
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

IMPLEMENTING A SIMULATION-BASED SCHEDULING
SYSTEM FOR A TWO-PLANT OPERATION

Jeffrey A. Joines
Andrew B. Sutton

Kristin Thoney

College of Textiles
North Carolina State University

Raleigh, NC 27695-8301, U.S.A.

 Russell E. King
Thom J. Hodgson

Industrial Engineering

North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

ABSTRACT

Scheduling any complicated job shop becomes increas-
ingly more difficult when the cycle time is reduced. This
paper will discuss the implementation of a simulation-
based scheduling system that properly schedules parts in a
two-plant operation. The system has allowed the company
to reduce the cycle time by at least a week from two/three
weeks to one/two weeks. As part of the project, the gen-
eration of the input data needed to drive the simulation is
also discussed since this data did not exist in the correct
form. The model generation, simulation development, and
experimentation will be discussed. The system that is de-
scribed is currently being used to generate the schedules.

1 INTRODUCTION

Recently, opportunities for cycle time reduction, which exist
across an organization, have received much attention. The
potential for improvement appears to be greater across the
entire supply chain environment rather than on individual en-
tities within an organization. These entities could be different
plants, different functional areas with in a job-shop, etc. Most
of the scheduling analysis has been done at the macro level
and little research has been conducted on the impact of coor-
dinated, detailed production scheduling between different en-
tities in the supply chain and transportation.

A great deal of research has been focused on solving
the job-shop problem, over the last forty years, resulting in
a wide variety of approaches. Recently, much effort has
been concentrated on hybrid methods to solve them as a
single technique cannot solve this stubborn problem. As a
result much effort has recently been concentrated on tech-
niques that combine myopic problem specific methods and
a meta-strategy, which guides the search out of local op-
tima. These approaches include Tabu Search, Hybrid Ge-
netic Algorithms, etc. However, these methods still suffer
from some of the same problems. They can not solve in-

dustry-sized problems with tens of thousands of part opera-
tions, with hundreds of machine types each having multi-
ple machines of each type, with workers being a constraint
(i.e., more machines than workers), the current state of the
system (i.e., WIP), etc.

Therefore, simulation-based scheduling systems offer
the ability to accurately model the current system. Many
of the current major simulation vendors offer scheduling
modules. The goal of any system is to develop schedules
very quickly such that decisions can be made and alterna-
tives tried. The Virtual Factory (VF), developed at NC
State is one such tool that has been found to provide near-
optimal solutions to industrial-sized problems in seconds
(Hodgson et al. 1998). The VF is a simulation-based pro-
cedure, which solves deterministic problems by minimiz-
ing the maximum lateness, Lmax.

This paper will discuss the implementation of a VF de-
rived scheduling methodology for a garment maker that
has its operations in a two-plant facility. The facility dis-
cussed is a cutting operation that takes fabric and cuts them
into garment pieces and then ships sew kits out to various
places in South America and the Caribbean to be sewn to-
gether to make the garment. The two plants are approxi-
mately 30 minutes apart by truck.

In Section 2, the description of the job shop is de-
scribed in detail. What had to be done in order to obtain the
data to drive the detailed system is presented in Section 3.
Section 4 and 5 will describe the scheduling system that
has been developed and implemented, which is derived
from the commercial version of the VF. Section 8 presents
the conclusions and future research.

2 PROCESSING SUMMARY

The facility has only five major processes (see Figure 1),
which may seem to be easy but the individual processes are
very complex. The processing begins with the orders

y
Joines, Sutton, Thone

Manual Die

Cut

Spread

Gerber

Cut

Spread

Molding

Mold

Pin

Manual
Die

Bierrebi

Lotting

Warehouse

Lace

Shipping

Plant 2

Plant 1

Figure 1: Job Shop Scenario

coming in from the production planning system typically
on a weekly basis, every Sunday evening. However, only
80% of the orders will be available while the remaining or-
ders will come in during the week forcing the system to re-
schedule potentially every day.

Those orders are then exploded into garments and ul-
timately the parts that make up those garments. During the
next process, certain parts are assigned to like material
groups. Then marker planning will take these groups as-
sign them into spread groups and develop the markers to be
cut. Multiple parts from different orders maybe grouped
together on a single spread. This is an effort to increase
productivity and material usage in cutting.

