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ABSTRACT 

Based on a discrete-event simulation model, Simulation-
based Real-time Decision-Making (SRDM) is an innova-
tive approach to real-time, goal-directed decision-making.  
When applied to a flexible manufacturing system, SRDM 
makes better decisions than most fixed policies, such as 
deterministic, stochastic and manual.  SRDM even im-
proved over fixed policies optimized within a class of 
policies by OptQuest, in our numerical experiments.  
Compared to these fixed policies, SRDM shows greater 
improvement for more complex systems and is quite ro-
bust with respect to modeling errors.  SRDM provides an 
improvement over fixed policies by its ability to imple-
ment adaptive policies.  Since most real-time decisions in 
currently deployed manufacturing systems are made ei-
ther manually or by using fixed policies, our results sug-
gest that using SRDM instead could lead to significant 
improvement in operating performance. 

1 INTRODUCTION 

Many real-world systems require making decisions, but 
how should good decisions be made? Intuitively, good de-
cisions optimize one or more key performance indicators 
(KPIs) such as cost, throughput, lead time, or profit.  For 
example, in a flexible manufacturing plant (Gershwin 
1994), a decision may require choosing among alternative 
routes. In a specific situation, routing the next part to a par-
ticular machine might lower the average plant lead time.  

Real-time decision-making continuously involves 
making a decision within the available time. Such deci-
sion-making trades off time against quality: generally, the 
more deliberation time, the higher the decision quality.  
However, too much deliberation time can have drastic con-
sequences. For example, inventory might spoil if too much 
time is spent deliberating. 

In a complex system, it is usually difficult to calculate 
the effect of a particular decision on the overall system 
 
KPIs. This is because a complex system is likely to involve 
stochastic processes (machines might have probabilistic 
run times), complex dependencies among components (one 
machine might feed to multiple other machines), and un-
certain external environment (actual demand may vary 
over time and may differ from the forecasts).  Decision-
making in a complex system becomes even more difficult 
under real-time constraints. 

As a result, a policy is used instead to decide what to 
do in a particular situation. For example, a deterministic 
policy might route the part to the least busy machine. The 
goal of the policy is to approximate the decisions that op-
timize the KPIs. More generally, a policy is a probability 
distribution function over all the alternative decisions, con-
ditioned by a specific situation. For example, the situation 
for the part routing decision might be defined in terms of 
the length of the queues in front of each machine, and the 
stochastic policy might define the probability of choosing a 
route using a linear combination of the queue lengths. Dif-
ferent coefficients (called decision variables) in this linear 
combination will result in different decision-making be-
havior, which in turn will affect the resulting KPIs. Thus, 
creating a policy requires determining the parametric for-
mat of the policy (for example, a linear combination of the 
queue lengths) and then finding the optimal values of the 
decision variables (for example, the coefficients in this lin-
ear combination).  

The parametric format of the policy is usually speci-
fied by some system expert. The typical approach is to de-
termine the most promising formats based on the expert 
understanding of the system and then evaluate each of 
them to determine the best format.   

Sometimes, the optimal values of the decision vari-
ables are also manually specified by the expert.  A better 
approach is to use automated software tools, such as Opt-
Quest (Glover, Kelly et al. 1996), which is a popular non-
linear optimization package based on scatter search, tabu 
search and neural networks. Since many complex systems 
are difficult to model using analytical techniques like 
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mathematical programming (Luenberger 1984), these op-
timization packages use a discrete event simulation system 
for evaluating the performance. This process of finding the 
best values of the decision variables based on the output of 
a simulation model is known as simulation optimization 
(Law and McComas 2002; Olafsson and Kim 2002). Most 
commercial simulation systems now offer some simulation 
optimization capability, for example, SIMUL8, CSIM, and 
Arena offer OptQuest add-ons. 

Apart from the reliance on the expert to specify the 
correct parametric format, a major problem with a fixed 
policy (deterministic or stochastic, manual or optimized) 
is that it may provide a poor approximation to the optimal 
decision in a specific real-time situation. For example, the 
policy that always routes a part to the least busy machine 
does not consider that the least busy machine is taking 
unusually longer since noon  today because of a new op-
erator. This policy also does not consider that several ma-
chines just beyond the first machine are extremely busy 
because of a large order of some other products. Such 
myopia and rigidity leads a fixed policy to make poor de-
cisions.  This paper presents a novel approach, called 
Simulation-based Real-time Decision-Making (SRDM) 
that removes this myopia and rigidity to make better real-
time decisions. 

