
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

A REINFORCEMENT LEARNING APPROACH TO PRODUCTION PLANNING IN THE
FABRICATION/FULFILLMENT MANUFACTURING PROCESS

Heng Cao
Haifeng Xi

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598, U.S.A.

 Stephen F. Smith

The Robotics Institute, School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

ABSTRACT

We have used Reinforcement Learning together with Monte
Carlo simulation to solve a multi-period production planning
problem in a two-stage hybrid manufacturing process (a
combination of build-to-plan with build-to-order) with a ca-
pacity constraint. Our model minimizes inventory and pen-
alty costs while considering real-world complexities such as
different component types sharing the same manufacturing
capacity, multi-end-products sharing common components,
multi-echelon bill-of-material (BOM), random lead times,
etc. To efficiently search in the huge solution space, we de-
signed a two-phase learning scheme where “good” capacity
usage ratios are first found for different decision epochs,
based on which a detailed production schedule is further im-
proved through learning to minimize costs. We will illustrate
our approach through an example and conclude the paper
with a discussion of future research directions.

1 INTRODUCTION

Today’s manufacturers, facing the intensifying competition
and steady pressure for higher levels of customer service,
are compelled to continuously improve their supply chain
management. A very appealing approach is a blend of the
“push” and “pull” production control philosophy that com-
bines build-to-plan with make-to-order operations, which
we refer to as fabrication/fulfillment process in this paper.
The fabrication stage is a build-to-plan process, where
components are procured, tested and assembled. The com-
ponent inventory is then kept in stock ready for the final
assembly into the end-products. The fulfillment stage is a
make-to-order process, which means that no finished goods
inventory is kept for end-products and the final assembly
starts after the customer order is received. This fabrica-
tion/fulfillment process works especially well when the fi-
nal assembly time and resource requirements (in terms of
both labor and machinery) are negligible compared with
the more substantial production/replenishment lead-times
and resource requirements, and when there are a lot of

common components shared by various final products.
The fabrication/fulfillment process is an ideal business
process model that enables both mass customization and
the speed and efficiency provided by mass production.

The work presented in this paper tries to find a near-
optimal production plan for the fabrication-stage compo-
nents. The objective of such a plan is to minimize the unsat-
isfactory end-product fulfillment penalty cost and the com-
ponent inventory holding cost. The constraint to this
problem is limited production capacity with an additional
complexity that similar components can share the same type
of manufacturing resources. This study is motivated by an
inventory planning problem at IBM, where a skewed de-
mand pattern, i.e., the weekly order numbers gradually in-
crease and usually reach their peaks at the end of the quarter,
can be observed for most end-products, while components
production needs to be relatively smoothed across different
periods due to the capacity constraint. We also take into con-
sideration such real-world situations as multi-echelon BOM
and end-products sharing common components, which are
very typical of PC and Server manufacturing. Problems
with such scale of complexity are extremely hard to solve
mathematically, if not completely intractable.

Because of its versatility and potential at generating
good solutions to extremely complicated problems, simula-
tion-based optimization has rapidly gained popularity in
recent years (Ólafsson and Kim 2002, Finke et al. 2002).
Monte Carlo simulation is employed as a natural way to
capture sophisticated details of the underlying system; the
simulation results are fed into the optimization algorithm to
direct its search for an optimal or near-optimal solution.
The most successful developments in this area are the ap-
plications of heuristic search algorithms, such as Tabu
search (Finke et al. 2002), simulated annealing, genetic al-
gorithms (Joines et al. 2002) and nested partitions method
of Shi and Ólafsson (2000). The basic idea is to use the
search methods to find control parameters that improve the
expected value of the objective.

In the supply chain problem described above, the deci-
sion variables are build quantities for each component in

Cao, Xi, and Smith

each planning period (i.e., the detailed build plan), and the
objective is to minimize the expected value of costs. For a
moderate-size setting with a few hundred components and
a planning horizon of 10 or so periods, the number of con-
trol parameters can easily reach thousands, which creates
an overwhelming computational burden on those iterative
search algorithms. Besides, to obtain a reasonable estima-
tion of expected cost value, multiple simulation runs using
different random seeds are required, yet we know that even
a single run of the real-world supply chain simulation can
get very slow (Cao et al. 2002). Such computing intensity
renders those popular heuristic based search algorithms
impracticable for our problem.