Spreading is the first major process, which consists of
spreading out the material (rolls of fabric) to allow the
parts to be cut out of the material. Also, certain types of
fabrics have to utilize specific spreaders. The next process
is the actual cutting of the material, which can take place
on automatic Gerber cutters or die cutters. Capacitated
queues exist between the spreaders and the cutters. The
spreading and cutting of the material takes a week in the
current situation. Once the parts are cut they can be sent
either to Lotting along with lace and die cut parts or to
molding. Both the spreading and cutting operations are
group operations (i.e., parts are processed together in batch
before they can be sent to the next operation).

Some of the parts in certain garments require a mold-
ing process, which is actually done at the second plant. The
molding operation is one of the most complicated proc-
esses owing to the constraints. One, they are tooling re-
strictions based on the actual molds and the sheer number
of molds of a given type and size. The most complex
problem is the operation has sequence dependent setup
times to switch out the tools. Different sizes of the same
type require a slight setup (20 minutes), while different
types require a longer setup (40 minutes) and finally
, King, and Hodgson

changing from a dark color to a light color will require a
different setup as well of 10 minutes. Sequence dependent
setup capability has to be included in the methodology.
Once parts leave the molding operation, they will proceed
to either Lotting or some of the parts require another die
cutting operation. It takes approximately one week for
parts to be molded and returned back to the original plant.

The final major operation (Lotting) occurs in the
original plant that takes all of the parts for a garment and
assembles them into sew kits. This processing is not started
until all of the parts of a kit are available (i.e., no partial
Lotting is allowed). Therefore, garments with molding op-
eration take three weeks, while the non-molded garments
take only two weeks to process.

In the current situation the garment maker was sched-
uling locally (i.e., each process was developing a schedule
that optimized its process) based on many different criteria
from longest processing time, to day of the week, shortest
processing time, minimizing setups, etc. Under the current
scenario, each process had weekly buckets to develop
schedules. For example, the molding supervisor knew what
its weekly buckets would be and could easily minimize
setups as well as leave jobs that were easy to do on Friday
while Lotting always processed the jobs in longest process-
ing time order.

In an effort to cut the overall lead-time to produce the
garment to a finished good, management decided to reduce
the cycle time to process the garments in these two plants
by at least one week. Also, trucks picked up parts based on
what they could carry owing to capacity considerations
rather than on what is needed at the next operations. The
facility had a good track record of shipping the garments
out in the current cycle time based on the weekly buckets.
However, the facility cannot continue to schedule based on
the current local criteria and be able to ship the garments
out on time in a tightened cycle time.

This means the facility is going to have to schedule the
garment parts more efficiently in a global fashion to be
able to meet the reduce cycle time. All of the processes
will need to be linked together tightly with an overall
global criteria with a common scheduling methodology.
The system will need to generate priority lists for each ma-
chine in each operation as well as maintain any restrictions
on the machines owing to sequence dependent setups, tool-
ing and worker considerations, trucking between plants,
grouping of parts into spreads, etc.

3 DATA DEVELOPMENT

Based on the requirement to reduce the cycle time, a detailed
scheduling system is required owing to the complexity of the
system (i.e., the number of part operations, the sequence de-
pendent setups, the trucking between plants, the number of
operators, the number of machines for each type, etc.). A de-
tailed scheduling system will determine for each machine the

Joines, Sutton, Thoney, King, and Hodgson

priority list of parts to operate on. At the time of the devel-
opment of the scheduling system, the processing information
in the databases was at the garment level (i.e., the database
could tell that it took 32 minutes to Gerber cut all of the parts
in the garment but not the processing times for the individual
parts). This level of processing times is not sufficient in de-
termining a detailed schedule. A methodology had to be de-
veloped to generate the data needed to be able to produce a
viable simulation. As will be seen in Section 5, the data gen-
eration methodology is independent from the actual schedul-
ing system (i.e., the data is generated outside the system and
then passed to the system).

What has been the case for many other implementations;
the majority of the time was spent cleaning up the data before
we could even think about generating the required data. Part
of the reason, the data has never been used to drive anything
operational like a simulation or a scheduling system. For ex-
ample, products in the database that had been discontinued
needed to be removed and the individual parts in the database
had to be matched up to the proper products in order to link
to garment time standards. Also, because several different
systems had been combined over the years, inconsistencies in
data had to be cleaned up (e.g., 2XL versus XL2). Other data
issues were encountered but are proprietary to their systems
and cannot be discussed.

Once these data issues were resolved, the garment
level time standards could be manipulated into part time
standards. Owing to the number of parts and the time-
frame, it was not practical to pursue a time study. How-
ever, if more accurate methods of generating the part time
standards are determined, the scheduling methodology that
has been developed will only get better.