The rest of the paper is organized as follows. Section 2 
describes SRDM. Section 3 describes the design of our 
simulation study. Section 4 presents preliminary results 
with SRDM. Sections 5 and 6 compare SRDM with expert-
created and OptQuest-generated decision policies, respec-
tively. Section 7 discusses related  work. Finally, Section 8 
summarizes the conclusions of this paper and describes 
promising areas of future work.  

2 SIMULATION-BASED REAL-TIME  
DECISION-MAKING 

Simulation-based Real-time Decision-Making  (SRDM) is 
a dynamic goal-directed decision making process useful 
for systems that continuously make decisions in real-time 
in order to optimize some overall system KPIs.  

As Figure 1 shows, SRDM relies on a discrete event 
simulation model of the underlying application. Though 
the simulation uses a fixed policy (deterministic or stochas-
tic, manual or optimized), SRDM does not use that  policy 
to make a decision  in the current situation. Instead it runs  
several simulations (called look-aheads) for a small num-
ber of  alternative decisions and then selects the decision 
that optimizes the KPIs. In short, the look-ahead simula-
tions overcome the myopia and rigidity of the underlying 
fixed policy by taking into account the longer-term impact 
of each decision in the current situation. Each look-ahead 
simulation is used to compute the KPIs by combining the 
KPIs observed during the look-ahead and the KPIs esti-
mated from the terminal situation in that look-ahead.  
…simulations 
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Figure 1: Simulation-Based Real-Time Decision  
Making 

 
This paper presents a simple variant of SRDM, which 

is defined by four key parameters:  
• Policy: Which fixed policy to use during the look-

ahead simulations? 
• Depth: How long to run each look-ahead simula-

tion? 
• Width: How many look-ahead simulations to run 

for each decision alternative? 
• Heuristics: Which heuristics to use to estimate the 

KPIs at the end of each look-ahead simulation? 
Heuristics are necessary to estimate the KPIs for 
the work in progress. 

 For each decision opportunity, SRDM uses the simula-
tion model to generate the required number of depth-
restricted look-ahead simulations for each alternative. The 
KPIs from these look-aheads are averaged and the decision 
with the best aggregated KPI is chosen.  

The real-time constraint is met as follows: SRDM starts 
with depth 0, where the fixed policy completely determines 
the decision. SRDM keeps incrementing the depth until the 
available time runs out or the depth limit is reached. Finally, 
it chooses the decision based on the last depth for which all 
the look-aheads were successfully completed.   

More sophisticated versions of SRDM are presented in 
other papers. For example, one variant interleaves both the 
depth and width increments to provide decisions with a de-
sired statistical confidence level. 

SRDM has been used to develop the Decision Im-
prover component of LDI’s Rapid Response System 
(RRS), whose architecture is illustrated in Figure 2. RRS is 
a general-purpose software used for real-time decision 
making in wide variety of applications, like manufacturing, 
healthcare and business processes. By making real-time 
automated decisions, RRS quickly responds to unexpected 
real-time events like machine breakdown, patient emer-
gency, traffic congestion, and communication node failure. 
Since RRS uses a model of the application, it even antici-
pates and avoids future problems (like traffic congestions) 
and exploits future opportunities (like product arrivals). 
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Figure 2: RRS Architecture 
Since RRS learns this model over time, it is easy and cost-
effective to deploy (no need to manually create this model 
by expensive domain experts), and it continually improves 
its performance while automatically adapting to changes. 
RRS senses and impacts the real world (say, a manufactur-
ing plant) through real-time sensors and execution systems. 
It learns and uses a simulation models to improve decision 
making using SRDM. This paper ignores the other compo-
nents of RRS, for example, it assumes that the simulation 
model has already been built. 

3 SIMULATION STUDY DESIGN 

For a simulation study to assess the effectiveness of 
SRDM, we use the routing problem in a simple reliable 
flexible (one-part with multiple routings)  manufacturing 
system as shown in Figure 3, which is a variant of a system 
presented in  (Drake and Smith 1996).  
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Figure 3: A One-Part, Two-Layer, Multi-
Routing Flexible Manufacturing System 
with Stochastic Arrival and Processing 

 
This system consists of 5 machines (A to E) arranged 

in two layers and connected by various route segments. 
Identical parts arriving from the left side are completely 
processed when they depart at the right side, after follow-
ing any of the following alternative routes: A-C, A-D, B-
D, or B-E. Thus, there are three decision opportunities: 

D1. New part: choose either Machine A or B. 
D2. After Machine A: choose either Machine C or D. 
D3. After Machine B: choose either Machine D or E. 

