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ABSTRACT 

In order to postpone production planning based on infor-
mation obtained close to the time of sale, decision support 
systems for supply chain management often include de-
mand forecasts based on little historical data and/or subjec-
tive information. Particularly, when simulation models for 
analyzing decisions related to safety inventories, lot sizing 
or lead times are used, it is convenient to model (daily) 
demand by considering historical data, as well as informa-
tion (often subjective) of the near future. This article pre-
sents an approach for modeling a random input (e.g., de-
mand) in simulation experiments. Under this approach, the 
family of distributions proposed for modeling demand 
should include two types of parameters: the ones that cap-
ture information of historical data and the ones that depend 
on the particular scenario that is to be simulated. The ap-
proach is extended to the case where uncertainty on the ap-
propriate family of distributions is present.  

1 INTRODUCTION 

When evaluating the performance of a supply chain by using 
a model, incorporating characteristics from the real life sys-
tem may complicate the task of obtaining analytic solutions 
for the system’s performance measures. For example, when 
investigating the relationship between safety inventories, 
chain speed (lead times), and service levels in different points 
of the chain, demand distributions often change over time, 
order sizes are not always the same (they may vary depend-
ing on the sales’ forecast), or there may be uncertainty in lead 
times because of different order sizes. Nonetheless, these 
characteristics often may be incorporated in a simulation 
model, with the purpose of studying the performance of the 
chain through experimentation with the simulation model. 
Due to its capacity of modeling complex systems, simulation 
becomes a powerful tool for evaluating the performance of a 
supply chain, particularly for analyzing the performance of 
an inventory policy (see Chopra 2001). 
 
 

To conduct a simulation experiment, model inputs as 
well as model outputs (performance measures of the sys-
tem that is to be analyzed) have to be specified precisely. 
For example, if one desires to simulate inventory in a sup-
ply chain (see Figure 1), often performance measures 
(model outputs) of the experiment are associated with the 
service levels and incurred costs. To estimate these per-
formance measures, inventory levels have to be simulated 
based on inventory policies (particularly safety invento-
ries), lead times distributions, and demand distributions 
(individual customers demand or by period, for instance, 
daily). It is convenient to remark that some model inputs 
may be known (for instance, initial inventory level, review 
policy, etc.), and others may be defined through its prob-
ability distribution. The latter are often referred to as ran-
dom inputs (see Zouaoui and Wilson 2001). 
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Figure 1: Components of a Simulation Experiment 
for Analyzing Inventories 
 
The classical approach used to specify the distribution 

of a random input in a simulation experiment consists in 
selecting the distribution (and its parameters) that better 
fits the data. The data are often assumed as independent 
and identically distributed (i.i.d). To be more precise, pa-
rameter estimation is based on the maximum likelihood 
method and the selected probability distribution is the one 
that attains the best performance according to a goodness 
of fit measure like the mean squared error (see, for exam-
ple, Law and Kelton 2000).  
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Nonetheless, when it is desired to model the demand 
of products with a short life cycle (fashion or season prod-
ucts), or products whose demand depends on factors asso-
ciated to a particular scenario (money from banking agen-
cies or other products with a client portfolio), it is not 
convenient to assume that past observations of the demand 
come from the same distribution, because the distribution 
parameters for a subset of observations probably depend on 
the factors associated to its corresponding scenario. In this 
case, the classical approach is inadequate for modeling the 
product’s demand, and an alternative methodology that al-
lows the incorporation of the specific characteristics of the 
scenario’s demand distribution must be found.  

This article presents a methodology based on Bayesian 
Theory (see Berger 1985) to model a random input (e.g., 
demand) in simulation experiments. Under this approach, 
the family of distributions proposed for modeling a random 
input depends on two types of parameters, the first ones 
give information that is common to past observations of 
the random input and the second ones give information 
from the particular scenario that is to be simulated. Then, 
based on the proposed model, past information, and prior 
probabilities (interpreted as forecasts) for the parameters, 
posterior probabilities for the model parameters may be ob-
tained in order to estimate the performance measures from 
simulation experiments.  

The remaining of this paper is organized as follows: 
§2 describes the notation and proposed methodology, as 
well as the motivation for developing it, §3 develops a 
simple example of the proposed methodology with the 
purpose of illustrating the obtained results, §4 presents an 
extension to the case where there is uncertainty on the fam-
ily of distributions that is more appropriate to model the 
random input, and finally §5 presents conclusions and di-
rections for future research. 

