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ABSTRACT 

The design of a supply chain network as an integrated sys-
tem with several tiers of suppliers is a difficult task. It con-
sists of making strategic decisions on the facility location, 
stocking location, production policy, production capacity, 
distribution and transportation modes. This research devel-
ops a hybrid optimization approach to address the Supply 
Chain Configuration Design problem. The new approach 
combines simulation, mixed integer programming and ge-
netic algorithm. The genetic algorithm provides a mecha-
nism to optimize qualitative and policy variables. The 
mixed integer programming model reduces computing ef-
forts by manipulating quantitative variables. Finally simu-
lation is used to evaluate performance of each supply chain 
configuration with non-linear, complex relationships and 
under more realistic assumptions. The approach is de-
signed to be robust and could handle the large scale of the 
real world problems. 

1 INTRODUCTION 

Managing a supply chain is very different from managing 
one site. Activities at the various sites have complex inter-
relationships. A large amount of literature on Supply Chain 
Management places great emphasis on integration of dif-
ferent components of the chain. Finding the right strategy 
that is optimal across the entire supply chain is a huge 
challenge (Quinn 2000; Simchi-Levi et al. 2001). Manag-
ing supply chain networks as a whole unit is an extremely 
difficult task for two reasons. (1) Different components of 
the supply chain have different, conflicting objectives. (2) 
The supply chain is a dynamic system that evolves over 
time. Not only do customer’s demand and supplier’s ca-
pacities change over time but supply chain relationships 
also evolve over time. 

Design and optimization of supply chain configuration 
is a problem at the highest level, the strategic level. Supply 
chain configuration design consists of deciding on the fa-
cility location, stocking location, production policy (make-
to-stock or make-to-order), production capacity (quantity 
and flexibility), assignment of distribution resources and 
transportation modes while imposing standards on the op-
erational units for performance excellence. Therefore, the 
aim of supply chain configuration optimization is to find 
the best or the near best alternative configuration with 
which the supply chain can achieve a high level of per-
formance. Usually, there are two categories of configura-
tion decisions on supply chain design.   

1. Structural decisions: Location, capacity, distribu-
tion channel. 

2. Coordination decisions: Supplier selection, part-
nership, inventory ownership, sharing information 
about sales, demand forecast, production plan, in-
ventory. 

All supply chain design decisions affect each other and 
must take this fact into consideration. Location decision 
has long term impact. It is very expensive to shut down a 
facility or to move it to a different location. This decision 
also has direct effects on production, inventory and trans-
portation costs. Those in turn have significant impact on 
supply chain performance, in terms of the service level, 
since a good distribution network can increase responsive-
ness. Macroeconomic, political, strategic, technological, 
infrastructure, competitive, logistical and operational fac-
tors influence network design decisions in supply chain. 
Many other concerns need to be taken into account if the 
system is a global supply chain. Many kinds of company 
resources in a supply chain are duplicated. When collabo-
rating or being integrated, companies can eliminate redun-
dancies. Companies also improve the efficiencies through 
integration since even if a company has available resources 
to perform a particular task, another company in the supply 
chain may be better suited to perform that task. Determin-
ing who in the supply chain should perform a particular 
function is a part of supply chain configuration design. 

There does not exist a single model that covers all 
above mentioned aspects. Due to its importance and com-
plexity, there is a growing literature on supply chain con-
figuration design. One of the earliest works in Supply Chain 
Configuration Design area was initiated in 1974 by Geof-
frion and Graves (1974). They introduce a multi-commodity 