The processing times for the individual parts of the
garments would be generated from the processing times of
the garment since the total processing time of each garment
at each process is known. Also, the material usage for
each part of the garment is known. With the assumption
that the area of the garment is a direct correlation of the
processing time (e.g., the cutting time for a part would be
directly related to the amount fabric that is being cut out)
the processing time at each operation can be determined
based on a ratio at the part level. The following formula
was used to determine an individual parts material usage:

UsageMaterialTotal

UsageMaterial
UsageMaterial =% (1)

Now using the part’s percent material usage, the proc-

essing time of the part on an operation can be determined
using Equation (2).

UsageMaterial%*TimeProcessingGarment
TimeProcessingPart =

 (2)
The appropriate queries and data tables were generated
using these equations. Now the download of the current set
of orders and ultimately part operations with processing
times could be generated consistently every time. This was
a major accomplishment in having the proper data needed
to input into the simulation.

4 VIRTUAL FACTORY

Now, the scheduling methodology needs to be designed.
Hodgson et al. (1998, 2000) developed a job shop-
scheduling algorithm and named it the Virtual Factory
(VF). The VF is an iterative, simulation-based procedure,
whose objective is minimizing maximum lateness. It has
been found to provide near-optimal solutions to industrial-
sized problems in seconds. Thoney et al. (2002a) expanded
the VF to include inter-factory transportation operations,
which enabled the detailed scheduling of entire multi-
factory manufacturing supply chains. Although perform-
ance was found to be good when transportation was not a
bottleneck, the scenarios were tested in a transient setting.
Starting and ending effects were observed to impact per-
formance. The more realistic rolling horizon setting ex-
plained in Thoney et al. (2002b) would enable us to more
accurately test how the VF would perform in multi-factory
settings in industry by helping to eliminate transient ef-
fects. Using the rolling horizon algorithm, a variety of ex-
periments were undertaken to gauge performance under
different conditions.

4.1 Slack Criteria

Slack Value is defined as the difference in time that the job
will take to process and the amount of time allocated to it
or the measure can be defined as the amount of delay that
can be put on the part and still be finished on time and can
be used to prioritize the jobs in the simulation. Let di be the
due date of job i and pij be the processing time of job i on
machine j. The slack of job i on machine m is computed as

 (3) ∑

+∈
−=

mj
ijiim pdSlack

where m+ is the set of all operation on job i’s route subse-
quent to the one performed on machine m. This formula is
often used in most scheduling algorithms and is a measure
of the amount of time a job can queue and still meet its
deadline (Hodgson et al. 2000). However, it has been
shown that slack does not perform well as a dispatching
rule in early experiments found in the scheduling literature.

To remedy this situation, a revised slack value that in-
corporates queuing times is used as the sequencing rule in

Joines, Sutton, Thoney, King, and Hodgson

the Virtual Factory. The revised slack for job i on machine
m is computed in Equation 4:

 (4) ∑∑

++∈+∈

−−=′
mj

ij
mj

ijimi qpdkSlac ,

where m++ is the set of all subsequent operations to ma-
chine m on the routing sheet for job i, except the immediate
subsequent operation. The simulation is run until the lower
bound is achieved or a specified number of iterations is
reached, and the best solution is saved. Determining and
estimating the queuing time of the subsequent operations is
the difficulty in using revised slack. One way to determine
queuing time is to use historical data. However, this
method is very inaccurate since it does not take into ac-
count the current load and status of the system. Another
way is to use a simulation-based scheduling system like
VF to simulate the system under current conditions esti-
mating the queuing times. Queuing times are recorded for
each job at each machine it visits in one iteration of the
simulation and used in the next iteration. This process is
repeated until it converges and has been shown to produce
optimal or near optimal results on a certain set of problems
(i.e., ones without sequence dependent setup of times like
the molding operation). The idea of slack is to force jobs,
which have very little slack to become priority jobs to be
handled first in order to force these jobs, or parts to be
processed next.

Even though revised slack has enhanced slack, some
parts (i.e., molded parts) have setup times that have to be
taken into account. Set-up times within the molding de-
partment can be added by subtracting out the setup time of
job i on machine m for a modified revised slack:

 . (5) ∑∑∑

++∈+∈+∈
−−−=′′

mj
ij

mj
ij

mj
ijimi qspdkSlac ,

Since slack is calculated when a part is put into queue,

sequence dependent setups cannot be taken into account
using this method. Essentially, if you always have non-
sequence dependent setups, then the setup just increases
the processing time by the amount of setup.

