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ABSTRACT 

For supply chain performance simulation that involves ag-
gregating results from multiple runs of the same underlying 
model, simulation iterations can be distributed to networked 
computing resources to achieve significant speedup.  This 
paper presents a generic distributed job running framework 
that facilitates such high performance supply chain simula-
tion.  We first introduce a supply chain modeling and simula-
tion tool developed by IBM Research, and summarize the 
strategy to enhance it.  A closer look is then taken at a generic 
job running framework we designed and how it was used to 
bring the distributed simulation capability to the tool.  After 
reviewing an ongoing effort to integrate the new tool with the 
IBM MathGrid environment, we conclude the paper with a 
brief discussion of our future work. 

1 INTRODUCTION 

Recent tenors in enterprise evolution, driven and enabled 
by e-business initiatives, are making our current solutions 
to supply chain simulation look obsolete.  Most notable 
among those trends is the ever-increasing complexity of 
enterprise supply chains in terms of both depth and 
breadth. On one hand, a new round of business process re-
engineering calls for tighter and more effective integration 
of a company’s supply chain with its various business 
processes. On the other hand, a company’s supply chain is 
quickly becoming an extended value chain that encom-
passes its suppliers, customers and partners. 

With the mounting need to conduct complex simula-
tion and the steadily decreasing cost of networked comput-
ing resources, parallel and distributed simulation is becom-
ing more and more attractive as an effective means to 
improve simulation performance. See Fujimoto (1999a) for 
a good survey of distributed simulation strategies.  How-
ever, almost all the algorithms surveyed attempt to explore 
the parallelism existing in the simulation models and main-
tain the causality constraint (i.e., events must be processed 
 
in the order specified in their timestamps) when decompos-
ing the simulation model into a collection of logically in-
terdependent processes.  These logical processes are exe-
cuted by distributed simulation engines in parallel.  In 
order to keep the causality constraint, time advancement in 
those simulation engines needs to be carefully guided by a 
strategy that ensures proper synchronization among the 
distributed processes.  For example, GRIDS is a generic 
runtime infrastructure that facilitates simulation of such 
coupled models on distributed hosts (Sudra et al. 2000).  

The synchronization strategies can be classified as be-
ing either conservative or optimistic.  The former strategy 
strictly maintains the causality constraint, making sure that 
an event will only be processed when no other event with 
an earlier timestamp will arrive in the future.  The latter 
strategy relaxes the causality constraint in order to explore 
parallel execution opportunities; nevertheless when con-
straint violation does happen, the state of involved logical 
processes must be rolled back.  However, unless there are 
reasonably low causal dependencies among decomposed 
sub-models, the former strategy can render simulation en-
gines idle for a significant percentage of their running time 
simply waiting for synchronization messages, while the lat-
ter can lead to more resource-wasting rollbacks. 

Unfortunately, many rollbacks would be needed for 
supply chain simulation, where the underlying model con-
sists of objects whose behaviors depend closely upon one 
another’s actions and internal states.  Therefore, instead of 
trying to decompose tightly coupled supply chain models, 
we chose to exploit the parallelism of the simulation exe-
cution from a different and more natural perspective.  To 
fully capture the uncertainties existing in supply chain 
processes, it is common practice to run a simulation for 
multiple iterations with different values of involved ran-
dom variables.  These independent iterations can be run in 
parallel without the need to communicate with each other, 
causing virtually no overhead at all.  In other words, our 
approach views the complete supply chain simulation 
process as a coherent job that can be decomposed into a set 
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of weakly coupled tasks each representing one simulation 
iteration under a different parametric setting. 

The next section gives a brief introduction to an exist-
ing Supply Chain Modeling and Simulation tool (some-
times referred to as “the SCMS tool” or simply “the tool”) 
developed within IBM Research, and discusses the design 
principles for its enhancement.  Section 3 presents a ge-
neric framework we designed that can be used to build dis-
tributed job running systems.  Section 4 examines how this 
framework is employed to bring distributed simulation ca-
pability into the SCMS tools, followed by some bench-
marking results in Section 5.  After reviewing an ongoing 
effort to integrate the tool with IBM MathGrid Desktop in 
Section 6, we conclude with an outlook for future work.  