Truong and Azadivar 

 
logistics network design model for optimizing finished 
product flows from plants to distribution facilities and to the 
final customers. They describe a mixed integer program-
ming model for determining locations of distribution facili-
ties and a solution technique based on Bender's decomposi-
tion. A modeling framework to provide a comprehensive 
model of a production-distribution system is used to decide 
which products to produce, where and how to produce them, 
which markets to pursue and which resources to use. Cohen 
and Lee (1988, 1989) consider global manufacturing and 
distribution networks and formulate mixed integer optimiza-
tion programs. Lee and Billington (1995) validate these 
models by applying it to analyze the global manufacturing 
strategies of Hewlett-Packard. Bagchi et al. (1998) introduce 
a supply chain simulator developed at IBM that has been 
successfully applied into some production lines in the com-
pany. Chung-Piaw and Jia (2001) outline a pure mathematic 
formulation of distribution network system in supply chain, 
integrating transportation and infinite multi-echelon inven-
tory cost function. Jack et al. (2000) describe their work in 
modeling and simulating a multi-echelon food supply chain 
and apply their model to evaluate alternatives in design the 
supply chain of chilled food products. Their simulation 
model is based on timed color Petri-nets. They apply their 
work into a real-world situation in Netherlands. Lee and 
Kim (2000, 2002) develop an analytical model for integrated 
multi-product, multi-period production-distribution prob-
lems in supply chain at the strategic level. The authors de-
velop a hybrid analytic-simulation approach consisting of 
building independent analytic and simulation model of the 
total system and using their solution procedures together for 
problem solving. 

2 SUPPLY CHAIN SIMULATOR 

A supply chain simulator was developed in Java, a pure 
object-oriented programming language. The object-
oriented paradigm lets us think in terms of the physical en-
tities of the system and interactions between them (orders, 
warehouses, retailers, customers, manufacturing plants, 
transportation) rather than in terms of the programming 
language concepts.  

Figure 1 depicts modular components of the simulator. 
Users interact with the simulator, enter inputs and view 
outputs though Graphical User Interface (GUI). The pro-
gram behind the GUI that synchronizes all other compo-
nents is the controller. The controller retrieves information 
about a supply chain configuration from a database. The 
program then requests pre-defined objects that represent 
basic elements of a supply chain, such as customers, retail-
ers, orders etc. Those objects are stored in Supply Chain 
Object Library. The Model Generator combines necessary 
information and objects to create a supply chain configura-
tion. Simulation component controls simulation run for the 
established configuration, updates database and reports key  
 
Graphical Interface 

Database SC Object 
Library 

User 

 
Controller 

 
Simulation Run 

 
Optimization Engine 

 
Model Generator 

SIMULATION-OPTIMIZATION 

SIMULATOR

Figure 1: Simulator and Simulation-Optimization Modular 
Components 
 
statistical outputs. The simulator is designed in the way 
that it could be integrated with an optimization engine that 
is discussed in the next section. 

The Supply Chain Object Library has reusability and 
extensibility features for modeling and analysis of supply 
chain networks. We classify the elements of our object li-
brary into two categories: the structural objects and the pol-
icy objects. The structural objects are abstractions of physi-
cal entities of supply chain networks. The physical structure 
of supply chain networks is modeled using these classes. 
Supply chain with any level of complexity can be con-
structed from these basic elements. Physically the supply 
chain network is composed of manufacturers, plants, ware-
houses, distributors, retailers, suppliers, customers, orders, 
communication channels, transportation channels, etc. Pol-
icy objects are embedded into structural objects to represent 
strategic policies governing companies’ activities. They con-
trol flows of material and information through the network. 
They set rules on order fulfillment, replenishment purchas-
ing, production, inventory control and distribu-
tion/transportation functions within a supply chain.  