In this paper we propose a Reinforcement Learning
(RL) based approach that addresses the above-mentioned
search space explosion from two perspectives. Firstly, we
show that the production planning problem in question can
be modeled as a Markov Decision Process (MDP), which
reduces the search space because of the implicit dependency
of control parameters between any two successive decision
steps. Reinforcement learning, Q-learning in particular, is
used to search for a good decision (a.k.a. action in RL term)
in each MDP step, and the decision is sent to a Monte Carlo
simulator (Cao et al. 2002) which evaluates the outcome, in
terms of the concerned costs, of this certain action in the cor-
responding decision epoch. Secondly, to further reduce the
action space and state space, we have introduced a two-
phase RL scheme where desirable capacity usage ratios are
first found for different decision epochs, based on which a
detailed production schedule is finally developed.

In the following section, we define the problem in
terms of its input parameters, decision variables, con-
straints and cost objective. Section 3 takes a close look at
our solution framework by elaborating on the MDP model-
ing, Q-learning algorithm and the two-phase learning
scheme. Section 4 discusses the supply chain model dy-
namics and the Monte Carlo simulator, followed by an il-
lustration of the framework being applied to a simple ex-
ample in Section 5. In the last section, we conclude our
methodology and point out future research directions.

2 PROBLEM DEFINITION

As illustrated in Figure 1, we consider a two-stage manu-
facturing process: in the fabrication stage, a set of compo-
nents are built to plan through several steps, which require
certain amount of lead time of access to the necessary
manufacturing resources (assembly lines, test machines
and labor). Components of the same type (for example,
CPU, memory, etc), share the same type of manufacturing
resources. Upon receipt of customer orders in the fulfill-
ment stage, end-products are assembled from components
inventories according to their BOM configurations.

To help define the problem, we will first introduce
some notations, and then break the detailed definitions into

Figure 1: Fabrication/Fulfillment Manufacturing Process

four parts: input parameters, decision variables, capacity con-
straint, and objective. Please note that the problem is always
solved for a planning cycle starting sometime in the future; a
planning cycle contains a given number of periods, each of
which in turn consists of a certain number of work days.
 Notation

•

•

Let index time periods in the plan-
ning cycle. We assume the available end-product
demand plan starts from period 1.

},...,1{ epp =

Each end-product is indexed by Mm ∈,m ,
where M denotes the set of all end-products.

• Each component is indexed by i , where I
denotes the set of all components. Components
are grouped into mutually exclusive commodity
types. Assume there are n commodity types, then
I can be partitioned into n disjoint subsets, i.e.,

 and when , where
I

Ii ∈ ,

1 jj ≠j
n
j II 1== ∪ ∅=

21 jj II ∩ 2

j denotes the set of components belonging to the
jth commodity type.

 Input Parameters
1. BOM: Each end-product and component is char-

acterized by its distinct BOM.
2. Lead Time: There are two types of lead time in the

system, one is the assembly lead time of end-
products, which is negligible compared to the com-
ponent lead times. We assume the component lead
time is a random variable with a known distribu-
tion, and its mean is defined in terms of work days.

3. Resource Capacity for Component Type: There is
a resource capacity limit for each commodity type
j, in terms of the maximum number of compo-
nents that can be processed in each plan-
ning period, denoted as C

jIi ∈

njj ,...,1 , =
4. Cost: We consider two types of cost in the system.

Inventory holding cost is the unit cost
of the on-hand inventory of component i for each
period. Penalty cost is the unit cost
of not having sufficient stock on hand to satisfy a

Iihci ∈ ,

M, mm ∈pc

Cao, Xi, and Smith

demand. The penalty cost is much larger than the
inventory holding cost.