2 SUPPLY CHAIN MODELING  
AND SIMULATION TOOL 

IBM Research has been active for several years in pursuing 
effective solutions to supply chain simulation.  Supply 
Chain Analyzer (SCA) achieved significant success in both 
internal supply chain reengineering and external consulting 
business (Bagchi et al. 1998).  Although SCA was sold to a 
supply chain vendor in 2000, simulation has remained a 
powerful methodology in IBM to predict supply chain per-
formance and to facilitate business process transformation.  
Recently, a new Java-based supply chain modeling and 
simulation tool (Figure 1) has been developed in IBM Re-
search and successfully applied to a variety of internal 
processes.  For example, IBM Enterprise Server Group has 
used the tool to simulate days-of-supply to optimize its in-
ventory policy (Cao et al. 2003); a few Sense-and-Respond 
pilot projects have used it for supply chain performance 
evaluation and risk analysis (Lin et al. 2002).  The tool has 
the following main features: 
2.1 Interactive GUI Driven Modeling 

The modeling environment comes with visual widgets cor-
responding to supply chain building blocks, and enables 
drag-and-drop model composition.  The building blocks 
include both supply chain entities like Manufacturer, Sup-
plier and Customer etc., and logic nodes like merge and 
switch.  For each building block, input pads and output 
pads are defined according to its event handling capabili-
ties.  The relationships among supply chain entities are es-
tablished through the Arc widget which links one supply 
chain entity’s output pad to another one’s input pad. 

2.2 Agent-Based Model Representation 

The tool follows the Java Delegation Event Model (Sun 
Microsystems 1999) design pattern.  Behind those visual 
widgets are software agents that have different event dis-
patchers (source) and handlers (sink).  Each dispatcher or 
handler has an internal queue, where unprocessed events 
are ordered by their timestamps.  Once a user links two 
supply chain entities with an Arc widget, the underlying 
event handler in the sink entity will be registered with a 
corresponding event dispatcher in the source entity. 

2.3 Discrete Event Simulation Engine 

The simulation engine maintains an internal clock for the 
“simulated time”.  During any simulation step, the engine 
will first determine the earliest timestamp of all the unproc-
essed events in the model, and then update its clock with this 
timestamp and broadcast it to all the simulation agents.  
Upon receipt of such a time update, an agent will process its 
queued events that have the same timestamp as the one re-
ceived.  As part of the event processing, new events can be 
generated and queued up.  This iterative process will go on 
until there are no unprocessed events in the model, or the 
end of the specified simulation duration is reached. 
Figure 1: Supply Chain Modeling and Simulation Tool
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2.4 Animation for Visual Design Validation 

The tool has animation capability built in to visualize event 
passing during simulation, as a quick way to validate the 
model design and parameter setting. 

2.5 Dynamic and Consolidated Reporting 

After a supply chain model is designed and before it is 
executed, the modeler can select a number of performance 
metrics of interest to him/her, such as customer service-
ability, inventory in terms of safety stock or WIP, and 
various cost measures. During the model execution proc-
ess, simulation agents gather relevant information and send 
them back to a reporting component, which calculates val-
ues for those metrics and present them graphically in dy-
namic reports.  At the end of the simulation, results from 
all the iterations will be consolidated into a final report. 

As model complexity keeps growing, a decision was 
made to extend the SCMS tool to take advantage of supply 
chain simulation parallelism as explained in Section 1.  
There were two concerns when we set out with the en-
hancement tasks.  First, since the current code base is 
pretty stable, we would like to minimize code refactoring 
by following the “if it isn’t broken, don’t fix it” rule.  Spe-
cifically, we are interested in making distributed simulation 
look transparent to other parts of the tool, meaning that any 
existing Java event types and Java listener subscription re-
lationships between the simulation engine and the front-
end GUI should remain untouched.  Section 4 explains in 
detail how we managed to do that. 

The other concern is that we don’t want the implemen-
tation to be tied with any particular distributed protocol at 
compile time.  Instead, we would like to define an abstrac-
tion of the distributed communication layer and to be able 
to “plug in” a particular implementation at runtime through 
some configuration mechanism.  The benefit of doing so is 
runtime configurability which allows the tool to use the 
most appropriate implementation based on runtime re-
quirements such as network security, scalability, and per-
formance etc.  The following section discusses a generic 
framework designed for that purpose. 

3 GENERIC DISTRIBUTED  
JOB RUNNING FRAMEWORK 

The framework is composed of a set of Java classes, inter-
faces, and abstract classes (Figure 2).  It is generic in the 
Figure 2: Framework Class Diagram 
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sense that it can be used to implement any kind of distrib-
uted job-oriented system, of which distributed supply chain 
simulation is simply a special case.  The classes and inter-
faces in the framework can be classified as job-layer (un-
filled rectangles) or communication-layer (color-filled rec-
tangles) entities.  The job-layer entities constitute a high-
level API for developers of distributed applications; they 
represent an abstraction at the job level and facilitate distrib-
uted job submission, control, and results collection.  The 
communication-layer entities represent an abstraction at the 
network communication level; they are used by the job-layer 
entities and are transparent to application developers.  
 Communication-layer entities are either Java inter-
faces or abstract classes, and therefore need system devel-
opers to furnish concrete implementations based on differ-
ent network protocols. The framework comes with a 
default implementation in Java RMI, and bindings to other 
protocols such as TCP/IP and Globus are possible as well. 