3 OPTIMIZATION OF SUPPLY  
CHAIN CONFIGURATION 

This section presents a new general optimization approach 
developed for the Supply Chain Configuration Design. 
This approach enables designers to integrate varieties of 
strategic decisions encountered in supply chain develop-
ment simultaneously, including qualitative and quantita 
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tive. In particular, the following seven types of decisions 
will be considered concurrently: 

1. Make or Buy decisions (or Outsourcing deci-
sions). 

2. Partner selection. 
3. Production planning policy at each stage. 
4. Transportation mode at each distribution channel. 
5. Location decisions. 
6. Capacity decisions. 
7. Production and service allocation. 
Many of these problems have been studied separately 

for years but they have never been placed in one common 
framework and been considered at the same time.  Optimal 
solutions for each individual decision do not necessarily 
create a significant improvement in overall supply chain 
performance, especially when they are limited to one or 
two stages of the supply chain. Overall supply chain effi-
ciency is jointly determined by the structural configuration 
as well as system parameters, such as leadtime, respon-
siveness, quality, delivery reliability etc for each partner. 
Some companies acquire their partners to enhance integra-
tion and control. Others find it more profitable not to. More 
and more companies are outsourcing in an attempt to in-
crease their competitiveness and focus on their core com-
petencies. They must consequently rely more on their part-
ners for product development, quality, productivity and 
technology. The challenge is to determine which products, 
activities, and functions should be outsourced and which 
partners should be selected.  

Some strategic decisions in supply chain design are 
quantitative but most of the times they are of qualitative 
and policy nature. For instance, in the above list, the first 
five categories of decision variables are qualitative. Except 
for location decisions that could be encoded as binary vari-
ables and solved by using integer programming, other 
qualitative variables could not be expressed mathemati-
cally and therefore they require an optimization approach 
that can deal with policy variables. 

We propose a new hybrid approach in which Genetic 
Algorithm, Mixed Integer Programming and Simulation 
are combined to solve the supply chain configuration de-
sign problem at as the deepest level of details as computing 
resources allow.  

The Genetic Algorithm provides a mechanism to op-
timize policy, qualitative variables (Azadivar and Tomp-
kins 1999, Azadivar 1999, 1992). Mixed Integer Program-
ming reduces computing efforts by manipulating 
quantitative variables. Finally simulation is used to evalu-
ate performance of each supply chain configuration under 
more realistic assumptions. The combination is applied it-
eratively until an acceptable solution is obtained. 

The approach developed here provides companies the 
opportunity to design their supply chains, not only by op-
timizing their own internal operations, but also by examin-
ing and improving the entire supply chain's performance. 
The new optimization approach is designed to be ro-
bust and general. Thus the supply chain discussed in this 
section must be a typical one that includes several manu-
facturing/assembling stages for a product line from very 
beginning raw materials to finished products. Many suppli-
ers/manufacturers contribute to the production process. At 
the downstream of the supply chain, the distributor stores 
finished products at its central warehouses and delivers 
them to retail stores.   

The objective of the supply chain configuration design 
optimization problem is to minimize the overall system-
wide cost while the customer service at retailer stores is 
kept at a pre-specified level. 

The decision variables of this optimization problem 
are the seven variables mentioned above. These variables 
belong to two categories.  

Category 1 consists of variables that could be incorpo-
rated into a mixed integer programming model solvable 
with the analytical approach. These variables are associ-
ated with location, capacity, production and service alloca-
tion decisions. 

Category 2 consists of the remainder. Variables of this 
category are qualitative, policy decisions, such as supplier 
selection, production policy selection, and transportation 
mode selection. These are solved by using the GA. 

The backbone scheme of the new approach imple-
ments the basic framework of GAs. MIP and simulation 
are applied inside the evolution loop every time a chromo-
some is evaluated. The procedure of the hybrid approach 
consists of the following steps (Figure 2): 

Step 1. Initialization: Randomly create an initial popu-
lation of Ns chromosomes (Ns is population size). Each 
chromosome represents a supply chain characterized by 
values of decision variables in Category 2.  

Step 2. Evaluation: Obtain fitness values of all new 
chromosomes by evaluating performance measures of the 
supply chain they represent. MIP and simulation are ap-
plied for this purpose. Each evaluation includes four steps: 

a. 

b. 
c. 

d. 