5. Demand Plan: End-product demand is the output
from an enterprise demand planning process and
is a biased forecast derived from the unbiased
demand forecast, revenue targets, and overall
manufacturing capacity in the planning cycle. It
is denoted as: d . Mmptt em ∈= ,,...,1),(

 Decision Variables. Decision variables are build quan-
tities of each component i for each period in the planning
cycle, denoted as . Due to manu-
facturing lead times, in order to satisfy end-product de-
mand in a certain period, components need to be built ear-

esi pptIitx ,..., ,),(=∈

lier, therefore we have , where is the earliest
manufacturing start time for those leaf components on the
BOM tree. There will be a (1) that corre-
sponds to the earliest manufacturing start time for the next
planning cycle as well. If we use and to rep-
resent the number of components produced to satisfy end-
product demand for the current and next planning cycle re-
spectively, we have:

1≤sp

2sp

sp

≤
2 es pp≤

)(1 txi xi)(2 t

≤≤≥

<≤=
≤≤≥

+=

esi

ssi

esi

iii

ptptx

ptptx
ptptx

txtxtx

2

2

 ,0)(

 ,0)(
 ,0)(

)()()(

2

2

1

21

If we assume that the unknown demand plan for the

next cycle follows a similar pattern as the current cycle,
then we can have the following approximation:

0),()(21 ≤≤−≈ tptpxtx seii

We can then focus on solving the problem, i.e., finding

 and , for 1 , and use the above ap-
proximation to determine for .

)(1 tx i)(2 tx i ept ≤≤

)(1 tx i 0≤≤ tp s

 Capacity Constraint.

ej
Ii

i ptnjtCtx
j

≤≤∈≤∑
∈

1 },,...,1{),()(

 Objective. The objective is to minimize the total cost
including inventory holding cost in the fabrication stage
and late shipments penalty cost in the fulfillment stage:

Cost =

∑ ∑∑
= ∈∈

⋅+⋅

eP

t Mm
mm

Ii
ii tBacklogEpctInvEhc

1
)]([)]([
where is the average component inventory quantity
in each period and is the average backlogged
end-product quantity in each period.

)(tInvi

)(tBacklogm

Due to the highly nonlinear nature of the cost function
plus multi-echelon product structure with stochastic lead
times, coming up with a closed form analytical optimiza-
tion solution is extremely hard, if not impossible.

3 SOLUTION FRAMEWORK: MDP
AND REINFORCEMENT LEARNING

An MDP is characterized by four components: a state
space S that specifies all possible configurations of the sys-
tem; the action space A that lists all available actions for
the learning agent to perform; the transition function that
specifies the possibly stochastic outcomes of taking each
action in any state; and a reward function that defines the
possible reward of taking each of the actions. To model a
problem as an MDP, the S and A should be carefully de-
fined so that the transition function only depends on the
current state and action, and not on earlier states or actions.

RL is a simulation-based technique for solving com-
plex MDP (Kaelbling et al. 1996, Van Roy et al. 1997).
Based on the Bellman equation, RL judiciously makes use
of the stochastic approximation thereby eliminating the dif-
ficulty of estimating transition and reward function. Q-
learning is an easy-to-implement RL algorithm that solves
the Bellman equation iteratively through estimating the
values of state-action pairs. The value Q is defined
to be the expected sum of future payoffs obtained by taking
action a from state s and following an optimal policy
thereafter. Once these values have been learned, the opti-
mal action from any state is the one with the highest Q
value. Please refer to Kaelbling et al. (1996) for a more
detailed discussion of Q-learning.

),(as

For the problem we formulated in Section 2, it may
seem tempting at the first glance to form a vector using
all and to define the state at time t, and
the vector of each component’s build quantity as the action
set. However, this simplistic formation creates extremely
large state and action spaces, and poses tremendous diffi-
culty for the learning algorithm to converge.

)(tInvi)(tBacklogm

To handle the “curse of dimensionality”, we will care-
fully examine the structure of the problem. It is easy to
understand that, without the capacity constraint and the
randomness in the lead times, the optimal cost value can be
achieved by matching the build quantity to the demand
generated from standard MRP demand explosion technique
(Nahmias 1997). Using this set of derived build quantities,
denoted as xi′(t), as initial values, we can apply RL to learn
the policies to optimally adjust those values, so the capac-
ity constraint can also be satisfied. Using xi′(t) as a “hint”
for the initial build plan value, we have significantly re-
duced the “searchable” action space.

