, in domains such as
enterprise engineering, decision-making is inherently non-
monotonic. Agent-based modeling can model important
autonomy and mobility traits (e.g., Muller and Pischel

1994) to deal with unpredictable conditions often present
in supply network and logistics. Indeed, agent-based mod-
eling is widely accepted to be necessary where local and
cooperative planning is required. However, given the level
of complexity required for this kind of agent-based model-
ing, it should not be used if simpler modeling techniques
can be used. For example, other researchers (e.g., Swami-
nathan, Smith, and Sadeh 1998) apply simpler types of
agents, called software components, to model static and
dynamic aspects of supply network entities such as trans-
portation agents.

2.3 System Dynamics

There has been much recent research using Systems Dy-
namics (SD) for supply network modeling (Angerhofer and
Angelides 2000). The use of SD, formally known as in-
dustrial dynamics, was first suggested in 1958 (Forrester
1958). The SD approach for analyzing behavior of com-
plex systems includes (1) modeling the system as feedback
loops and delays, (2) turning the model into a set of quanti-
tative equations, and (3) using simulation to observe the
behavior of the system. Users follow this concept of mod-
eling and simulating system behavior to gain insights on
control policies. However, the modeling and numerical
simulation methods provided by current SD environments
do not provide the granularity needed to model the com-
plex stochastic material flows and associated control algo-
rithms for a semiconductor supply network without signifi-
cant extension.

3 APPROACH

In developing a semiconductor supply network simulation
model, it is useful to distinguish between material process-
ing (low-level) and decision-making (high-level) dynam-
ics. Abstracting a complex system into low-level and high-
level layers supports using distinct modeling approaches as
appropriate (Sarjoughian, Zeigler, Hall 2001). For exam-
ple, characterization of physical flow of materials inde-
pendently from the modeling of decision-making offers a
basis for synthesizing a supply network using different
modeling methods (e.g., discrete event for materials and
mathematical optimization for decisions).
 To illustrate the significance of this separation, con-
sider Figure 1 where the decision and physical processing
layers are defined. The decision layer is responsible for
making higher-level decisions (controls) based on the
lower-level behavior (data) observed from the physical
processing layer. At the decision layer, multiple compo-
nents can collaborate to generate control commands for the
physical processing layer. The physical processing layer
can represent processes, inventory, and shipping compo-
nents as well as their interactions. In this layer, the prod-
ucts generated in the process are stored in the inventory be-

Godding, Sarjoughian, and Kempf

Decision Module k

Decision Layer

Physical Processing Layer

external control

local control

product
Inventory

product
ProcessProcess Shipping

local control

local control

Decision Module external control

product/dataProcessProcess

Inventory

Shipping
local control

data

local control

external data

Figure 1: Decision and Physical Processing Layers
and their Interactions.

fore being shipped. Components from these two layers can
interact with one another using external control and data as
shown in Figure 1.
 The interactions between the decision and physical
processing layers are governed by the former sending ex-
ternal control commands to the latter. Examples of the ex-
ternal control for the physical processing line are “how
much to release into the line during some time interval”,
“how to configure material to demand,” and “which ware-
house the material should be shipped to”. Correspondingly
the decision layer receives the state of material processing
for determining external control commands. Examples of
data sent by the lower-level (and consumed by the higher-
level) are “the amount of semi-finished goods available for
producing some desired finished goods” and “the amount
of product shipped to customer and Geo-warehouse”. The
separation of material processes from decision-making is
based on distinguishing data, product, local and external
controls from one another. The external control and data
between these two layers allow isolating tactical (local
control) and strategic decision-making (external control)
from one another. Figure 2 depicts an abstract view of the
physical processing and decision layers, their interactions,
and their collective role in fulfilling end-to-end demands of
a supply network.

