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ABSTRACT

A major problem in production planning is to determine
when to release products into production to meet forecast
requirements. Recently, Riaño et al. (2002) proposed th
Stochastic Production Planning(SPP) model for a multi-
period, multi-productsystem, where the lead time to produc
a product may be random. The model determines relea
times for the products that ensure the requirements in ea
time period are met with desired probabilities at a minimum
cost. This paper describes how an advanced planning mod
like SPP can be integrated with discrete event simulatio
models to make the simulations more realistic and infor
mative. This paper also compares the performance of th
SPP model with the classical MRP (materials requiremen
planning) model, and with a stochastic variation of the MRP
model in a simulation study. The costs associated with th
production plans from SPP are about 10% less than th
costs from the other two models.

1 INTRODUCTION

Production plans have major affects on costs and custom
service levels. In addition, companies use production plan
for many activities related to actual production, such a
negotiating when to purchase parts and supplies from ve
dors, setting inventory levels in various stages of productio
scheduling personnel, and informing customers of realist
delivery dates. It is especially crucial for the operationa
planning of supply chains.

Today’s state-of-the-art advanced planning and schedu
ing (APS) systems take information about customer deman
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and historical information about supply chain performance
and generate material planning and control decisions th
are intended to be feasible. Because of the determinist
nature of this process, there are limitations to these plannin
approaches when it comes to actual execution of such plan

Lendermann et al. (2002) described the importance o
incorporatingAPS procedures with discrete event simulatio
(DES). This enables more realistic planning of manufac
turing facilities and supply chains. Moreover, as stochasti
APS procedures are formulated to account for the stochast
nature of production processes, DES can be used to test t
operations of these APS.

There are a variety of MRP software packages on th
market that determine production plans; see for instanc
(Elliot 2000). The main factor in determining release times
is the lead time to produce a product, which is the total
time from when the product is released into the system t
the time it is finished. MRP is based on the assumption
that the lead time of a product is a nonrandom constan
Typically the expected lead time inflated by some factor is
used.

There are other types of advanced production plannin
models that do not consider uncertainties. One approac
is to use linear or nonlinear programming models to selec
release times that minimize costs subject to capacity or re
source constraints, assuming “ideal” nonrandom productio
flows over time; see for instance (Hackman and Leachma
1989, Leachman et al. 1996). There are also ad hoc pr
duction planning models based on variations of the classic
Newsvendor and Economic Order Quantity models. Thes
models, like MRP, are not designed to handle uncertaintie
associated with random lead times that are dependent o
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the load in the system, changing requirements, mach
breakdowns, rework or scrapping of products, delays
supplies, personnel availability, etc. (Baker 1993, Guma
1996). Because of the complicated nature of stochas
production systems, optimal production plans cannot
obtained by standard applications of stochastic queue
networks, inventory systems, or dynamic programming.

This paper describes aStochastic Production Planning
(SPP) model for a system with random lead times a
requirements recently proposed in Riaño et al. (200
The model addresses production planning at a high-le
in a company or a supply chain, which is different tha
lower-level machine scheduling that determines what j
to process next from a specified set of jobs. The S
model is a linear program (LP) that determines quantit
of products to release into production in each time peri
that provide the desired quality of service at minimum co
Multiple types of products are released into the system o
a finite time horizon to ensure that the requirements in ea
time period are met with desired probabilities at minimu
costs. The model also allows for backorders. The mod
is implemented via a rolling-horizon procedure. Here w
describe the main ideas of the model. For fuller treatme
see Riaño et al. (2002). In this paper, we also illustrate h
an advanced planning procedure like the SPP model can
integrated into discrete event simulation models to facilita
better understanding and planning of manufacturing a
supply chain networks.

The remainder of this paper is organized as follow
Section 2 reviews the production system we are cons
ering and describes the development of the SPP mo
Section 3 describes the rolling-horizon implementation
the SPP model and how it can be adapted and integra
with a DES model. Section 4 describes two other pr
duction planning models, the classical MRP model and
more intelligent stochastic myopic control model called th
Mypoic Requirements Planning(MyRP) model, that we use
for comparison. Section 5 illustrates how the three planni
models can be integrated into a discrete event simulat
model of a manufacturing network, and compares the p
formance of the three models in a simulation study. T
results show that costs associated with the production pl
from our model tend to be about 10% less than costs fr
these two alternative models in most cases.