Cao, Xi, and Smith

To further improve the learning efficiency, we trans-
form this constraint optimization problem into a two-phase
MDP learning problem. In the first phase, we try to find
the range of resource usage ratios for each period that will
most probably lead to a near-optimal solution. In the sec-
ond phase, the resource usage ratio is fixed for each period,
RL is used to develop the detailed build plan.

We first introduce some notation: xi″(t) denotes the
“target” build plan and is initialized as xi′(t); the resource
demand profile for each of the resource type is defined as

} ..., ,1{ }, ..., ,1{ ,)()(e

Ii
ij ptnjtxtd

j

∈∈∑ ′′=
∈

For the first phase learning, we define the state S at
time t as an n-dimensional vector such that tS

[] jjj
t
j CtdCS)(−= . The action A at time t is also an n-

dimensional vector , such that where tA j
t
jA λ= jλ is the

usage ratio of the spare capacity when .

When ,
j

t
j CS ⋅ 0>t

jS

0≤t
jS jλ has 0 as the only possible value. Both

state element and action element t
jS jλ need to be discre-

tized when constructing the Q table entry . In
Section 5, we will discuss the performance difference in
using different discretization schemes.

), tA(Q tS

Once is decided, it needs to be translated into
, so the incurred cost for this action can be evaluated

by the simulator. For

tA
)(tx i

0>jλ , there are num-
ber of type j components that can be built one period ahead
of its original target build plan. For

j
t
jj CS ⋅⋅=∆ λ

0=jλ and S ,

there are quantity of j type components that
have to be postponed to the next period. When it is not
clear which component’s build plan should be advanced
(or postponed), we randomly select i form , and advance
(or postpone) one quantity from its original target build
plan, until ∆ becomes 0.

0<t
j

j
t
j CS ⋅−=∆

jI

The following is the Q-learning algorithm for phase-
one learning:

1. For each S and in different planning periods,
initialize the Q table entries Q to zero.

t tA

),(tt AS

2. Initialize the target build plan xi″(t) as xi′(t).
3. For t from 1 to pe, do:

3.1 Observe the current state vector , select an
action with a Boltzmann exploration pol-
icy, so that the action with a larger reward
(corresponding to lower cost) will receive a
bigger chance to be explored.

tS
tA
3.2 For each resource type j, derive xi(t) from
xi″(t) based on the selected :

j
t
jA λ=

if S , randomly select δ0>t
j i(t) from xi″(t+1)
in the way explained before, such that
 ∑ jj

i
i C(t) ⋅= λδ , and then

let xi(t) ← xi″(t) + δi(t)
and xi″(t+1) ← xi″(t+1) − δi(t).

if , equals to 0, randomly select

x
0<t

jS t
jA

i(t) from xi″(t) in the way explained be-
fore, such that ∑ j

Ii
i Ctx

j

=
∈

)(, and then let

xi″(t+1) ← xi″(t+1) + xi″(t) − xi(t)

else if S , let x0=t
j i(t) ← xi″(t).

3.3 Receive the immediate reward as the negative
value of the cost c incurred from time t and
arrival at a next state St+1.

3.4 Update

),(tt ASQ ←)],(max[11
1

++
+

+−⋅ tt

A
ASQc

t
α

),()1(tt ASQ⋅−+ α ,

where α is the learning rate.
4. Go to step 2, or exit when the learning converges.
Since the penalty cost is much larger than the inventory

holding cost, through the first phase learning, the spare ca-
pacities can be used wisely for building safety stock ahead,
so that “bad” states can be avoided when . 0<t

jS
In the second phase, we concentrate the learning on

finding the near-optimal combination of components to be
built ahead of the target build plan when there is extra re-
source capacity, or to be postponed when C .

The usage ratio
0)(<− td jj

jλ learned from the first phase is used. In
the second phase, the state S at time t is defined as the tar-
get build plan, and A at time t is the combination of com-
ponents to be built ahead from or need to be postponed to
next period. The second-phase learning is pretty straight-
forward, we skip the detailed algorithm here.
 Figure 2 presents the overall solution flow. The two-
phase learning is achieved through the RL learner interac-
tively working with the simulator. At each learning decision
epoch t, the learner sends the build plan for that period to the
simulator. After simulating one planning period, the simula-
tor sends back the inventory snapshot, which is used by the
learner to calculate the immediate reward, update the Q table,
and pick up a valid action for the decision epoch t+1.