A MIP model is constructed to determine the op-
timal values of decision variables in Category 1 
given values of decision variables in Category 2 
are fixed. The MIP model is discussed in the fol-
lowing section.  
Solve the MIP model with a MIP solver. 
Generate a simulation model for a supply chain 
configuration given that the values of decision 
variables in Category 1 are the results of step 2(b), 
and the values of decision variables in Category 2 
are provided by GA’s chromosome. 
Run simulation to obtain the overall cost and the 
customer service level. 

Step 3. Selection: Apply selection operator Nn times to 
create a mating pool (Nn is mating pool size).  

Step 4. Crossover: Create new offspring by applying 
the crossover operator on individuals of mating pool. 
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Figure 2: The Algorithm of the Hybrid Optimization 
 
Step 5. Mutation: Create offspring by applying the 

mutation operator on individuals of mating pool.  
Crossover and mutation steps are repeated until the 

new offspring combining the mating pool form a new 
population of size Ns.  

Step 6. Iteration: Repeat step 2 until the stopping cri-
teria are satisfied. 

3.1 Chromosome Representation 

A supply chain configuration is represented by one string 
of integer. Parameters associated with one stage of supply 
chain occupy a segment of genes as shown in Figure 3. A 
gene in a segment represents the value of one decision 
variable in Category 2, such as company/supplier, the pro-
duction planning policy and the transportation mode taking 
place at that stage. 

 

 

 

… … … 

One stage 

Company ID Production policy Transportation mode 

 
Figure 3: Chromosome Presentation 

3.2 Selection 

The selection mechanism works like the “guidance sys-
tem” of the “evolution process” in GAs. Due to the sto-
chastic nature of responses, this operator may result in 

Initialize 

Meet Stop criteria? 

Selection 

Crossover Mutation 

No 

Yes 

New chromosome? 

Run MIP solver                     
determine locations, capacity,    produc-

tion and service allocation 

Build MIP model                    
based on company and policy   informa-

tion in the chromosome  

    Simulation model generator:   based 
on MIP results; construct  a model for 
specified supply chain configuration 

Run simulation–Check constraints   run 
simulation to obtain fitness. Return a very 

large number if constraints are violated 

No 

Yes 

Stop 

Start 
moving the search in a wrong direction if fitness values are 
obtained from one or few simulation replications. The 
other operators, such as crossover and mutation do not de-
pend directly upon fitness evaluations (Goldberg 1989). 

Boesel et al. (2003) show that in a stochastic environ-
ment, to form and rank “groups” of solutions typically re-
quires less effort (fewer simulation replications) than to per-
form a comprehensive ranking of all solutions individually.  

Thus in this program chromosomes of each population 
are categorized into m groups and ranked accordingly. A 
group with better objective function values is assigned a 
higher rank.  If a group is selected during a q-tournament 
competition (2 ≤ q ≤ m), the chromosomes of this group 
are considered statistically equivalent. Hence, they are as-
signed the same selection probabilities. 

Parameter q controls the “pressure” on good solutions. 
Larger q implies more pressure and consequently good so-
lutions are more likely to be selected to the next generation 
and vice versa. 

3.3 Crossover 

Two crossover operators are applied. The high level cross-
over operator is described in Figure 4 and the low level 
crossover operator in Figure 5. 

The high level crossover operator makes macro-
structure changes. A segment of genes representing all in-
formation about one stage is called basic. The high level 
crossover operator changes the sequence of basic blocks 
but does not change genes inside each block. In other 
words, this operator creates a new supply chain configura-
tion by switching companies at each stage but parameters 
associated with each company are kept unchanged. In this 
case single point crossover is used.  