The overall global goal is to produce the parts on time
to be shipped while the local goal is to have as few setups
as possible. An iterative algorithm that works like the fol-
lowing has been employed. Revised slack () will
be used to prioritize parts at each machine center using a
specified setup time for all sequence dependent operations
(e.g., 30 minutes for all parts in the molding operation).
This number was chosen since it represents the average of
the setup times for the molding operations but not the
worst case. Once the algorithm has converged to the best
solution and then using a specified time window amount
(tw), reorder the priority list within this window to mini-
mize setups. Repeat for all subsequent time windows until

mikSlac ,′′
all parts have been sorted. This represents a myopic view
but will minimize some of the setups while maintaining the
overall goal of due date shipment.

5 MODEL LOGIC

To be able to develop the system, the scheduling logic
must be developed in order to correctly describe the algo-
rithm to schedule the parts. The logic seen in its entirety in
Figure 2 and in viewable sections in Figures 3-9 was de-
veloped during the summer by a set of interns.

The first group of blocks (Figure 3) imports the cur-
rent set of remaining and new parts into production data-

Lotting

Die Cut After Mold

Molding

Gerber CuttingLace and Die Cutting

Schedule in
queue for the Die

Cutting
Department

Schedule in
queue for the
Lace Cutting
Department

Determine Slack
Time for All parts

Determined Part
with lowest Slack

Time

Schedule in
queue for lotting

Determine Part
with Lowest Slack

Determine Part
with Lowest

Slack

Till parts available = 0

Till parts available = 0

Till parts available = 0

Determine Highest
Priority Group

Determine the
Highest Priority

Group

Schedule in queue
for Spreading

Schedule in queue
for Gerber cutting

Till parts available = 0

Till parts available = 0

Molded Part?

Make Mold
change to

highest priority
Slack

Determine next
Mold in queue by
Mold Type/Size

and Slack Priority

Same Mold Type
and Size availible?

Is the same
Size availible?No No

Schedule Part in
queue for the

Molding
Department

Yes

Until Molded Parts
to be done = 0

Yes

Die Cut After?

Determine Part
with the Highest

Slack Priority

Schedule in queue
to the Die Cutting

Yes

No

Yes

No

Download and
Group

Download
Orders

Explosion
of Parts

Assign
Labor to the

Parts

Assign Gerber
Parts to a Group

Calculate the
Slack Time

Marker Making

Check for
Available
Material

Notify proper
personnel to
take Action

Located
Material?

No

Put order on
HoldNo

Yes

Yes

Assign
Groups to Cut

Orders

Set in queue
for Marking

Download
and Group

Marker
Making

Lace and
Die Cutting

Gerber
Cutting

Molding

Die Cut
After Mold

Lotting

Figure 2: The Scheduling Logic

Joines, Sutton, Thoney, King, and Hodgson

Download and
Group

Download
Orders

Explosion
of Parts

Assign
Labor to the

Parts

Assign Gerber
Parts to a Group

Calculate the
Slack Time

Marker
Making

Figure 3: Download and Group Parts into Marking

bases. The orders are “exploded” into all the parts required
to fill the orders. The labor is also assigned to the part op-
erations from the labor database and then slack time is cal-
culated for the orders. In order to maximize material usage
parts are assigned to like material for cutting.
 Figure 4 details the next section, which checks for the
availability of the materials. If the material is not avail-
able, flags are sent to determine when it will be available.
If the material is available, then the order is set in queue
based on the slack time. The groups are then broken down
to smaller cut orders for processing purposes.

Marker MakingCheck for
Available
Material

Notify proper
personnel to
take Action

Located
Material?

No

Put order on
HoldNo

Yes

Yes

Assign
Groups to Cut

Orders

Set in queue
for Marking

Gerber
Cutting

Lace and
Die Cut

Figure 4: Marking Making for Cutting
The cut orders then are divided into three routes, de-
pending on their process, such as Die Cutting, Lace, and
Gerber cutting. Die and Lace are basically the same (see
Figure 5) schedule the individual parts based on revised
slack. The Gerber process has additional spreading proc-
esses as seen in Figure 6. The only difference is these two
operations are scheduled based on the material group, not
the individual parts. The highest priority group (minimum
slack value for all parts in that group) is determined before
each process (Spreading, and Gerber Cutting) and then the
grouped part is placed in queue.