Cao, Xi, and Smith

Figure 2: Overall Solution Framework

4 SIMULATE THE SYSTEM DYNAMICS

We built the simulator for the fabrication/fulfillment proc-
ess by using our Java based supply chain simulation library
(Cao et al. 2002). In addition to supporting generic dis-
crete event simulation functionalities like time advance-
ment and event management, the library provides some ba-
sic supply chain simulation components as well, such as
backlogged orders, BOM, inventory pipeline etc.

The underlying supply chain structure of our problem
is relatively simple and involves only two entities, i.e., one
abstract Customer places orders for various end-products to
a Manufacturer. According to their intended roles in the
supply chain, each entity has its dynamics specified via a set
of properties including knowledge about itself and the other
entities, internal state, and event handlers/dispatchers.

There are two types of events being supported in sup-
ply chain entities, internal and external. An internal event
signifies a simulation time advancement, and triggers in-
ternal state transitions. External events, such as new order,
order shipped etc., are exchanged between entities as a re-
sult of their internal state transitions; these events are fired
from an event dispatcher in the “source” entity to “sink”
entities that have registered their event handlers with the
source entity to indicate an interest in the events.

The Customer properties are defined as follows:
•

•

•

Knowledge. Demand plan for each end-product in
each simulated period.
State. Unfilled orders, number of orders received
on time, and number of orders received late.
Event Handlers and Dispatchers. The internal
event handler generates new order events based
on the demand plan; these external events get
queued up in the event dispatcher which will pass
them on to the Manufacturer. The external event
handler receives order shipped events from the
Manufacturer, and updates Customer internal state
accordingly.
•

•

The Manufacturer properties are defined as follows:
Knowledge. BOM structure for each end-product,
manufacturing lead times given in statistical dis-
tributions, inventory policy (build-to-plan or
build-to-order), component and end-product stores
each having an inventory pipeline queue.
State. Unfilled orders, on-hand inventory and pipe
line inventory for each node in the BOM tree.

• Event Handlers and Dispatchers. There are two
external event handlers, one for new order events
from the Customer, the other for build plan up-
date events from the Q-learning algorithm. There
is one internal event handler that simulates the
two-step manufacturing process (illustrated below
in pseudo code), and sends order shipped events
to the Customer during the process.

Manufacturer::processInternalEvent
1. If today is the first work day in the planning pe-

riod p, establish the build quantity of each com-
ponent i for every work day in that period

, where is the number
of work days in period p. This is done by appor-
tioning the period-level build plan quantity evenly
into work days in that period, such that:

},...,1{),()(
p

p
i dttb ∈ pd

 ∑ .)()(
1

)(pxtb i

d

t

p
i

p

=
=

2. Simulate the fabrication process for work day d in

period p:
a. Shift inventory pipeline for each component i

as follows:
1.)1()0()0(iii plplpl +←
2. ,)1()(+← kplkpl ii

3. k from 1 to the second to last element
remove the last element in the pipeline
where represents the quantity of
component i that will become available
on the kth work day starting from today.

)(kpl i

b. For each component i, a lead time lt is sam-
pled from its stochastic distribution, and the
corresponding pipeline element is updated as
follows:

)()()()(dbltplltpl p

iii +←

For non-leaf components, remove the used
sub components from their safety stock ac-
cording to the BOM structure.

3. Simulate the fulfillment process as follows:
a. Fill orders from the unfilled order list accord-

ing to the order in which they were received,
until the on-hand component inventory is de-
pleted or there is no more unfilled order. For

Cao, Xi, and Smith

orders received on the same day, fulfill the
one with larger penalty cost first.

5 ILLUSTRATION

We have applied our approach to several small data sets for
which the optimal solutions are known and have validated
its effectiveness. In this section, we use one of the test data
sets, which has 3 end-products and 4 components, for illus-
tration purposes. The planning cycle has two periods each
having 30 work days. The two-level BOM structure is
shown in Figure 3, where usage ratios are listed adjacent to
the links. Component P1 and P2 are of the same commod-
ity type and share capacity C1 of 70 per period. Similarly,
P3 and P4 share capacity C2 of 65 per period. All the end-
product assembly lead times are neglected, and component
lead times are given as normal distributions, with means
and standard deviations shown in Table 1.