There are three job-layer abstract classes that applica-
tion developers must implement.  Job represents the struc-
ture of a class of tasks that need to be executed repeatedly 
for a given number of iterations; developers specialize it to 
model domain tasks of interest to a particular application. 
Similarly, subclasses of JobResult need to be defined to 
encapsulate domain specific job running results.  The ab-
stract class Runner represents the operation required to run 
a certain type of jobs.  Separation of the structure of a job 
and the operation needed to execute it follows the Visitor 
design pattern (Gamma et al. 2000) which lets you define a 
new operation without changing the classes of the elements 
on which it operates.  For any concrete Job subclass, an 
application developer must provide at least one Runner 
subclass (visitor).   

Requester is a concrete class mediating between the 
user application and the communication layer.  It is the 
most prominent class in the framework because it is where 
the distributed job semantics becomes visible to the user 
application.  A Requester object needs to talk to remote 
job servers and Runner instances in the servers to fulfill its 
functionality, therefore we have adopted the Proxy design 
pattern (Gamma et al. 2000) to introduce three remote 
proxy classes, JobServerProxy, RunnerProxy and Re-
questerProxy,  which enable bi-directional communica-
tion between Requester and JobServer and between 
Requester and Runner.  The original Proxy pattern 
would have required Runner and Requester to imple-
ment the same interface as RunnerProxy and Reques-
terProxy respectively, which would have coupled these 
application-layer classes with the communication layer.  
To avoid this, we have used the Adapter design pattern 
(Gamma et al. 2000) to introduce two adaptors, Run-
nerAdaptor and RequesterAdaptor, which implement 
RunnerIF and RequesterIF respectively and forward 
incoming calls from remote proxies into corresponding 
job-layer adaptees. 
Now let us take a detailed look at how Requester in-
teracts with other entities in the framework to effect job 
submission.  Once this becomes clear, job control and 
status/result callback mechanism will fall into place.  Job 
submission involves a three-way handshake: Requester 

 Gatekeeper, Gatekeeper  Requester, and Re-
quester  Runners, which are illustrated in Figure 3, 4 
and 5 respectively. 

 

 
 

Figure 3: Job Submission: Requester  Gatekeeper 
 

 
Figure 4: Job Submission: Gatekeeper  Requester 
 

 
Figure 5: Job Submission: Requester  Runners 

 
 Requester  Gatekeeper.  The Requester accepts 
a job from the user application (client) and forwards it to 
the Gatekeeper (a JobServer in the server pool that is 
configured to accept and schedule user jobs); the Gate-
keeper schedules the job, i.e., determines how to split the 
job to a number of sub jobs based on available resources in 
the server pool, and sends each sub job to the server where 
it is scheduled to run. 

Gatekeeper  Requester.  Upon receipt of a sub job 
from the Gatekeeper, a job server instantiates the correspond-
ing Runner subclass (specifically, the job server retrieves the 
fully-qualified Runner class name from the submitted Job 
object and dynamically loads the Runner subclass from an 
HTTP class server); the server then instantiates a Runner-
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Proxy-RunnerAdaptor pair for the Runner, and returns the 
RunnerProxy object to the Gatekeeper; finally, the Gate-
keeper returns all the RunnerProxy objects it collects from 
job servers to the Requester. 

 Requester  Runners.  With remote proxies (Run-
nerProxy objects) at hand, the Requester can send job 
control commands to remote Runners.  Now it needs to 
establish the connection in the other direction to allow 
Runners to send back job running statuses and results.  To 
accomplish this, the Requester instantiates a Requester-
Proxy-RequesterAdaptor pair for each RunnerProxy 
received, and registers the RequesterProxy with the cor-
responding remote Runner. 