To further illustrate the concept of separation of con-
cerns as shown in Figures 1 and 2, consider a segment of a
real-world distribution network which has an assembly test
factory and a logistics network. The decision to separate
decision-making (inventory holding policy) from material
processing plays a vital role in model development of a
supply network. For example, the decision-making algo-
rithms tend to consider cost/revenue tradeoffs by control-
ling how much material to build and where to store it while
the physical model considers physical characteristics and

control
variables

state
variables

Simulation measurement and control (Decision Layer)

Determines how much material to start, how much to release
from each inventory holding point, and where to ship.

Supply Network Simulation (Physical Processing Layer)

Simulates the physical flow of material through the supply
network. Reports how much inventory is in each supply
network entity at the end of the day, and when customer orders
were actually filled.

Figure 2: Two Layer Abstract View of Supply Net-
work

constraints of how material flows through the network (e.g.
capacity, delay, and yield).
 The physical processing layer of a semiconductor sup-
ply network has inventory holdings, processes, shipping,
and customer entities (see Figure 3). In this setting, mate-
rial arriving is stored at the die inventory and processed
into different types of products according to physical char-
acteristics of the die and some types of local and external
decision policy. Each of the die flows through the assem-
bly test line, is assembled into packages, split into catego-
ries based on test results, and stored into unfinished inven-
tory. When the material is released from the unfinished
inventory point, it is configured to a specific product which
is ready for shipment to customers. The processing steps
in the foregoing description can be categorized into mate-
rial processing (e.g., categorizing die based on test results)

Assembly Test Factory

Logistics Network

Die Supply

Assembly TestAssembly Test

Finish LineFinish Line

Geographic Warehouse

output data is a function of input data
and external control (strategic decisions)

Finished Product

customer

output data is a function of input
data and local control (tactical decisions)

consumes, generates and tracks orders

output data is a function of input data

inventory

processprocess

customer
Die Inventory

Release

Semi-Finished
Inventory

Finished Goods
Inventory

Shipping

Shipping

Shipping

shipping

Shipping

Shipping

Release

Finished Goods Warehouse

Release

Release

Release

Figure 3: Model for Physical Processing Layer of a
Semiconductor Supply Network

Godding, Sarjoughian, and Kempf

and decision-making (e.g., release a certain number of die
to a given customer).

3.1 Modeling and Simulation Methodology

As stated earlier, having the ability to use different model-
ing techniques for the decision and physical manufacturing
layer offers important advantages compared with mono-
lithic methodologies where one modeling approach is used
for describing all types of dynamics (e.g., high-level deci-
sion-making and low-level physical processes). For exam-
ple, while discrete event modeling is well suited for manu-
facturing processes, it may be necessary and advantageous
to use other techniques such as logic-based reasoning to
model intelligent decision-making. For modeling the
physical layer dynamics, we use DEVSJAVA software en-
vironment (ACIMS 2003) and its accompanying DEVS
(Discrete Event System Specification) modeling and simu-
lation methodology (Zeigler, Praehofer, and Kim 2000)
(see Figure 4). For simplicity, in this study high-level deci-
sion algorithms are wrapped inside atomic DEVS model
components. This choice allows executing our existing
model using alternative simulation engines (e.g., parallel
execution) in a straightforward manner.

Simulation Engine

Physical Manufacturing Model Components

Decision Control Model Components

Domain Neutral Model Components

DEVSJAVA

Semiconductor Supply Network Model

Sequential
Processing

Distributed
Processing

Parallel
Processing

Figure 4: Supply Network Modeling and Simula-
tion Environment

4 MODEL DEVELOPMENT

In DEVSJAVA, a model is either atomic or coupled. The
former specifies inputs, outputs, states, state and output
transitions, and timing function. The latter specifies hierar-
chical composite models where its components can be
atomic or coupled models. Each coupled model can have
inputs, outputs, and couplings among its children.
 The supply network topology shown in Figure 3 has
been modeled using the DEVSJAVA framework. First, the
physical and decision layers were identified and decom-
posed into DEVSJAVA models. Second, the message ob-

jects were defined. Finally, the message flow and syn-
chronization were defined and modeled.