2 SIMULATION EXPERIMENTS USING  
A BAYESIAN FRAMEWORK 

The motivation for developing the present methodology 
comes from the case of a manufacturing company that pro-
duces certain article(s) (with a standardized design) to satisfy 
orders from its customers. At the beginning of every month, 
the company produces estimates of the monthly demand 
based on the information provided by customers, considering 
that certain information may correspond to orders made in 
advance, though with no specific dates or order sizes. The lat-
ter will be specified in the course of the month. Based on the 
initial estimates of the month’s aggregated demand forecasts 
and in their safety inventory policy, the company establishes 
a production plan to satisfy the orders for a month. The com-
pany is interested in running simulation experiments that al-
low the estimation of the service level (expected percentage 
of satisfied demand) for a specific production plan, and a 
demand scenario that is congruent with the month’s aggre-
gated demand forecasts and with the information of the 
(daily) demand’s behavior in past months.  

The methodology that follows intends to propose how 
to specify the distribution of a random input (in this case 
daily demand), trying to incorporate specific information 
of the scenario (aggregated demand forecasts), as well as 
past information. With this purpose, we assume that the 
probability function (density in the continuous case) of the 
demand is of the form ,  where Θ  (of di-
mension ) is the vector of parameters that contains in-
formation from past experiences, and  (of dimension 

) is the vector of parameters that contains information 
of the particular scenario that is to be simulated. 
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We assume the existence of historical information 
(e.g., daily) on the demand for Q  periods (e.g., monthly), 
therefore it is assumed that there are Q  samples (mutually 
independent) ( )
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, , where the 
observations of sample i are i.i.d., and come from the 
probability function  (see Figure 2),  where 
the particular value of the parameter vector Θ  is the same 
for all of the samples (even the ones corresponding to the 
simulation experiments). The particular value of the pa-
rameter vector  depends on the particular scenario that 
corresponds to the period (month) . It should be men-
tioned that, according to Figure 2,  denotes 
the probability function that corresponds to the scenario 
that is to be simulated. 
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Figure 2: Structure of the Available Historical In-
formation 

 
On the other hand, prior information (forecasts) on the 

paramete density func-
tion  for the parameters, that (as-
suming independence) is of the form: 
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The prior density  function   is interpreted as a 

forecast on the parameter vector  ( i ). Note 
also that a prior density function (prior probability distribu-
tion)  allows the incorporation of a forecast in a number of 
ways. For example, one can assume a probability distribu-
tion that  takes a certain value with probability 1 (appropri-
ate for the case when the parameter is known with cer-
tainty), or a uniform distribution in certain interval (when 
the only available information are the minimum and the 
maximum values), or any other form that better adapts to 
the forecast method used in practice. 

( )i
ip 2
2

θΘ

i
2Θ = 121 +Q,,, …

Using the above notation, an output  (for example, 
the percentage of satisfied demand) from a simulation ex-
periment, can be conceived as a function of the random 
numbers  used in the run, and the particular value 

  of the random input parameters: 

y

u
( 2

Qθ )

)

1
1

1 , ++ =Q θθ
 
 . (2) ( 1, += Quyy θ
  

As discussed in Zouaoui and Wilson (2001), using a 
classical (non Bayesian) approach, often the value  of 
the parameters is fixed, and independent replications of the 
simulation experiment are run in order to estimate per-
formance measures of the form: 

1+Qθ

 
 [ ] du),u(yyE)( QQQQ ∫ ++++ ==Θ= 1111 θθθη . (3) 

 
On the other hand, under a Bayesian approach, the pa-

rameters are random variables, and the performance meas-
ures to be estimated are of the form: 
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xXQp θ  denotes the posterior density 

function (given the historical data x ) of the scenario pa-
rameters, which can be obtained from the prior density 
function (1) of the parameters, and the historical data x , 
described as follows. 
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mutually independent, given that the vector of parameters 
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ity function of the historical data 
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where the prior density function  is de-
fined in equation (1).  
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According to Bayes’ Theorem (see Berger 1985), the  
(joint) posterior density function of the parameters be-
comes: 
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where )(θΘp , )(xpX θ=Θ , and are defined in (1), 

(5) and (6), respectively. Finally, the posterior density 
function of the parameters  corresponding to 
the scenario to be simulated are obtained from: 
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where )(θxXp =Θ is defined in (7). 