Figure 3: A Two-Level BOM Example

Table 1: Lead Times Distribution (Mean, Std. Dev.)

Period P1 P2 P3 P4
1 (4, 1) (5, 2) (2, 0) (1, 0)
2 (3, 1) (4, 1) (2,0) (3, 1)

The optimal build plan for the above model can be de-

rived through a simple Dynamic Programming based ap-
proach designed by Cao et al. (2003), and the correspond-
ing minimal cost is 1670 given the holding costs and
penalty costs listed in Table 2.

Table 2: Holding Costs and Penalty Costs

Component Holding Costs
P1 P2 P3 P4

20.08 20.13 30.89 32.79
End-Products Late Fulfillment Penalty Costs

M1 M2 M3
340 560 400

We use α = 0.7 in Q-learning. The temperature pa-

rameter T in Boltzmann exploration policy is set to de-
crease over the number of simulation iterations (each itera-
tion simulates one full planning cycle including two
periods): T equals to 3 for the first 150 iterations, 2 for the
next 150 iterations, and 1 afterwards. The stop criteria is
that the objective value has no significant improvement for
25 consecutive iterations.

In the first learning phase, both state and action need
to be discretized. Figure 4 shows two schemes adopted for
state discretization, where x takes the continuous val-
ues. We let the element in the state vector take integer
values from interval [-5, 5]. For the nonlinear scheme,
when ,

t
jS

0≥x xy 5= ; when , 0<x 5)(5 xy −−= . For
action discretization, we tried two schemes: in scheme A,

jλ takes a value from the set {0, 25%, 50%, 75%, 1}; in
scheme B,

jλ takes a value from the set {0, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, 1}.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1
di

sc
re

tiz
ed

 s
ta

te

nonlinear linear

Figure 4: Phase 1 State Discretization Schemes

Table 3 compares the average results between different
discretization schemes. For each different parametric set-
ting, learning was carried out 10 times with different ran-
dom seeds. It can be observed that the state discretization
scheme affects the convergence speed, and the action
scheme contributes to both speed and the quality of the so-
lution. Both action discretization schemes found the best
usage ratios in their respective action space. With a much
finer grained scheme B, the learner managed to find a bet-
ter result; however, more iterations were needed for the
learning algorithm to converge. The best build plan de-
rived from scheme B is presented in Table 4.
 Further sensitivity analysis with lead time variance
shows that when the standard deviations decrease, the total
costs decrease as well.

6 CONCLUDING REMARKS

We have developed an RL based approach to solving a ca-
pacity constraint multi-period production planning problem
in the fabrication/fulfillment manufacturing process. The
near-optimal build plan for each planning period is learned
by the RL learner through trial and error interaction with a

Cao, Xi, and Smith

Table 3: Test Results
Discretization
Scheme

Iterations in
Each Phase

Period 1
Usage Ratio*

State Action 1 2 C1 C2

Total
Costs

L** A 245 330 75% 75% 2051
NL*** A 168 297 75% 75% 2049
L B 879 267 70% 60% 1760
NL B 787 246 70% 60% 1759

Optimal Solution 72% 53% 1670
* optimal usage ratios learned by first-phase learning
** linear state discretization scheme
*** nonlinear state discretization scheme

Table 4: The Best Build Plan*

Period P1 P2 P3 P4
1 44 10 11 34
2 7 64 0 61
* total cost being 1759

Monte Carlo supply chain simulator. Through this simula-
tion based approach, real-world situations such as multi-
echelon BOM structure and manufacturing lead time ran-
domness can be effectively addressed. To efficiently search
in the very large state and action spaces, we designed a two-
phase learning scheme, where the first phase learns the near-
optimal usage ratios of the capacity, based on which a de-
tailed build plan is derived in the second phase.

Preliminary numerical results have confirmed the valid-
ity of this approach, and we are testing the methodology with
real-word model and data. There are several directions in
which we can explore to enhance the performance of our al-
gorithm. To improve learning efficiency, the simulation re-
sults from the first phase should be incorporated to initialize
the second-phase Q table. Parallel learning execution can
also be exploited to speed up the convergence.