4.1 Physical Model Decomposition

The DEVSJAVA environment supports inheritance for
creating atomic models and this feature has been used ex-
tensively in creating our model. The class hierarchy is
shown in Figure 5. The Viewable Atomic model is a
DEVSJAVA base model from which all the other atomic
models are derived. The Supply Network Entity model
provides common methods for synchronization, inventory
reporting, capacity management, and delay.

Viewable
Atomic

Viewable
Atomic

Supply
Network
Entity

Supply
Network
Entity

End Of
Factory
End Of
Factory

Inventory
Holding

Inventory
Holding

Manufacturing
Line

 Processing
Line

Shipping Shipping

Two Output
Inventory

Two Output
Inventory

Assembly
Test

Assembly
TestCustomerCustomer

Figure 5: Object Hierarchy � Supply Network Com-
ponents and Customer.

 The physical model has been decomposed into four ma-
jor categories of entities including processing lines, inventory
holdings, shipping, and customers. Specializations have been
created to support additional functionality. Descriptions of
each follow, and the detailed model is shown in Figure 6.

4.1.1 Inventory Holding

The inventory holding is modeled to behave like a store or
a warehouse. When material arrives, it is added to the cur-
rent pool of inventory. Material will not leave until an ex-
plicit release signal is received. The inventory holding is
the only entity in the physical model that receives com-
mands. Control of the physical network is accomplished
by controlling how much, what, and where to release mate-
rial from the inventory holding points. Inventory holding
points can have capacity and delay.
 The basic inventory holding has one input and one out-
put for material flow. There have been two specializations
created; the two output inventory, and the end-of-factory in-
ventory. The two output inventory has different paths through
which material can leave. The end-of-factory model is a spe-
cialization of the two output model. End-of-factory model is
used to simulate the back of a factory where there is limited
storage space. If any material remains in an end-of-factory
model at the end of a time period, the material is automati-
cally released to the default output path.

Godding, Sarjoughian, and Kempf

Supply Network Model

Lot Generator

Experimentation Set-Up

Lot Decrease
Demand

CustomerGeo
WH

Finished
Good

Assembly
Test Line

Finish
Line

ATFactory

Semi
Finished

Inv

End of
Factory

Manufacturing Line
Inventory Point
Shipping Link
Customer

Product flow
Status data from model
Commands into model

Ship

Ship

ShipShipShip

TransducerCommand
Generator

Lot Release
Controller

Release
Command Order Filled Order

Changed
Inventory

Figure 6: Detailed Model of the Supply Network

4.1.2 Shipping

Material is delayed to simulate the transport time. Ship-
ping entities have capacity and delay. Shipping by differ-
ent methods (air/land/sea) could be modeled and would
have different cost/time tradeoffs to explore.

4.1.3 Processing Line

Processing lines model manufacturing links or assembly op-
erations. Processing lines can change the material. These
lines have capacity, delay, and yield. A simple example is
the finish line used in our supply network model. A speciali-
zation of the processing line has been created to simulate the
assembly test operation. The assembly test operation splits
one input product into three output products based on a sto-
chastic distribution. This distribution simulates the behavior
of a semiconductor test operation where product is divided
based on physical characteristics of the die.

4.1.4 Customer

The customer can consume orders during each time period.
Customers may change orders within a certain time win-
dow from the order due date and they may cancel late or-

ders. If customer cancels more than two orders, average
orders from that customer could decrease. This is intended
to simulate the behavior of customers switching to an al-
ternate supplier when service level falls.

4.1.5 ATFactory

The ATFactory (AssemblyTest factory) is a coupled model
that consists of an assembly test line, a semi finished in-
ventory holding, a finish line, and an end-of-factory inven-
tory holding.