 

 

 

 

 

… … … 4 1 1 5 0 1 0 00711

… … … 2 0 0 1 1 1 8 01300

… … … 4 1 1 5 0 1 8 01300

… … … 2 0 0 1 1 1 0 00711

Parent 1:

Parent 2:

Offspring 1: 

Offspring 2: 

Cut point 

 

Figure 4: High Level Crossover Operator 
 
The operator works with two parent chromosomes 

picked from the mating pool. One point between chromo-
somes is randomly chosen. Then basic blocks before the 
cut point in parent chromosomes are exchanged to create 
two new offspring. This operator tends to preserve good 
gene segments of both parents. 
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… … … 4 1 1 5 0 1 0 0071 1 

… … … 2 0 0 1 1 1 8 0130 0 

… … … 4 0 0 1 0 1 0 0030 0 

… … … 2 1 1 5 1 1 8 0171 1 

Parent 1: 
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Figure 5: Low Level Crossover Operator 

 
The low level crossover operator was designed to in-

troduce changes of parameters inside each company. Uni-
form crossover is used for this purpose. Uniform crossover 
picks two parents from the mating pool. Each pair of genes 
in parent chromosomes has a chance of being swapped 
with probability of p (In Figure 5, five pairs of genes out of 
39 are exchanged). Uniform crossover causes very rapid 
shuffling in chromosome structure. As a result, it is applied 
to maintain diversity of the population and hopefully guide 
the search process to new promising regions. However it 
may also cause a considerable disruption. One way to re-
duce the disruption is to apply this type of crossover with 
low probability p so that the majority of offspring’s genes 
are inherited from one parent, with only a small proportion 
from the other parent.  Here probability p is set as p = 0.1. 

The high level crossover operator enhances conver-
gence and thus it is applied 80% of the times when cross-
over is implemented. The low level crossover operator is 
applied 20% of the times. 

3.4 Mutation 

One parent is selected from mating pool and an arbitrary 
gene of the parent chromosome is randomly changed. This 
operator causes a very little “local” change, and therefore 
is used at a very low rate.   

3.5 Mixed Integer Program Model 

Given a chromosome that specifies values of decision vari-
ables in Category 2, a MIP model is constructed to obtain 
the optimal values of decision variables in Category 1. 
More specifically, the MIP model’s results determine loca-
tions of plants/warehouses selected for each stage; capaci-
ties of each plant/warehouse; and define plants/warehouses 
that serve plants/warehouse in downstream stages, given 
the information about companies serving at each stage; 
production policy and transportation mode carried out by 
each company as provided by GA. The verbal formulation 
of the MIP model can be stated as follows. The objective is 
to minimize the overall system-wide cost that includes 
fixed investment cost, variable operating cost, transporta-
tion cost, pipeline inventory cost, material/component in-
ventory carrying cost and finished product/part inventory 
carrying cost, subject to customer demand satisfaction re-
quirement, facility capacity constraint and conservation in 
material flows at each plant/warehouse. 

The MIP model is mathematically expressed by: 
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where 
N: set of stages in the supply chain. 
Ci: company that fulfills stage i; specified by GA’s 
chromosome.  

iCL : set of locations of company Ci. 
+−

ii CC NN , : set of down stream stages and up stream 

stages of stage i respectively.  
NRetailer: set of retailers. 
NPush: set of companies that implement Push produc-
tion planning policy. 
Xil: binary variables. Xil = 1 if location l of company Ci 
is opened at stage i. Xil = 0 otherwise. 
Capail: capacity of facility at location l of company Ci. 
Yiljk: material flow from facility l of company Ci to fa-
cility k of company Ck. 
Zα: safety stock factor, depending on pre-defined cus-
tomer service level α. For example, Z95% =2, Z99.7%=3. 
Demandil: demand at location l of retailer Ci. 
βji: ratio of parts from stage Cj to produce one product 
at Ci. 
DemandDevil: demand deviation at location l of com-
pany Ci. 
FixCostil, VarCostil: fixed and variable investment cost 
at location l of company Ci. 
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SupplyLTDeviationil: supply leadtime deviation at lo-
cation l of company Ci. 
ProLeadtimeil: average production leadtime at location 
l of company Ci. 
InvCost1, InvCost2: unit holding cost for pipeline in-
ventory and carry over inventory. 
MUpperLimit, MLowerLimit: upper bound and lower bound 
for facilities of company Ci. 
TransCostiljk, TransLeadtimeiljk: unit cost and average 
leadtime for transportation from location l of company 
Ci to location k of company Cj. 
The MIP model is generated in MPS (Mathematical 

Programming System) format readable by any Integer Pro-
gramming solver. IBM’s OSL package (Optimization Solu-
tions and Library) has been used to solve the MIP program.  