Application developers don’t need to understand the 
communication-layer details, yet they have to know how to 
configure the framework to use a certain implementation.  
There are two configuration files serving that purpose, one 
for the job layer and the other is communication-layer im-
plementation specific.  The job-layer configuration file is 
used by the client to specify Job-Runner mapping, and to 
plug in a communication-layer implementation by specifying 
a factory class (Abstract Factory design pattern in Gamma et 
al. 2000); it is used by the job server to find out about the 
class server location.  Here is a snippet of the properties file: 

 
# 
# Client-side config: Job-Runner mapping 
#  format: 
#  job_alias=runner_class_name 
# 
job.foo=com.ibm.job.runner.FooRunner 
job.scms=com.ibm.scms.job.SimuRunner 
 
# 
# Client-side config: plug in a communication 
# layer implementation via Abstract Factory  
# design pattern 
# creates: 
#  JobServerProxy 
#  RequesterProxy 
#  RequesterAdaptor 
# 
factory=com.ibm.job.factory.RMIFactory 
#factory=com.ibm.job.factory.SocketFactory 
#factory=com.ibm.job.factory.GlobusFactory 
 
# 
# Server-side config: class server URL 
# 
classserver=http://huashan:9099/ 
 

The other file is used by the implementation specific 
JobServerProxy to find out about gatekeeper location 
information.  Here is a snippet of the properties file that 
comes with the Java RMI implementation: 

 
# 
# RMIJobServerProxy config:  
# Gatekeeper location 
# 
gatekeeper.url=rmi://huashan:1099 
gatekeeper.name=JobServer 
Apparently, this layered design has managed to ad-
dress the second concern in Section 2 and offers the ex-
pected runtime configurability.  What needs to be pointed 
out is an additional benefit that enables developer role 
separation, i.e., an application developer can code against 
the job-layer API and focus on his domain issues, while a 
system developer with expertise in distributed system can 
concentrate on providing high-quality communication-
layer implementations.  

Something also worthy of mention is the built-in fault-
tolerance in Requester and Runner classes.  During a job 
run, they keep monitoring the availability of the party at 
the other end of the communication link, and in the case of 
a link failure, the connection will eventually be shut down 
on both ends, and any allocated resources will be grace-
fully released. 

4 SCMS ENHANCEMENT FOR  
DISTRIBUTED SIMULATION 

In the original SCMS tool, when a user requests the simu-
lation of a constructed supply chain model (a SimuModel 
object), the application will create a simulation engine (a 
SimuEngine object), assign the model to the engine, and 
start it up; events generated from the engine (SimuEvent 
objects) are fired to the simulation event listener interface 
SimuEventListener implemented in the main JFrame 
window SCMSMainFrm.  This is fine when running 
SimuEngine locally is the only option for the tool to per-
form simulation.  However, with distributed simulation as 
another possibility, that is no longer the case. 

The Strategy design pattern is perfect for such situa-
tion where a family of algorithms are interchangeable and 
can vary independently from clients that use it (Gamma et 
al. 2000).  In our case, a base strategy class Simulator 
and two concrete strategy classes LocalSimulator and 
DistributedSimulator have been introduced accord-
ingly (Figure 6).  LocalSimulator is nothing but an 
adapter of SimuEngine based on object composition; 
DistributedSimulator is more complicated and will 
be discussed later.  Now, all that needs to be changed in the 
SCMS tool is the way a simulation run is initiated, i.e., in-
stead of directly starting a SimuEngine instance, the tool 
will use one of the two Simulator strategies. In either 
case, all the simulation-related presentation logics, such as 
animation and dynamic reporting, remain unchanged, 
which has addressed the first concern outlined in Section 2. 

DistributedSimulator is implemented by using 
the generic framework and simulation domain specific sub-
classes of Job, Runner and JobResult (Figure 7).  
SimuJob and SimuJobResult are simply wrapper classes 
of SimuModel and SimuEvent respectively.  SimuRun-
ner has been designed to use a SimuEngine object as 
adaptee, in a similar way as SimuEngine is adapted by 
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Figure 6: Simulator Strategy 

 

LocalSimulator.  However, there is a major difference: 
LocalSimulator runs in the same JVM as 
SCMSMainFrm, while SimuRunners generally don’t.  As a 
result, SimuRunner can not send simulation events (fired 
by the adapted SimuEngine object) directly to the SCMS 
tool, as LocalSimulator does; instead, it has to intercept 
those simulation events with an inner class that implements 
the SimuEventListener interface, and wraps such an 
event in a SimJobResult object which is carried as “pay-
load” in a JobResultEvent object.  This job-layer event 
travels the communication layer and gets back to the origi-
nal Requester.  The SimuJobListener registered with 
the Requester then retrieves the wrapped simulation 
event and forwards it to the GUI component. 

 

 
Figure 7: Simulation Job Class Diagram 

 
Using a framework and proper design patterns has 

made it fairly easy to add a complex feature to the existing 
tool in a non-intrusive way.   