 Thus, the decision alternatives are Left (A, C, and D, 
respectively, for the three decisions) or Right (B, D, and E, 
respectively). The route segments as well as the queues in 
front of each machine are FIFO (first-in-first-out). The op-
erational objective (KPI) is to minimize the average lead 
time, that is, the average time a part spends in the system 
(from arrival to departure).  

In our simulation model, the arrival and processing 
times are exponentially distributed – Figure 3 also shows 
the corresponding means (in Minutes). The travel time be-
tween each pair of nodes is fixed to 2 Minutes.   

There were several reasons for choosing this model, 
including: 

• It represents a very common decision problem in 
realistic manufacturing systems. 

• Its simplicity allows us to clearly understand the 
effects of various strategies. The simplicity also 
provided several experimental conveniences re-
garding debugging, simulation duration, etc. 

• It can be made increasingly more complex in a 
systematic manner, say, by adding more layers of 
machines. We will exploit this feature to evaluate 
the scaling of SRDM.  

• The complexity of such models does not allow 
analytic solutions of optimal policies (Gershwin 
1994). 
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Except in one set of experiments described later, we 
used the same simulation model for look-aheads, OptQuest 
optimization and experimental comparison of the results. In 
an actual deployment of RRS, while a manufacturing execu-
tion system would replace the last use of  simulation, the first 
two uses will still require building a simulation model.  

In each comparison experiment, we conducted enough 
trials to get at least 99% confidence level that one approach is 
better than the others (except in one case described later) – 
this resulted in at least 30 trials in each case. In each trial, the 
execution system was simulated for at least 1,000 Minutes of 
simulated time, a long enough time for stable results.  

For fairness in comparison, we used identical se-
quences of random numbers for each pair of simulation tri-
als. These numbers were generated  independently from 
the random numbers used during look-ahead. Further, each 
machine and the arrivals were based on independent ran-
dom number sequences. 

We used SIMUL8 Standard 9.0 and OptQuest 7.0 for 
SIMUL8 to get the optimal OptQuest policies, and SLX 
0.99 for SRDM and for comparison experiments. While 
SIMUL8 provides an OptQuest add-on, SLX (Henriksen 
2000) provides built-in support for look-ahead. 

4 PRELIMINARY SRDM RESULTS 

As we described earlier, there are four important SRDM 
parameters: depth, width heuristics, and policy. In this sec-
tion, we study the effect of the first three on the perform-
ance; the effect of the last  one will be studied in the next 
few sections.  

4.1 Effects of Depth and Width 

Figure 4 shows the effect of width and depth on the aver-
age lead time. As expected, the performance generally im-
proves with increased width and depth. While depths of  8 
Minutes or less of simulated time for look-ahead produces 
poor performance, the performance with greater depths is 
mostly independent of widths that are 32 or more.  
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Figure 4: Effects of Depth and Width on Average Lead Time 
These results suggest that there is a limit to the depth 
and width for any system, beyond which the performance 
does not improve (diminishing returns effect: major in-
crease in depth results in none or minor decrease in aver-
age lead time). 

Unless explicitly mentioned, we fixed the depth to 
64 and width to 32 for the rest of the experiments with 
this system. 

4.2 Effects of Heuristics 

Table 1 shows the effects of heuristics (using depth 25 and 
width 10), which are used at the terminal state of a look-
ahead. The simple heuristic computes the average  time to 
completely process each remaining part, assuming that there 
are no other parts in the system. The complex heuristic also 
approximates the delays for each part due to the existing 
queues in the system. The none column shows the results 
without any heuristics.  Results show that these heuristics did 
not improve the performance. It seems that the approxima-
tions in the heuristics were too gross and/or that the look-
ahead depth of 25 was sufficient enough to completely evalu-
ate the impact of a decision, without resorting to  heuristics.  

 
Table 1: Effects of Heuristics on Aver-
age Lead Time 

Heuristics Av. Lead Time 
None 35.58 

Simple 73.93 
Complex 36.92 

 
Although it is still open whether some other heuristics 

may improve this performance, we did not use any heuris-
tics for any other experiment reported in this paper. 