Note that the parameter [ ]xXyE =  defined in equa-
tion (4) is an expectation, so it can be estimated via simula-
tion by using the method of replications, that is, by repli-
cating (  times) the following experiment: n

Generate a vector of parameters ( )1
21

1 ++ = QQ ,θθθ  
according to the posterior density function 

)(p Q
xXQ

1
1

+
=+ θΘ  defined in (8). 

• 

• Run the simulation model to generate an observa-
tion of the output ( )1+= Q,uyy θ . 

 A consistent estimator for the performance meas-
ure [ ]xXyE =  is the sample mean of   independent ob-

servations from the output  of the previous 
simulation experiment (see Chick 2001). 

n
1+( ,= Quyy θ )

3 A SIMPLE APPLICATION 

With the objective of illustrating the application of the 
methodology described in the previous section, a simple 
example is presented. It should be mentioned that the ex-
ample presented does not intend to identify a real life ap-
plication, because the proposed model may not consider 
several factors that could be relevant in real life. On the 
contrary, the model has been simplified with the goal of 
illustrating the application of the procedure described in 
the previous section. 
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Consider the case of a firm (for example, an airline) 
that records reservations for a service scheduled on a spe-
cific date. Because the service is provided regularly, in-
formation of Q  past periods providing the service is avail-
able; each time the following information is recorded: 
  number of reservations recorded in period i , =Θ i

2

  number of people that used their reservation for 
period i , i .  

=1ix
Q,,2,1 …=

Note that in this case . Assuming 
that the probability that a person makes use of his/her res-
ervation to receive the service is  (although it is not 

known for certain), when  reservations are applied for, 
and 

121 ==== Qnnn …

1Θ
i
2θ

11 θ=Θ , the number of reservations used in period i  
follows a binomial distribution: 
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A simulation model has been developed to estimate 
the cost  (where ), that is in-
curred in when an over-booking policy is used. Given that 
currently there are  reservations, it is desired to 

use the model to estimate the expected cost 
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given information of past periods (particularly, it is known 
that ). Note that information on the 
common parameter Θ  is present in every past period, 

while the number of reservations  corresponds to the 
particular scenario  ( i ) . 
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Because the number of reservations is known for each 

period providing the service, the appropriate prior prob-
ability function for the parameters ,  is 
given by: 
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1,...,1 += Qi . On the other hand, the prior density function 

for the common parameter  is proposed as a uniform 
distribution: 
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where , are given constants, so that, accord-
ing to equation (1): 
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From equations (5) and (9), the joint probability func-

tion of the available information given the value of the pa-
rameters is: 
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and according to equations (6) and (10), the following is 
obtained: 
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It follows from (7), (10), (11), and (12) that: 
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This last equation indicates that the parameter Θ  
takes the value  with probability 1, and that the com-
mon parameter  follows a Beta distribution (see Law 
and Kelton 2000) when q  . 

1
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According to the methodology described in the previ-
ous section, the expected cost [ ]xXyE =  given informa- 
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tion of past periods can be estimated by simulation, repli-
cating the following experiment: 

Generate a vector of parameters  
according to the posterior distribution 

( )1
21

1 , ++ = QQ θθθ

)(p Q
xXQ

1
1

+
=+ θΘ  defined in (13). 

• 

• Run the simulation model and generate an obser-
vation of the cost ( )1+= Q,uyy θ . 

A consistent estimator for ( )1+= Q,uyy θ  is the sample 
mean of the observations generated via simulation. 

4 UNCERTAINTY IN THE  
PROPOSED MODEL 

It should be mentioned that the methodology described in §2 
follows a similar approach as the one developed in Chick 
(2001) for selecting the distribution of a random input in 
simulation experiments, by applying the technique named 
Bayesian Model Average (see Draper 1995). The main dif-
ference is that in Chick (2001)  several models for the same 
random input are proposed, each model has only one type of 
parameter, and only one sample is available to obtain the 
posterior distribution. While in Chick (2001) the emphasis is 
in incorporating the uncertainty on the appropriate model for 
the random input, the case described in this article puts 
more emphasis on the way in which forecasts (may be sub-
jective) for a scenario of interest can be incorporated, as-
suming the existence of many ( Q ) samples (each under a 
different scenario). It is shown in this Section how to apply 
the Bayesian Model Average technique in order to extend 
the methodology described in §2  to the case where several 
models for the random input are considered. 