3.6 Simulation 

After the MIP model is solved and all parameters of the 
supply chain configuration are determined, the model gen-
erator developed in the previous chapter builds a simula-
tion model for the system. The supply chain simulator is 
invoked to run the simulation model. The simulation model 
returns the overall long run system-wide cost and customer 
service level of the supply chain.  

4 CASE STUDY 

This section demonstrates and evaluates the performance 
of the proposed approach by applying it to a specific case 
study.  The objective of the case is to design a supply chain 
for one product line that requires 11 manufactur-
ing/assembling stages (#0 to #10) as shown in Figure 6. 
Stage #11 and stage #12 are the distributor and the retailer 
respectively. The major manufacturer M in the supply 
chain has capability of performing most stages (#1, #3, #6, 
#7, #8, #9 and #10). The manufacturer M could carry out 
stages #1, #3 and #6 by itself or outsource them to outside 
vendors. If outsourcing is chosen, the manufacturer has to 
decide which vendors will be its partners. Similarly, sup-
plier selection must be made at stages #0, #2, #4 and #5.  

In Figure 6, brackets list potential suppliers for the 
corresponding stages. For example, either supplier S1 or 
S2 could be selected for stage #0. However, they are dif-
ferent from each other in production cost, production lead-
time, variance of production leadtime etc. Each company 
has several potential sites for consideration. They have to 
decide how many plants/warehouses are needed and where 
to locate them based on associated costs. 

The customer service level at retail stores are required 
not to be less than 95%. 

The number of alternatives for this test problem is 
tremendously large. It has 213 different combinations in 
terms of transportation modes; 211 different combinations 
in terms of  production policy; 23.34 different  combinations 
 

0 1

54

M: Manufacturer;  S1, S2, S3, S4, S5: Supplier candidates. There are many
possible sites for the suppliers, the manufacturer and distribution centers. 

 M   M M 

(S1, S2, S5) 

M 

(S1, S2, M) (S1, S2, S5) 

(S2, S3, M) (S1, S4)

(S2, M)(S1, S2)

RetailerDistributor

11 12 

32

109 8 7

6

Figure 6: Supply Chain Configuration to Be Optimized 
 

in terms of supplier/company selection (stages 0, 1 and 2 
have 2 options; stages 3, 4, 5 and 6 have 3 options); 612 dif-
ferent combinations in terms of location (assume that 2 lo-
cations out of 4 are selected at each stage). The number of 
combinations is much higher than 213.211.23.34.612 since we 
have not yet taken into account service allocation possibili-
ties (which plant serves which plants/warehouses).  

To apply the optimization approach, decision variables 
are divided into two categories as mentioned in the previ-
ous section. The Genetic Algorithm undertakes decisions 
related to supplier/company selection, production policy 
selection and transportation mode selection at each stage. 
Each stage requires 3 genes representing these 3 decisions. 
The Pull production policy is encoded as 0; Push as 1; fast 
and expensive transportation mode as 0; slow and less reli-
able transportation mode as 1. One chromosome consists 
of 39 genes. Genetic Algorithm operators are implemented 
with parameters given in Table 1. 

 
Table 1: GA’s Parameters 

Parameter Value 
Population size 30 
Maximum number of generations 50 
Reproduction rate 1/3 
New replacement rate 2/3 
Mutation probability  1% 
The number of groups in selection, m 4 
q (in q-tournament selection) 2 
Using rate of high level crossover  80% 

Using rate of low level crossover 20% 
 
A MIP model incorporates decisions of category 1 that 

relate to location selection, facility capacity and distribu-
tion decision. A MIP model is composed of 332 variables, 
including 56 binary variables, and 214 constraints. Aver-
age run time for a MIP sub-problem is around 1 second on 
700 MHz Intel CPU. 
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For each specific configuration, a simulation model is 
generated and is run for 700 days. The first 100 days is 
considered as the warm-up period and outputs in that pe-
riod are discarded. Simulation outputs are the overall sys-
tem-wide cost and the customer service level.  