5 COMPARISON WITH MANUAL POLICIES 

In this section, we compare the performance of SRDM 
with two manually-created fixed policies for our experi-
mental model: 

• Deterministic Policy: Choose the machine with 
the shortest queue (break ties by choosing the ma-
chine on the Right).  

• Stochastic Policy: The probability of choosing a 
machine is inversely proportional to its queue 
length.  

The results (Table 2) show that SRDM lowered the 
average lead time with either policy, with much greater 
improvement in the stochastic case. SRDM also lowered 
the variance in both cases, suggesting that it is more robust 
with respect to the uncertainty in the manufacturing envi-
ronment (specifically, arrival rates and processing times). 
Interestingly, both the fixed policies led to similar per-
formance of SDRM, suggesting that SDRM’s performance 
is somewhat independent of the underlying policy.  
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Table 2:  Comparison of Fixed Manual Policies and SRDM 
in Two Settings – Deterministic and Stochastic 

Measure Deterministic Stochastic 
Avg. Lead Time – Fixed 39.47 47.62 

– SRDM   35.56 35.54 
– Improvement 10% 25% 

 L.T. Variance – Fixed  36.19 93.66 
– SRDM   31.79 32.79 

Parts Processed –Fixed 241 236 
– SRDM   242 242 

6 COMPARISON WITH FIXED POLICIES 
ENHANCED BY OPTQUEST 

6.1 OptQuest Optimization 

Recall that OptQuest requires the user to provide a para-
metric format of the policy – it returns the optimal values 
of the decision variables in that format. Since selecting the 
right parametric format is still an art, we considered several 
different formats in order to select the best ones to compare 
with SRDM. For each OptQuest optimization using this 
model, we used 30 trials per simulation (1,000 simulated 
minutes each) and simulations until convergence was visu-
ally observed (at least 1,000 simulations). We used the fol-
lowing fixed policy formats:  

• Deterministic local linear: At D1, choose left 
(i.e., A) if the expression “xQ(A) + yQ(B) + z” is 
greater than 50, where Q(M) is the length of the 
queue for a machine M and x,y,z are the OptQuest 
decision variables. Similar for D2 and D3.  

• Stochastic local linear: Use the same expression as 
above, but divide it by 100 to get the probability of 
choosing Left (negative values were replaced by 0 
and values larger than 1 were replaced by 1).  

• Deep linear (deterministic or stochastic): Similar 
to local linear, except that the lengths of all down-
stream queues are considered to make a decision. 

• Local normalized (deterministic or stochastic): 
Similar to local linear , except that the expression 
for D1 is: “x(Q(A)+1)/(Q(A)+Q(B)+2) + y”. 
Similar for expressions for D2 and D3.  

Table 3 shows the average lead time using the optimal 
policy produced by OptQuest for each of the above fixed 
policy classes.  The results show that deterministic policies 
outperformed stochastic ones, local linear outperformed 
deep linear, and local normalized outperformed local 
linear.  It is still open whether some other parametric form 
will lead to better OptQuest performance.  

 
Table 3: Performance of OptQuest-Optimized Policies  

Average lead time Deterministic Stochastic 
Local linear 40.09 43.87 
Local normalized 39.51 40.94 
Deep linear 41.04 54.93 
 
6.2 Comparing Fixed and Adaptive Policies 

Tables 4 and 5 compares the performance of the OptQuest-
optimized policies with SRDM, for local linear and local 
normalized formats. As before, we used a depth of 64 and 
a width of 32. The results show that SRDM outperformed  
OptQuest-optimized policies in all cases, with more im-
provement with the stochastic and linear policies, as com-
pared to deterministic and normalized policies, respec-
tively. The results also provide more evidence to our 
earlier observation that SDRM’s performance is somewhat 
independent of the underlying policy. However, OptQuest 
turned out to be slightly more robust (lower variance) with 
respect to external uncertainty, except in the stochastic lo-
cal linear case.  