4.2 Decision Model Decomposition

4.2.1 Decision Layer Atomic Models

The decision model is made up of four different atomic
models including a lot release controller, a lot generator, a
command generator, and a transducer (see Figure 6). The
lot release controller implements the heuristic described in
the next section. The lot generator inputs new material
into the simulation, the command generator inputs com-
mands. The transducer collects data from the simulation
for off-line analysis.

Godding, Sarjoughian, and Kempf

4.2.2 Decision Algorithm

A heuristic has been implemented for the control algo-
rithm. The heuristic attempts to keep inventory levels at a
target level, while meeting customer orders on time. The
heuristic can only consider a single shipping path, i.e.
product is shipped to customer via the geo warehouse, geo
warehouse is replenished from finished goods warehouse,
and finished goods is replenished from the ATFactory.

The heuristic calculates the difference between ex-
pected pipeline inventory and the actual inventory. If the
difference is positive, it will release that much for the day.
The heuristic is used to calculate both how many lots to
start and how much material to release from the ware-
houses. The required inputs to the heuristic are: total in-
ventory currently in the supply network pipeline, the orders
that have been filled, the forecast demand over the time pe-
riod of the network delay, the average delay of the pipe-
line, and the inventory targets. Additional details of the
heuristic can be found in (Armbruster, Chidambaram,
Godding, and Kempf 2001). The inventory and order data
is obtained from the physical network during the runtime.
The other data is input as parameters to the model.

4.3 Message Types

Three types of messages have been defined to flow be-
tween the different components; the lot, an order, and a
command. These messages have been derived from the
DEVSJAVA entity class.

The hierarchy is shown in Figure 7. The lot is the pri-
mary unit of material that flows through the network. It
contains the quantities of the three different products, and
has some state variables used to track how long the mate-
rial has been processed within the different entities. The
command is an extension of the lot and has additional
fields for specifying output path and special instructions.
The command is sent to the inventory holding points to tell
how much material to release, which output path to release
on, and any special instruction for next entity such as
which product the material should be configured to or
which customer order should be filled. Orders are sent
from the customer. Additional fields in orders are the or-
der ID field, a due date, and a customer ID.

Command

Order
LotEntity

Figure 7: Message Hierarchy

4.4 Data Flow and Synchronization

Three types of flows have been identified in the model.
There is material flow, control flow, and information flow
(see Figure 6). Material flow represents the product being
processed and consumed by the customers. Information
flow is generated by the physical model and represents the
externally known state of the physical network at any
given time period. The control flow is generated by the
decision model and sent to the physical model to control
material flow. Material flow is controlled by how inven-
tory is released.

4.4.1 Material Flow in Physical Model

Material flow starts from the lot generator in the decision
layer. When the material is released into the assembly test
line, it is split into three different products using a stochas-
tic distribution. Processing time for assembly test is ap-
proximately 2 weeks, that is also drawn from a distribu-
tion. After material leaves assembly test, it flows into the
semi finished inventory. Material has to be released from
this inventory into the finish line. The release command
sent to semi finished inventory contains an additional field
specifying what product the material should be configured
to. After material leaves the finished line, it flows into the
end of factory inventory point. It can be shipped either to
the customer or to finished goods from here. If it is
shipped to a customer, an order ID has to be supplied to
specify which customer order is being filled. After fin-
ished goods, materials can be shipped to either the cus-
tomer or the geo warehouse.

The physical layer sends the following messages to the
decision layer:

•
•
•
•

•
•

•
•

Inventory level at the end of the day.
Customer orders filled at the end of the day.
Customer orders that have been changed.
Customer demand decreased.

4.4.2 Decision Flow

At every time period the lot release controller module will
look at the data received from the previous period to calcu-
late the release for the next period. The lot release control-
ler sends its output to the command and lot generator. The
lot generator will send new material to the assembly test
line and the command generator will send release com-
mands to the inventory points.
 The messages sent from the decision layer are:

New material to release into the simulation.
How much material to release from each inven-
tory holding point.
How to configure material in the finish line.
Which orders should be filled with the available
finished product.