Figure 7 presents results after 50 generations. Around 
1000 configurations are evaluated and the best configura-
tion is encountered in generation 41. 
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Figure 7: Best Fitness Found in 50 Generations 

 
The proposed approach is compared to other two ap-

proaches, random sampling and pure GA, using the similar 
amount of computing effort. 

Random sampling approach: 1000 chromosomes were 
randomly generated. For each chromosome, the fitness 
evaluation procedure with MIP and simulation (steps 2a, 
2b, 2c and 2d of the proposed algorithm) is applied to ob-
tain the overall system-wide cost. 

Pure GA approach: MIP is not used in this approach 
(steps 2a and 2b of the proposed algorithm are dropped 
out). GA manipulates all decision variables.  Additional 
genes representing potential locations at each stage are in-
serted into chromosomes. These genes have values of 1 if 
the corresponding location is selected, of 0 otherwise. Ser-
vice allocation is assigned based on “least-expensive 
transportation cost” rule of thumb.  In this case, chromo-
some length is 89. Simulation is employed to obtain the 
fitness values. GA is implemented with the same parame-
ters stated in Table 1. 

The comparison of results is shown in Figure 8. The 
lowest overall cost found by the random sampling ap-
proach after 1000 evaluations is $1,962,381,000; by the 
pure GA approach is $2,830,914,000, compared to 
$1,416,028,000 found by the proposed approach.  
 Without using MIP, the pure GA approach results in 
very poor solutions. Its best solution found after 1000 
evaluations is even worse than the first solution produced by 
the other two approaches. This comparison shows the impact 
of MIP model on the search process toward the optimal. 

Compared to the random sampling approach, the pro-
posed approach improves the overall cost by 27%. 
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Figure 8: Compare Optimal Outputs of Different 
Approaches 

5 CONCLUSIONS 

A new optimization approach for Supply Chain Configura-
tion Design problem is introduced and implemented. The 
proposed hybrid approach combines Genetic Algorithms, 
Mixed Integer Programming and Simulation into one 
framework. This research is one of the first to attempt con-
sidering many strategic decisions simultaneously. Those 
decisions include Make or Buy decision (or Outsourcing 
decision), Partner selection, Production planning pol-
icy/Inventory stock at each stage, Transportation mode at 
each channel, Location decision, Capacity decision and 
Production and service allocation. Computational results 
on a medium-size problem showed that this approach could 
result in efficient solutions. 

The proposed approach is a step forward in simulation 
based optimization methods that have been studied in the 
last several years. This hybrid approach combines advan-
tages of analytical optimization methods, heuristic search 
and simulation. While Genetic Algorithms are robust and 
could work with qualitative and policy variables, they are 
time consuming. By incorporating a MIP model nested into 
a GA loop, the number of variables for GA and conse-
quently computation efforts are significantly reduced. This 
efficiency is gained due to the fact that the number of vari-
ables manipulated in GA increases linearly, rather than 
polynomially with the number of stages.  

Applying this optimization approach, one could con-
sider concurrently a variety of decisions associated with 
supply chain management in general and the design of 
supply chain configurations in particular. Doing so pre-
vents obtaining at sub-optimal solutions when each prob-
lem is solved independently for a few stages in the chain at 
a time. By optimizing overall system-wide performance 
rather than local, single-site interests, a new way of design 
and planning for complex systems such as supply chains is 
suggested. As a result of this approach several general rec-
ommendations for supply chain could be made. Collabora-
tion among supply chain’s partners is perhaps the most im-
portant principle of supply chain management.  
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