ACKNOWLEDGMENTS

We are grateful to many colleagues for the help and dis-
cussions on the topics covered here. In particular, Dr.
Feng Cheng deserves special mention for bringing up the
original problem to the first author.

REFERENCES

Cao, H., G. Y. Lin, H. Xi and S. F. Smith. 2002. An Agent
Based Enterprise Computing Framework for High Per-
formance Supply Chain Simulation. In Post-
Conference proceedings of Int'l Conf. on Parallel and
Distributed Processing Techniques and Applications
(PDPTA'02), Las Vegas, Nevada, USA, June 24-27.

Cao, H., F. Cheng and S. Smith. 2003. A Constraint-Based
Method for Inventory-Service Optimization in a Fab-
rication/Fulfillment Manufacturing Process. INFOR-
MS Annual Meeting Atlanta, 2003.

Finke, A.D., D. J. Medeiros, and M. T. Traband. 2002.
Shop Scheduling Using Tabu Search and Simulation.
In Proceedings of the 2002 Winter Simulation Confer-
ence, ed. E. Yücesan, C.-H. Chen, J.L. Snowdon, and
J.M. Charnes, 1013–1017. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers. 2002.

Joines, J., D. Gupta, M. A. Gokce, R. E. King and M. G.
Kay. 2002. Supply Chain Multi-Objective Simulation
Optimization. In Proceedings of the 2002 Winter
Simulation Conference, ed. E. Yücesan, C.-H. Chen,
J.L. Snowdon, and J.M. Charnes, 1306-1313. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers. 2002.

Kaelbling, L. P., M. Littman and A. Moore. 1996. Rein-
forcement Learning: A Survey. Journal of Artificial
Intelligence Research, 4, 1996, 237-285.

Nahmias, S. 1997. Production and Operations Analysis.
McGraw-Hill Higher Education. 338–339.

Ólafsson, S. and J. Kim. 2002. Simulation Optimization.
In Proceedings of the 2002 Winter Simulation Confer-
ence, ed. E. Yücesan, C.-H. Chen, J.L. Snowdon, and
J.M. Charnes, 79-84. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers. 2002.

Shi, L. and S. Ólafsson. 2000, Nested Partitions Method
for Global Optimization, Operations Research, (48) 3.

Van Roy, B., D. P. Bertsekas, Y. Lee, and J. N. Tsitsiklis.
1997. A Neuro-Dynamic Programming Approach to
Retailer Inventory Management. In Proceedings of the
IEEE Conference on Decision and Control.

AUTHOR BIOGRAPHIES

HENG CAO is a Staff Software Engineer at IBM T.J.
Watson Research Center in Yorktown Heights, NY. She
received her M.S. in Robotics from Carnegie Mellon Uni-
versity and is currently working toward her Ph.D. degree.
In addition to modeling, analysis and simulation of supply
chain systems, her interests include AI and data mining.

HAIFENG XI is an Advisory Software Engineer at the
IBM T. J. Watson Research Center. He received the M.S.
degree in Electrical and Computer Engineering from the
University of Maryland. His current interests include Web
application architecture, business integration, grid comput-
ing, and supply chain simulation.

STEPHEN F. SMITH is a Principal Research Scientist and
the director of the Intelligent Coordination and Logistics
Laboratory in the Robotics Institute, Carnegie Mellon Uni-
versity. His research interests include planning and schedul-
ing, (re)configurable system architectures, machine learning
and evolutionary computation, and intelligent systems in
manufacturing, transportation and space applications.

http://www.informs-cs.org/wsc02papers/abstracts02/MA.htm
http://www.informs-cs.org/wsc02papers/abstracts02/Log.htm
http://www.informs-cs.org/wsc02papers/abstracts02/Log.htm
http://www.informs-cs.org/wsc02papers/abstracts02/MA.htm
http://www.informs-cs.org/wsc02papers/abstracts02/Log.htm
http://www.informs-cs.org/wsc02papers/abstracts02/Log.htm

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1417
	02: 1418
	03: 1419
	04: 1420
	05: 1421
	06: 1422
	07: 1423