Godding, Sarjough

4.4.3 Synchronization

The control for the model is based on knowledge of overall
inventory at each entity and what orders have been filled at
the end of a given time period. The decision algorithm
must have this knowledge to make decisions for the next
day. A clock is used to synchronize all entities by broad-
casting an end of day message. The sequence of execution
for the simulation, repeated until the simulation is com-
plete, is given below.

1. Simulation starts a new time period. Processing
starts on the new material and commands sent by
the decision layer in the previous period. Process-
ing continues on material already in the simulation.

2. Decision layer calculates amount of material to re-
lease into the simulation for the next time period.
Calculation is completed by the middle of the cur-
rent time period.

3. Decision layer calculates material to release from
each warehouse for the next time period. Calcula-
tion is complete by three quarters of the current
time period.

4. Decision Layer sends material and commands to
the simulation at three quarters of current time pe-
riod. (Processing of new material and commands
will not start until the beginning of the next period).

5. The simulation completes the current time period.
It reports to the decision layer how much inven-
tory is at each entity and which orders were filled.

 The clock module sends out a synchronization mes-
sage at the end of every time period. The synchronization
message is sent to all entities to report the timestamp of the
next time period. All entities use this to timestamp mes-
sages and increment their internal time.
 The transducer records all data into a data structure.
At the end of the simulation, the transducer writes all data
into CSV files to enable offline analysis.

5 SIMULATION RESULTS
AND FINDINGS

A set of 12 experiments was run to validate the system be-
havior. Four types of demand signals were used with 3 dif-
ferent inventory targets. Simulation data was collected for
200 days. Experiment descriptions and results are shown
in Table 1. For each type of demand, inventory targets of
500, 1000, and 2000 were tried. These targets were ap-
plied to all inventory points. Experiments 1 through 3 had
a constant demand of 500 for all three products. Experi-
ments 4 through 6 had a square wave demand that changed
between 500 and 750 every 25 days for each product. Ex-
periments 7 through 8 had a demand that increased by 100
every 25 days for each product, and experiments 10
through 12 had a demand selected from a uniform distribu-
tion between 0 and 1000. The measured results were the

ian, and Kempf

Table 1: Experimental Results
Exp

Demand
Profile

Inven-
tory Tar-
get

Percent
Orders
Late

Ave.
Days
late

1 Constant 500 500 100% 3.405
2 Constant 500 1000 88% 1.03
3 Constant 500 2000 0 0
4 Square 500-750 500 100% 3.905
5 Square 500-750 1000 98% 1.74
6 Square 500-750 2000 1% 1
7 Increasing 500 100% 4.72
8 Increasing 1000 100% 3.09
9 Increasing 2000 55% 1.21
10 Random 0-1000 500 86% 3.71
11 Random 0-1000 1000 80% 2.23
12 Random 0-1000 2000 40% 1.08

percent of orders received late by the customer, and the av-
erage number of days an order was late.
 It can be seen that the control had better results for
steady demand (Experiment 1-6) than for increasing or ran-
dom demands. The results also show that inventory played
important role in improving customer service levels.

Data collected from experiment 6 is shown in Figures
8, 9, and 10. Figure 8 shows how much material was re-
leased into assembly test on each day. This quantity is
close to the sum of demand for all three product because
assembly test will split its input into 3 output products.

Figure 9 shows inventory levels of each product in the
unfinished inventory store. The assembly test lot split dis-
tribution was %33 plus/minus %2 for products 1 and 3.
Product 2 split was the remaining difference from product
1 and 3 results. (e.g. If values drawn for product 1 and 3
were %31 and %34, then product 2 split would be %35).
The results show that product 2 inventory is climbing,
which is expected since the split percentage should be
slightly higher.