All non-molded parts proceed to Lotting along with
the lace and die parts. The molded parts proceed to the
molding logic (see Figure 7), which is very complex. The
complication rises due to the constraint on molds type and

Lace and Die Cutting

Schedule in
queue for the Die

Cutting
Department

Schedule in
queue for the
Lace Cutting
Department

Determine Part
with Lowest Slack

Determine Part
with Lowest

Slack

Till parts available = 0 Till parts available = 0

Lotting

Figure 5: Lace Cutting and Die Cutting

Gerber CuttingDetermine Highest
Priority Group

Determine the
Highest Priority

Group

Schedule in queue
for Spreading

Schedule in queue
for Gerber cutting

Till parts available = 0

Till parts available = 0

Mold

Figure 6: Gerber Cutting Logic

Joines, Sutton, Thoney, King, and Hodgson

Molding

Molded Part?

Make Mold
change to

highest priority
Slack

Determine next
Mold in queue by
Mold Type/Size

and Slack Priority

Same Mold Type
and Size availible?

Is the same
Size availible?No No

Schedule Part in
queue for the

Molding
Department

Yes

Until Molded Parts
to be done = 0

Yes

No

Yes

Lotting
Die Cut

After

Figure 7: Molding Department Cutting

size and sequence dependent setup times. Changing a ma-
chine’s mold type/size is time consuming and every effort
is made to minimize setups. The next part to operate on is
determined based on the slack value. If the same mold
type and size is available then the part will follow next one
in the queue on that particular machine. If a machine with
the same size is available, then those parts will be placed in
its queue since the changeover time for the same size mold
is shorter than a complete setup. If this does not exist, then
a complete changeover will be made for the parts with the
highest priority slack and be operated by the next machine
available for changeover.

Next, some molded parts are die cut after the molding
process (see Figure 8). If die cutting is not needed they
proceed to Lotting otherwise those parts are placed into
queue for processing based on revised slack.

The final process (see Figure 9) is the Lotting process
where all the parts of a garment are assembled into sew
kits. Again, revised slack is used but it is based on the
main assemblies (sew kits) and is only determined if all
parts for the kit have arrived at the department since lotting
partial kits is against policy. The highest priority main as-
sembly is determined and scheduled to be lotted.

6 MODEL DEVELOPMENT

The previous section developed the logic that needed to be
performed in order to schedule the two plants and the five
major areas (Gerber Cutting, Die-Cutting, Lace, Molding,
and Lotting). To determine the revised slack calculations
with setups which ultimately will generate the priority lists
at each machine, the commercial version of the Virtual
Factory was used to simulate the system. The VF is an ob-
ject-oriented simulation written in C++ and linked to a Visual
Basic.Net interface with MS Access as the underlying
database engine. The goal of the VF implementation is for

Die Cut After MoldDie Cut After?

Determine Part
with the Highest

Slack Priority

Schedule in queue
to the Die Cutting

Yes

No

Lotting

Figure 8: Die Cut after Molding Logic

Lotting
Determine Slack
Time for All parts

Determined Part
with lowest Slack

Time

Schedule in
queue for lotting

Till parts available = 0

Figure 9: Lotting of Parts into Sew Kits

the engine (simulation-based scheduling system) to be inde-
pendent of any scenario (i.e., data would drive the simula-
tion). The interface can be easily tailored to fit the current
scenario that is being scheduled. The only thing that is spe-
cific in the engine is in the read in function, which reads in
the resource groups, machine centers, and parts and their op-
erations from the database to create the simulation.

In the original VF, the system consists of several dif-
ferent objects. Resource Groups hold a series of related
machine centers where a Machine Center is a type of ma-
chine. Each Machine Center contains a number of ma-
chines that can be used. People/workers are assigned at
the resource group level since it assumed that workers can
work any machine within the Resource Group because in
many cases the number of machines is greater than the
number of workers. For example, there is a separate Re-
source Group for Gerber Spreaders and Gerber Cutters be-
cause the workers are not cross-trained. Next, the engine
contains Orders that are made up of Main Assemblies (e.g.,
in the garment these represent the sew kits). The main as-
semblies are made up of all of the Parts that are contained

Joines, Sutton, Thoney

in this upper level where a part can be a individual part or
sub-assembly that require subsequent operations. The Part
contains the routing information, which in turn contains all
of the operations along with processing times, setups, etc.