 
Table 4:  Comparing SRDM and OptQuest-Optimized 
Policies for Local Linear Formats 

Measure Deterministic Stochastic 
Avg. Lead Time – Fixed 40.09 43.87 

– SRDM   36.26 34.69 
– Improvement 10% 21% 

L.T. Variance – Fixed  30.06 111.63 
– SRDM   36.15 34.49 

No. parts processed -
Fixed 

240 237 

– SRDM   242 242 
 
Table 5:  Comparing SRDM and OptQuest-Optimized 
Policies for Local Normalized Formats 

Measure Deterministic Stochastic 
Avg. Lead Time – Fixed 39.51 40.94 

– SRDM   35.72 34.73 
– Improvement 10% 15% 

L.T. Variance – Fixed  30.94 30.40 
– SRDM   34.44 34.96 

 Parts Processed -Fixed 242 240 
– SRDM   242 243 

6.3 Scaling with System Complexity 

In the next set of experiments, we study the effect of scal-
ing up the model complexity on OptQuest and SRDM. For 
this, we generated three other models, with varying com-
plexity, as shown in Figure 5. Both OptQuest and SRDM 
were run with parameters that provided them enough flexi-
bility to come up with the best possible results.  For exam-
ple, the number of OptQuest trials was increased to 50 and 
the SRDM depth was also increased to 100.  
 Figure 6 plots the performance improvement of adap-
tive policies implemented by SRDM over fixed policies 
based on the stochastic local linear policy enhanced by Op-
tQuest, across the four models. It shows that SRDM pro-
vides more improvement in the more complex models 
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Figure 5: Three, One, and Four-Layer One-Part Flexi-
ble Manufacturing Systems with Multiple Routings 
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Figure 6: Performance Scaling of Fixed and 
Adaptive Policies 

 
tested in this experiment.  This suggests that SRDM might 
provide significant improvements in real-world systems, 
since they are typically more complex than the models 
considered here.  Note that as problem complexity in-
creases, deeper and wider look-aheads might be required. 
Indeed, our results showed that the time per decision also 
increases with model complexity. 
6.4 Processing Time 

The processing time taken by OptQuest and SRDM 
directly depends on the specifications of the host machine.  
Our experiments used a 2.25 GHz single-processor 
machine with 512 MB of RAM.  To analyze the processing 
time, we examined the average CPU time per decision.  
The OptQuest average CPU time per decision is essentially 
zero, because each decision using an OptQuest generated 
policy requires at most one linear function evaluation.  
However, OptQuest requires several hours of offline 
processing time to determine the optimal coefficients for 
the policy function.  SRDM requires no offline processing 
time, and Table 6 summarizes the SRDM average CPU 
time per decision for each model. 
 

Table 6: SRDM Average CPU Time Per Decision 
Model Layers Average CPU Time Per Decision 

1 0.015 s 
2 0.026 s 
3 0.041 s 
4 0.061 s 

 
 The results show that the average CPU time per deci-
sion increases with the model complexity.  However, even 
for the 4-layer model, the average CPU time per decision is 
still less than 1/10 of a second, which is small enough to be 
viable for a real-time decision-making system.  Processing 
time can be further reduced by distributing the calculations 
across multiple machines or by dividing a large model into 
smaller sub-models. 

7 OTHER RESULTS 

By varying some experimental parameters, we did some 
ad-hoc sensitivity analysis of our results, using the original 
two-layer system and deterministic local linear policy: 

• Effect of processing and arrival times: We gen-
erated two more sets of these stochastic distribu-
tions.  For a congested system with means (3, 5, 
6, 9, 8, 10), the average lead times for OptQuest 
and SRDM were 78.10 and 74.57, respectively – 
a 5% improvement (with 95% confidence). For 
a less congested system with means (5, 5, 6, 10, 
4, 9), the average lead times for OptQuest and 
SRDM were 29.70 and 25.27, respectively – a 
15% improvement. 

• Effect of erroneous distributions: We changed the 
mean processing times for the simulation of the 
execution system, but not for the look-ahead and 
OptQuest optimization (thus, both look-ahead and 
OptQuest used the same erroneous distribution).  
For two such systems (System 1 and System 2), 
the errors and the results are shown in Table 7.  
The results suggest that SRDM is more stable in 
presence of errors. 
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Table 7: An Adaptive Policy Outperforms a Fixed Policy 
Even When Both Use Erroneous Models 

Parameter System 1 Model System 2 
Arrival rate 4 4 4 
Machine A 1.5 3 4.5 
Machine B 9 6 3 
Machine C 7.5 15 22.5 
Machine D 15 10 5 
Machine E 2.5 5 7.5 
OptQuest 44.00 136.60 
SRDM 35.54 28.49 
Improvement 19% 

Used by 
SRDM and 
OptQuest 79% 

 
• Effect of longer Simulation runs: Instead of using 

1,000 simulated Minutes to run both OptQuest as 
well as execution system simulations, we tried the 
following variants (the look-ahead depth remains 
64 in all cases): 
1. 