Inventory levels for finished goods is shown in Figure
10. Levels for all three products are centered around the tar-

0

500

1000

1500

2000

2500

3000

50 10
0

15
0

20
0

25
0

Time Days

D
ie

 S
ta

rt
s

U
ni

ts

Qty

Figure 8: Die Released into Assembly/Test for Experiment 6

Godding, Sarjoughian, and Kempf

0
1000

2000

3000

4000

5000

6000

7000

8000

9000

50 10
0

15
0

20
0

25
0

Time - Days

Se
m

i F
in

is
he

d
In

ve
nt

or
y

U
ni

ts

Prod1 Prod2 Prod3

Figure 9: Unfinished Inventory Levels for Experiment 6

0

500

1000

1500

2000

2500

3000

50 10
0

15
0

20
0

25
0

Time Days

U
ni

ts
 G

EO
 In

ve
nt

or
y

Prod1
Prod2
Prod3

Figure 10: Finished Good Inventory for Experiment 6

get level at 2000. Oscillations are due to the control heuris-
tic trying to compensate for the variability in assembly test.
 Key findings of this effort include:

•

•

•

•

The control algorithm quickly becomes complex
for this small subset of a semiconductor supply
network. With the control separated from the
physical flow, it would be straightforward to try
other types of control strategies. The supply net-
work performance could be improved if the sim-
ple heuristic used in the initial testing were re-
placed with some more sophisticated control (e.g.
mathematical optimization).
Separating the physical flow from the decision
engine simplifies the development effort for both
the physical model and decision model. The in-
teractions between control flow and physical flow
is simplified.
DEVSJAVA enabled modeling at a low enough
level of granularity for both entity objects and simu-
lation timing.
The DEVSJAVA environment tied with this mod-
eling approach provided good performance com-
pared to previous work. A 300 day simulation
took less than 2 minutes to run on a 500MHz Pen-
tium III laptop with 128 MB of memory. A simi-
lar previous model in (Godding and Kempf 2001)
had runtimes greater than 1 hour when run on a

dual processor 900MHz server with 1GB of
memory. This improved performance is a result
of the more efficient modeling allowed by the
DEVSJAVA environment, and perhaps from
DEVSJAVA itself.

6 FOLLOW-ON WORK

6.1 Supply Network Model

This simulation study only included a subset of the semicon-
ductor supply network. For the next phase, we will include
multiple assembly test factories, multiple customers in differ-
ent geographies, wafer fabrication plants, and add a compli-
cated bill of materials. With some specialization, the atomic
models implemented will support all these new capabilities.
 The new structures will add many new complexities to
the control algorithm. The addition of fabrication plants
will multiply the cycle times. Multiple manufacturing fa-
cilities and customers will add interplant routing and logis-
tic decisions, and the bill of materials will add additional
routing decisions on how to build product.

6.2 Control Interface

Interface specifications will be formalized to enable the
connection of different types of control applications.
Much research is being done on control and it will be use-
ful to see how the different approaches work (e.g. mathe-
matical optimization, AI approaches, etc�). Issues such
as what type of data to pass, how to transform the data, and
the type of architecture required must be considered.

6.3 Multiple Modeling Formalisms

The approach described in Section 3 (see Figure 1) sug-
gests the need for using distinct modeling techniques for
the physical processing and decision layers. In this paper,
however, we have separated the models according to the
separation of concerns while using only one modeling for-
malism. Our ongoing research includes selecting a suitable
modeling formalism for the decision layer and its integra-
tion with the DEVS formalism. Within such a framework,
we will be able to formally devise an interface specifica-
tion and demonstrate the impact and value of the proposed
layering approach.

7 CONCLUSIONS

We have shown that the planning control algorithms can be
separated out from the simulation of the actual physical
flow of a small segment of the semiconductor supply net-
work. Separation of these functions into two separate lay-
ers has not only simplified building the physical simula-
tion, it has also provided an environment that facilitates
experimentation with different types of control policies.

Godding, Sarjoughian, and Kempf

Both capabilities are very important, as scalability issues
quickly become a problem when building realistic models
for analyzing the supply network.