The VF simulation engine is very generic in the since
that parts basically flow into a resource group and get
processed by the machine centers in that group. The parts
will move from one resource group to another until they
have finished with all operations. Once they have finished,
they release their parents (sub-assemblies) or the main as-
sembly. Once all of the parts of a sub-assembly have fin-
ished it is released into the system. When all of the parts of
the main assembly have done, the order is updated. The
simulation continues until all orders have been fulfilled.

6.1 Object-Oriented Simulation

However, many changes had to be made in order for the
current version of the VF to fit the garment scenario. The
current system does not handle sequence dependent setups,
parts that are grouped together to be processed and then re-
leased into the system (i.e., disassemblies). Since the en-
gine is based on an Object-oriented simulation, adding ad-
ditional functionality is quite easy.

Most simulation languages are object-based (i.e., a re-
source object, queue object, etc.) The object-based ap-
proach only allows extensibility in the form of composition
(i.e., new objects can only be created out of existing ob-
jects). An object-oriented simulation deals directly with the
limitation of extensibility by permitting full data abstrac-
tion. Data abstraction means that new data types with their
own behavior can be added arbitrarily to the programming
language. When a new data type is added, it can assume
just as important a role as any implicit data types and can
extend existing types (Joines and Roberts, 1997, 1998).
For example, a new user-defined machine class (e.g, mold-
ing) can be added to the language that contains standard
machines without compromising any aspect of the existing
simulation language, and the molding machine may be
used as a more complex machine. There are two basic
mechanisms in C++ that allow OOS to provide for extensi-
bility: inheritance and genericity.

6.1.1 Inheritance

Inheritance allows classes to exploit similarity through
specialization of parent classes (i.e., child classes inherit
the properties of the parent and extend them) as seen in
Figures 10 and 11. All Machine centers have an associated
list of machines, a queue store parts and the appropriate
data methods to specify these properties. The virtual meth-
ods (bolded functions) represent key functions that more
specialized classes can override. The object stores a set of
machine centers. If the Resource Group tells the machine
center to seize a machine (i.e., the seizeMachine method is
invoked), the simulation at runtime will determine if it is a

, King, and Hodgson

MoldMachineCenter
Setup Info addParttoQueue

seizeMachine

Machines
Part Queue

MachineCenter
getSizeOfQueue

putCenteronBreak

addParttoQueue
seizeMachine
freeMachine
freeWorders
processsEndofShift

batchType
batchCapacity

BatchMachineCenter seizeMachine
freeMachine
freeWorders
processsEndofShift

MultiplePart
Queues

MachineCenterGerber
GetNumberofQueues

createQueues

addParttoQueue
seizeMachine
freeMachine

Figure 10: Partial Machine Center Class Hierarchy

SimplePart
ParentPart finishedProcessing

updateParentPart

Route Info
Part Status

Part
getPartStatus

setMachineCenter

setQueueTime
finishedProcessing
updateParentPart
initializeIteration

batchParts
batchType

BatchPart setQueueTime
finishedProcessing
updateParentPart

ParentParts

GroupPart
finishedProcessing
updateParentPart
initializeIteration

Figure 11: Partial Part Class Hierarchy

batch machine, simple machine, or molding machine.
Therefore, specific machine center types can be added
without modifying the underlying simulation-based sched-
uling engine (see Figure 10). Notice the Batch Machine in-
herits all of the properties but adds properties batchType
and batchCapacity and redefines several key functions like
seizeMachine to add the correct func-tionality. Now, when
a machine center of type batch is told to seize a machine
resource, it will now work a number of parts at once based
on the capacity of the batch machine. Trucking is consid-
ered a batch machine type of process.

Figure 11 shows a partial listing of the Part inheri-
tance hierarchy where the Part is the key object in the en-
gine since it is moved through out the system of machines,
machine centers, resource groups, and plants. It provides
properties of the routing information (i.e., operations) and
part status plus key virtual methods. Simple parts provide
the ability of sub assemblies. A part can have many differ-
ent children if it is a sub-assembly but it could have only
one parent indicating either a sub or main assembly. Simple
parts are created at the creation of simulation while Batch
Parts are created dynamically when needed and they con-
tain all of the parts in that batch. For this garment, the abil-
ity to have dissembles was needed in the spreading and
cutting operations. Therefore a new type of part was cre-
ated and easily added to the system. Group parts are simi-
lar to batch parts except they are known at the start of the
simulation and slack is calculated on these type of parts
and multiple parent parts.