In this case there is uncertainty on the model (family 
of probability functions) that is more appropriate to repre-
sent the random input. In particular, several models m , 

 are proposed with prior probabilities: 
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and therefore the joint probability function for the histori-
cal information has the form:   

( )1
21 ,,, +ΘΘ=Θ Q

kkk …

KQi ,,2,1,,,2,1 …… ==

 

 ( ) (∏ ∏
= =

=

Q n

j

i
kkijk

i

kk
;xpx

1 1
21θθΘ , (15) )

 
where )Qx,… ,  . K,,, …21=

Given that , the prior knowledge (forecast) on 
the corresponding parameters is expressed as a prior den-
sity function 
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( kmM k
θ=  that (assuming independence) 
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under a non Bayesian approach a typical performance 
measure has the form:  
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for the Bayesian approach  the performance measure to be 
estimated has the form:   
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Kk …,2,1= . The prior probabilities ( )jM mp , 

 are defined in (14), and the joint probability 
function 

Kj …,2,1=
( )x

jmM =pX

jmM =

 of the observations given the model 

 is obtained from: 
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Kk …,2,1= , where )x(p
kkk ,mMX θ=Θ=  and ( )kmM kk

p θ=Θ  

are defined in (15) and (16), respectively. 
On the other hand, given the historical data  and 

the model . The posterior probability distribution 

of the parameters  for the scenario to be 
simulated  becomes: 

xX =
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The posterior probability )(, kmMxX kk
p θ==Θ can be obtained 

from: 
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Kk …,2,1= , where )(, xp

kkkmMX θ=Θ= , ( kmM kk
p )θ=Θ  and 

)(xp
kmMX =  are defined in (15),  (16) and (19), respec-

tively.  
In this case, the parameter [ ]xXyE =  defined in 

equation (17) can be estimated via simulation by using a 
similar methodology as in §2, but in this case the model 
has to be sampled from the probability function defined in 
(18). To be more precise, [ ]xXyE =  can be estimated by 
replicating ( n  times) the following experiment: 

Generate a model m  according to the probability 
distribution 

k

)XMp ( kx m=  defined in (18). 
• 

Generate a vector of parameters  
according to the posterior density function 

( )1
2

1
1

1 , +++ = Q
k

Q
k

Q
k θθθ

)(p kmM,xX k
Q
k

θ==Θ +1  defined in (20). 

• 

• Run the simulation model to generate an observa-
tion of the output ( )1+= Q

kk ,m,uyy θ . 
A consistent estimator for the performance measure 

[ ]xXyE =  defined in (17) is the sample mean of   inde-

pendent observations from the output 

n
( )1+= km,uyy Q

k,θ  of 
the previous simulation experiment (see Chick 2001). It is 
worth mentioning that in this case, alternative methods for 
the estimation of the performance measure of interest can 
be proposed (see Zouaoui and Wilson 2001). 

5 CONCLUSIONS AND DIRECTIONS  
FOR FUTURE WORK 

As described in §2-3, a Bayesian approach allows the in-
corporation of information (forecasts) corresponding to a 
scenario of interest (through a vector of parameters  
and its corresponding prior probability distribution), as 
well as the information of past periods (through a com-
mon parameter 

1
2

+Qθ

1θ  and its corresponding prior probability 
distribution).  

Given a proposed model for the random input, the 
fundamental difference between a classical approach and 
the Bayesian approach proposed in this article is that while 
in a classical approach the model parameters are fixed, in 
the Bayesian approach the parameters are sampled accord-
ing to a posterior probability distribution. The fundamental 
question is why would it be convenient to apply this new 
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approach. An intuitive answer may be that if there is uncer-
tainty about the parameter values, the classical approach 
tends to underestimate the variability of the point estima-
tor. Nonetheless, a scientific answer to this question must 
be sustained in solid evidence, so a more detailed research 
(maybe empirical) is required to answer this question; to 
this respect it is suggested to see Chick (2001). 

The main motivation for developing the theoretical 
framework presented in §2 was to incorporate user infor-
mation for interaction with a simulation model, as well as 
empirical evidence for decision making on a proposed sce-
nario. Nonetheless, the applicability of a decision support 
system is intimately linked to its capacity to model a real 
life system, which depends on a wise election of the sce-
nario parameters , on the choice of the common infor-
mation from past periods (reflected in the common pa-
rameter

i
2θ

1θ ), and on a wise selection of the input 
model , which are problem dependent. It is 
precisely in the area of search for particular models and 
applications where the greatest potential for research re-
lated to this methodology is found. 

( 1 ΘΘ , )2,yp
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