ACKNOWLEDGMENTS

This research is partially supported under the NSF Scale-
able Enterprise Systems Grant No. DMI-0122227.

REFERENCES

ACIMS, DEVSJAVA Software, 2003. <http://www.
acims.arizona.edu/SOFTWARE>.

Angerhofer, B. J. and M. C., Angelides, 2000. System Dy-
namic Modeling in Supply Chain Management: A Re-
search Review, in Proc. Winter Simulation Confer-
ence, 342-351.

Armbruster, D., R. Chidambaram, G. W. Godding, K. G.
Kempf, and I. Katzorke, 2001. Modeling and analysis
of decision flows in complex supply networks, in
Proc. IV SIMPOI/POMS, Sao Paulo, 1106-1114

Forrester, J.W. 1958. Industrial Dynamics: A Major
Breakthrough for Decision Makers. Harvard Business
Review, 36(4), 37-66.

Godding, G. W. and K. G. Kempf, 2001. A modular, scal-
able approach to modeling and analysis of semicon-
ductor manufacturing supply chains, in Proc. IV
SIMPOI/POMS, Sao Paulo, 1000-1007.

Kempf, K. G., K. Knutson, J. Fowler, D. Armbruster, P.
Babu, and B. Duarte, 2001. Fast Accurate Simulation
of Physical Flows in Demand Networks, in Proc.
Semiconductor Manufacturing Operational Modeling
and Simulation Symposium, Tempe, AZ, 111-116.

Law, A.M., and W. D. Kelton, 1991. Simulation Design
and Analysis, McGraw-Hill Inc., New York.

Muller, J. P. and M. Pischel, 1994. An Architecture for
Dynamically Interacting Agents, International Journal
of Intelligent and Cooperative Information Systems,
3(1), 25-45.

Sarjoughian, H. S., B. P. Zeigler, S. B. Hall, 2001. A Lay-
ered Architecture for Agent-based System Develop-
ment, Proceedings of the IEEE, 89(2), 201-213.

Swaminathan, J. M., S. F. Smith, N. M. Sadeh, 1998.
Modeling Supply Chain Dynamics: A Multiagent Ap-
proach, Decision Sciences, 29(3), 607-632.

Zeigler, B. P., H. Praehofer, T. G. Kim, 2000. Theory of
Modeling and Simulation, Second Edition, Academic
Press.

AUTHOR BIOGRAPHIES

GARY W. GODDING is a Software Engineer at Intel
Corporation and a Computer Science graduate student at
Arizona State University. He leads a software group re-
sponsible for factory planning automation. His research

includes modeling and simulation of supply networks, soft-
ware architecture, and artificial intelligence. He can be
contacted by e-mail at <gary.godding@intel.com>.

HESSAM S. SARJOUGHIAN is Assistant Professor of
Computer Science and Engineering at Arizona State Uni-
versity, Tempe. His research includes hybrid simulation
modeling and intelligent agents, collaborative modeling,
distributed co-design, and software architecture. His indus-
trial experience has been with Honeywell and IBM. For
more information visit <www.acims.arizona.edu>.

KARL G. KEMPF is Director of Decision Technologies
at Intel Corporation and an Adjunct Professor at Arizona
State University. His research interests span the optimiza-
tion of manufacturing and logistics planning and execution
in semiconductor supply chains including various forms of
supply chain simulation. He can be contacted by e-mail at
<karl.g.kempf@intel.com>.

http://www. acims.arizona.edu/SOFTWARE
http://www. acims.arizona.edu/SOFTWARE
mailto:gary.godding@intel.com
http://www.acims.arizona.edu/
http://www.acims.arizona.edu/SOFTWARE
http://www.acims.arizona.edu/SOFTWARE
mailto:gary.godding@intel.com
http://www.acims.arizona.edu/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1593
	02: 1594
	03: 1595
	04: 1596
	05: 1597
	06: 1598
	07: 1599
	08: 1600
	09: 1601