Joines, Sutton, Thoney, King, and Hodgson

The ability to add functionality with out breaking the
underlying engine minimizes the development time. How-
ever, the underlying object-oriented design has to be care-
fully designed. The simulation scheduling engine was de-
veloped from the object classes in YANSL. YANSL is an
acronym for “Yet Another Network Simulation Language”
and is just one instance of the kind of simulation capability
that can be developed within an OOS environment. For
more information on object-oriented simulation, see Joines
and Roberts (1997 and 1998).

6.2 Simulation Algorithm

Once the OOS had been modified the following algorithm
is used to actually schedule the plants.

1. Download the current status of the plant including
number of machines, number of workers, new
parts and the remaining operations of the parts al-
ready in process.

2. Dynamically create the simulation using the cur-
rent download by creating machines, resource
groups, parts, events, etc.

3. Initialize the simulation to the starting condition
(i.e., all machines are idle, workers have been re-
moved, and parts are at the proper machines with
their routings set back to the beginning.

4. For the first iteration, simulate the system until all
parts have been finished by ordering the queues at
the various machines based on slack while re-
cording the queuing time that occurs for each part
at each operation as well as the maximum lateness
for all parts.

5. Repeat step three and four for a specified number
of iterations. However, for the subsequent itera-
tions, order the parts using the revised slack calcu-
lation and the queuing time recorded in the previ-
ous iteration.

6. Using the queuing times from the iteration which
had the minimum maximum lateness, rerun the
simulation recording statistics (i.e., priority lists of
every machine, the lateness of the individual of
the orders, etc.)

7. Since the current VF algorithm does not take into
account sequence dependent setups, the sliding
window method of minimizing setups is done post
simulation. Using the priority lists that are gener-
ated for the molding machines, reorder the lists in
n hour time block to minimize the setup time that
occurs where n is the specified window block
(e.g., eight hours).

6.3 Interface

Once the engine was designed and working, the visual in-
terface needed to operate the engine was built. The inter-
face is tailored to the needs of the garment maker and was
written in Visual Basic.Net interface with the underlying
database of MS Access. The data needed to drive the en-
gine can be divided into two major groups: static/semi-
static and dynamic data. The interface maintains and man-
ages all of the static data like the machine center types, the
number of machines of each type, resource/functional
groups and the semi-static data like shift information
(number of workers, beginning and ending times, etc.) and
tooling information. This type of data is not changed very
often and therefore is maintained locally. We consider the
download of parts, part operations, and orders to be dy-
namic since it changes daily and is not maintained locally.
Instead, it is imported into the local database from a sepa-
rate data source. Therefore, the engine is independent of
the data source. If the data structure is changed, then the
import facility is modified to accommodate the changes but
the engine remains intact.

The interface provides the ability to modify the static
data, import the dynamic data, run the scheduler, and view
output statistics, priority lists, critical graphs from the out-
put of the scheduler. The interface has the ability to allow
the company to modify and create new output reports that
the system can use. Figures 12 and 13 show an example of
a priority list for a Lotting station.

Figure 12: An Example Priority List

Figure 13: Priority List by Station with Balance Graphs

Joines, Sutton, Thoney, King, and Hodgson

7 CONCLUSIONS

The simulation-based scheduling system has been imple-
mented and is currently in use by this garment maker. Les-
sons that were learned that accurate data is a huge issue
owing to the fact that the data has never been used to drive
something detailed and operational. As the key processes
and the data were described, certain assumptions were
made in the model that turned out to be wrong. Most of
these dealt with the data download. The actual interface
was more critical to the company than the quality of the
schedules. Appropriate types of graphs, reports, and data
management had to be put into place before acceptance.

Second, there has to be “buy in” from all levels (man-
agement, supervisors, workers, etc). After the engine began
generating actual schedules, many people had difficulty be-
lieving the schedules and did not follow the prior-
ity/dispatch lists. They spent time modifying the schedules.
Lucky for the project, upper level management believed in
following some list whether or not it was these lists. There-
fore, they convinced everyone that they should follow the
priority lists exactly until something went wrong which
would allow us to fix anything. After a couple of weeks,
confidence in the schedules grew and the people have be-
come dependent on the schedules generated and when they
are not they complain.

REFERENCES

Hodgson, T.J., D. Cormier, A.J. Weintraub, and A. Zozom.
1998. Satisfying due-dates in large job shop. Man-
agement Science 44 (10): 1442-1446.

Hodgson, T.J., R.E. King , K.A. Thoney, N. Stanislaw,
A.J. Weintraub, and A. Zozom. 2000. On satisfying
due-dates in large job shop: idle time insertion. IIE
Transactions 32: 177-180.