5 BENCHMARKING 

In this section, we will look at what kind of speedup dis-
tributed simulation can achieve over local sequential simu-
lation.  We developed a simple simulation model for 
benchmarking purpose that has one Customer and one 
Manufacturer.  The Manufacturer can produce one type of 
end product that is assembled from two part types.  The 
Customer provides 12-month demand forecast to the 
Manufacturer.  Four computers were used and their rele-
vant configuration information is listed in Table 1.  The 
benchmarking result is presented in Table 2.   

 
Table 1: Computer Configurations 

 CPU Memory OS 

Computer 1 Pentium 4 3.06GHz 512 MB Windows 
XP 

Computer 2 Pentium 4 2.2GHz 512 MB Windows 
XP  

Computer 3 2 x  
Pentium III 500MHz 

768 MB RedHat 
Linux 

Computer 4 Pentium III 930MHz 768 MB Windows 
2000 

 
Table 2: Benchmarking Result 

Time (seconds) 
Local Simulation 

Iterations 

Computer 1 Computer 4 
Distributed  
Simulation 

20 2 5 5 
50 7 19 6 
100 10 27 10 
200 20 51 20 
500 50 128 45 
1000 97 252 81 

 
 The following observation can be made from Table 2: 
when the computer used for local simulation (Computer 1) 
has above-average computing power (compared with all 
the machines involved in the distributed simulation), the 
local simulation performance is comparable with that of 
the distributed simulation up to 500 iterations; when the 
machine used for local simulation has below-average com-
puting power (Computer 4), distributed simulation exhibits 
a significant performance speedup.  Considering the fact 
that the current RMI job server has implemented a very 
primitive job scheduling algorithm, which is to distribute 
iterations evenly across available computers, our bench-
marking result is easy to interpret: the performance of dis-
tributed simulation is largely determined by the slowest 
computer in the server pool (Computer 4 in our case). 

Two quick conclusions can be drawn: 
• When the servers are heterogeneous, an intelligent 

scheduling algorithm should be used to balance 
job loads among fast and slow machines to mini-
mize the overall running time. 

• If we have a supercomputer that has far more supe-
rior computing power than that of the server pool 
average, then, depending on the size of the server 
pool and the amount of distributed communication 
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overhead involved, we may be better off by running 
simulation jobs locally on the supercomputer. 

6 INTEGRATION WITH IBM  
MATHGRID DESKTOP 

One weakness of our generic job running framework is 
lack of deployment support.  For example, in order to con-
duct the benchmarking discussed in Section 5, we had to 
manually deploy the framework and start the RMI job 
server on each computer involved, which can become a 
maintenance headache in real-world application. 

To solve this problem, we have been seeking to inte-
grate the enhanced SCMS tool with IBM MathGrid Desk-
top (IMGD).  IMGD is a GUI toolkit developed in the 
Math Science Department of the Watson Research Center 
to simplify the development and distribution of grid-
enabled applications (both legacy and newly written).  It is 
built on the Java Community Grid (CoG) Kit and interacts 
with a back-end grid built on Globus Toolkit 2.0.  To ac-
complish its goal, IMGD has provided:  

• A visual desktop with which developers can ad-
vertise, distribute, install, and demonstrate their 
application 

• A client, containing the desktop, which can hold 
any Swing based application GUI 

• Server technology that allows functionality from 
any server based shared library to be accessed 
from the client 

By wrapping our job framework according to IMGD’s 
server-side  specification , we can use IMGD to deploy the 
framework to MathGrid computers with just a few mouse 
clicks.  In addition, we can run the Swing based SCMS GUI 
from the same environment and submit distributed supply 
chain simulation requests to those MathGrid computers. 

7 FUTURE WORK 

While continuing the effort to integrate with IMGD, we 
will concentrate our future work on improving the generic 
job running framework from two aspects: 

7.1 Better Fault Tolerance 

Fault-tolerance currently built into the framework aims at 
releasing resources and restoring communication-layer in-
tegrity upon link failures; however, it does not recover the 
lost sub job(s) due to the same failures.  We would like to 
enhance the Requester implementation to enable auto-
matic job re-scheduling when a link failure occurs.  An-
other potential issue is the single point of failure at the 
Gatekeeper, which might be addressed in JobServer im-
plementations with a distributed leader election protocol. 
7.2 Communication Layer Binding to Globus 

The communication layer has only one default implemen-
tation as of now, we would like to build another one using 
Globus Toolkit 3.0.  Applications using this protocol bind-
ing will be able to take advantage of standard Globus fea-
tures such as Grid Security Infrastructure and Grid Infor-
mation Services.  For instance, Grid Information Services 
will make it easy to incorporate intelligent job scheduling 
into the JobServer implementation, while it is quite diffi-
cult to do so with Java RMI which doesn’t offer a similar 
resources information service. 
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