2. 

The execution system simulations were run 
for 2,000 Minutes: The average lead times for 
OptQuest and SRDM were 43.02 and 37.11, 
respectively – a 14% improvement. 
Both the execution system and OptQuest 
simulations were run for 2,000 Minutes: The 
average lead times for OptQuest and SRDM 
were 41.78 and 37.22, respectively – an 11% 
improvement. 

The results show that the adaptive policies of 
SRDM continue to outperform the best policy iden-
tified by the OptQuest tool from a class of fixed 
policies that we selected for these experiments. 

8 RELATED WORK 

Simulation optimization algorithms, like OptQuest, deter-
mine the optimal parameters of a pre-specified policy using 
several simulation runs with different parameter values. 
This is quite different from SRDM’s use of simulation in 
run-time evaluation and comparison of the alternatives. Al-
though these algorithms are mostly used off-line, some re-
search has been done on the online use of those based on 
infinitesimal perturbation analysis (Glasserman 1991).  

Online simulations have also been used in real-time 
systems for control, planning, scheduling, etc. (Smith, 
Wysk et al. 1994; Gonzalez and Davis 1997). Emulation 
also requires online simulations  (McGregor 2002). 

Zee (2001) recently presented a look-ahead strategy 
for real-time adaptive solution of the batching problem, 
where the decision at each moment requires answering the 
question “to start the machine now or to wait for the next 
customer to arrive”. It reported significant improvement in 
performance, but like the earlier work on look-ahead 
strategies starting from Glassey and Weng (1991), uses 
heuristics that require the knowledge of a few near future 
arrivals. In contrast, SRDM does not need this information. 
Moreover, this heuristics-based approach is fundamentally 
different from SRDM’s simulation-based approach.  

Rather than using as simulation optimization system to 
find the policy, another approach is to learn a policy from 
example decisions made in the actual environment 
(Damerdji 1993; Mahadevan, Marchalleck et al. 1997; 
Mahadevan and Theocharous 1998; Schneider, Boyan et 
al. 1998; Riedmiller and Riedmiller 1999; Miyashita 
2000). This method, known as reinforcement learning, 
uses feedback from the environment (simulated or real) to 
update the policy after each decision. For example, Russell 
and Norvig (1995) survey several reinforcement learning 
techniques, which learn a deterministic policy through sin-
gle-depth simulation in the environment. Another tech-
nique, known as policy iteration, picks a deterministic pol-
icy and then calculates the performance indicator for each 
situation given the policy. It repeatedly chooses the best 
policy for each situation based on the previous policy as-
signment until the policy stabilizes. For either reinforce-
ment learning or policy iteration, the resulting policy will 
suffer from the same problems of rigidity and myopia as a 
policy found through simulation optimization. In general, 
the source of the fixed policy does not eliminate the prob-
lems inherently associated with its use.  

9 CONCLUSIONS AND FUTURE WORK 

We described a new approach (SRDM) for real-time goal-
directed decision-making and compared it with fixed-
policies using a flexible manufacturing simulation study.  
Our results show that SRDM significantly improved over 
several fixed policies: deterministic, stochastic, local, deep, 
linear, normalized, manually-created, and even optimized 
with OptQuest within the classes of policies considered 
here.  While coming up with the best parametric form for 
optimization is quite challenging, especially for complex 
applications, this is not a problem for SRDM, since its per-
formance was almost independent of the underlying policy. 

Our results also show that SRDM provides more im-
provement for more complex systems, though it takes 
longer to make each decision. We see this increase in deci-
sion time as the biggest potential problem in using SRDM 
for very complex applications. Since the focus of this paper 
was on KPI improvement, we have not tuned our SRDM 
implementation to optimize the decision time. Moreover, 
the low decision times observed in our experiments, even 
for the relatively complex 4-layer network, suggests that 
the current implementation of SRDM might be practical 
for many real-world applications.  

 Our results also show that SRDM is quite robust with 
respect to modeling inaccuracies.  This is an important prac-
tical consideration, since the models do not accurately reflect 
the reality.  Our future work includes learning and tuning the 
model based on observation from the real system. 
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