Joines, J.A. and S. D. Roberts. 1997. An Introduction to
Object-Oriented Simulation in C++. In Proceedings
of the 1997 Winter Simulation Conference, ed., Sigrun
Andradottir, Kevin J. Healy, David H. Withers, Barry
L. Nelson, 78-89. Institute of Electrical and Electron-
ics Engineers,

Joines, J. A. and S. D. Roberts. 1998. Object-oriented
simulation. In Handbook of Simulation, ed. J. Banks,
397-428. New York: John Wiley & Sons.

Thoney, K.A., T.J. Hodgson, R.E. King, M.R. Taner, and
A.D. Wilson. 2002a. Satisfying due-dates in large
multi-factory supply chains. IIE Transactions 34:
803-811.

Thoney, K.A., J.A. Joines, P. Manninagarajan, and T.J.
Hodgson. 2002b. Rolling Horizon scheduling in large
job shops. Proceedings of the 2002 Winter Simulation
Conference, ed. E Yucesan, C.-H. Chen, J.C. Snow-
don, and J.M. Charnes, 1891-1896. Piscataway, New
Jersey: IEEE
AUTHOR BIOGRAPHIES

JEFFREY A. JOINES is Assistant Professor of Textile
Engineering at NC State University. He received his
B.S.I.E., B.S.E.E., M.S.I.E, and Ph.D. from NC State Uni-
versity. He received the 1997 Pritsker Doctoral Disserta-
tion Award from IIE. His research interests include evolu-
tionary optimization, object-oriented simulation,
simulation-based scheduling and supply chain optimiza-
tion. His email and web addresses are <JeffJoines@
ncsu.edu> and <http://www.te.ncsu.edu/
joines>.

ANDREW B. SUTTON is a graduate student in Textile
Engineering at NC State University. He received his
Bachelor’s Degree in Textile Engineering from NC State
University and his areas of interest include simulation, six
sigma and simulation-based scheduling.

KRISTIN A. THONEY, an Assistant Professor in the Tex-
tile and Apparel, Technology and Management Dept. at NC
State, joined the faculty in 2000. She earned her Ph.D. in In-
dustrial Engineering and Operations Research and her MS in
Operations Research also from NC State. Kristin’s research
interests include production scheduling, logistics, and supply
chain modeling. She is a member of INFORMS and IIE. Her
email and web addresses are <Kristin_thoney@
ncsu.edu> and <http://www.tx.ncsu.edu/
faculty_center/directory/>.

RUSSELL E. KING is a Professor of Industrial Engineer-
ing at North Carolina State University and has been on the
faculty since 1985. Previously, he worked as a Systems
Analyst for Dynamac Corporation of Rockville, Maryland
and the Naval Aviation Depot at the Jacksonville Naval
Air Station. He received a BSSE, Masters, and Ph.D. in IE
from the University of Florida. His research interests in-
clude control and scheduling of production systems and
demand activated manufacturing/supply chains. His email
and web addresses <king@eos.ncsu.edu> and
<http://www.ie.ncsu.edu/king/>.

THOM J. HODGSON, the James T. Ryan Professor of
Industrial Engineering and Director of the Integrated
Manufacturing Systems Engineering Institute at NC State.
He earned a BSE in science engineering, a MBA in quanti-
tative methods and a Ph.D. in industrial engineering all
from University of Michigan. Thom’s research interests
include production scheduling, inventory control, logistics,
real-time control of systems and applied operations re-
search. He is a member of INFORMS and IIE. His email
and web addresses are <hodgson@eos.ncsu.edu>
and <http://www.ie.ncsu.edu/hodgson/>.

mailto:<JeffJoines@�ncsu.edu>
mailto:<JeffJoines@�ncsu.edu>
http://www.tx.ncsu.edu/�faculty_center/directory/
http://www.tx.ncsu.edu/�faculty_center/directory/
mailto:hodgson@eos.ncsu.edu
http://www.ie.ncsu.edu/hodgson/
mailto:JeffJoines@ncsu.edu
mailto:JeffJoines@ncsu.edu
http://www.te.ncsu.edu/joines
http://www.te.ncsu.edu/joines
http://www.tx.ncsu.edu/faculty_center/directory/
http://www.tx.ncsu.edu/faculty_center/directory/
mailto:hodgson@eos.ncsu.edu
http://www.ie.ncsu.edu/hodgson/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1440
	02: 1441
	03: 1442
	04: 1443
	05: 1444
	06: 1445
	07: 1446
	08: 1447
	09: 1448