2 STOCHASTIC PRODUCTION
PLANNING MODEL

We consider a production system or supply chain netwo
that producesI types of products for its customers ove
a discrete-time planning horizon of lengthT . The issue
is to determine the quantityxit of product i to release
into production in time periodt , for eachi = 1, . . . , I and
t = 1, . . . , T . The SPP model allows products to be releas
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at some rate during each period, but here we assume th
the products are released into production at the “beginning
of the time periods and the requirements are satisfied at th
“end” of the periods. The rest of this section describes how
the system operates and the formulation of the model.

2.1 Requirements

The production requirements for the system are represente
by the cumulative requirementRit of product i required
in periods 1, . . . , t (up to the “end” of periodt). These
requirements may be deterministic values, or random vari
ables with specified distributions, based on sales forecast
management decisions, or other information.

2.2 Lead Times and Expected Outputs

The lead times to produce parts in a manufacturing facility
or network depend on the network structure, protocols
machine scheduling rules, etc. We assume that thelead time
for typei products are independent random variables with a
specifiedprobability distributionFi (t). These distributions
may be estimated from production data or other system
information. Such a single-stage lead time may actually
represent the time for several production stages or tasks in
multi-station production network. The lead-times determine
the output process. In particular, the expected output in time
period t from the xis products started in time periods is
xis Fi (t − s + 1).

The initial work-in-progress (WIP) in the system also
contributes to the output process. We letwi0(k) denote
the initial WIP at the beginning of the time horizon that
has been in the system fork periods, and let M denote the
maximum ageof the WIP at time 0. Then of thewi0(k)

products that have been in the system fork time units, the
expected number of these that are output in time periodt is
wi0(k)Fi (t; k), whereFi (t; k) is the conditional lead-time
distribution, conditioned that the lead time is greater than
k.

It follows that theexpected cumulative outputfor prod-
uct i in periods 1, . . . , t (up to the “end” of periodt) is
given by

Yit =
M∑

k=1

wi0(k)Fi (t; k) +
t∑

s=1

xis Fi (t − s + 1), (1)

where the first sum is the expected output from the WIP
at time 0, and the second sum is the expected output from
the quantities released up to periodt .
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2.3 Costs

We consider three costs associated with each producti in
period t :

• A late costcit for each unit of producti that is
backlogged in periodt .

• An early costhit for holding a finished unit in
inventory.

• An in-transit costh̄it for a unit that is being pro-
cessed.

In selecting release quantities, one aim is to minimize
the sum of these system costs. The objective function w
will use in this regard is

I∑
i=1

T∑
t=1

[
cit (Rit − Yit )

+ + hit (Rit − Yit )
−

+h̄it [
M∑

k=1

wi0(k) +
t∑

s=1

xis − Yit −1]
]
. (2)

Herea+ = max{0, a}, a− = − min{0, a}.
The first line is an approximation for the expected late

plus early cost, which iscit E(Rit −Ỹit )
++hit E(Rit −Ỹit )

−,
whereỸit is the random cumulative output of producti up
to periodt . The first line is a linear function of the input
quantities (sinceYit given by (1) is), but the expected late
plus early cost is a nonlinear function of the inputs. The
term on the last line is the expected WIP of producti being
processed in periodt : the input up to timet minus the
cumulated expected output.

2.4 Quality of Service

To determine optimal quantitiesxit to release into the system,
trade-offs between early and late costs are one consideratio
In addition, manufacturers often want to guarantee a certai
quality of service for its customers to the effect that deliveries
to them will be on time with a high probability. This QOS
is often given a higher priority than reducing holding costs,
since long-run customer satisfaction usually affects profits
more than holding costs do.

For our system, the QOS criterion is to ensure that the
cumulative quantity of producti delivered by each periodt
meets the requirementsRit with a specifiedQOS probability
αit . In other words, theQOS criterionis

P{Ỹit ≥ Rit } ≥ αit , for eachi and t, (3)

whereỸit denotes the random quantity of producti delivered
by periodt . Recall thatỸit has a meanYit given by (1).

To convert this stochastic constraint into a linear con-
straint involving only expectations, the cumulative output
Ỹit is modeled as a Poisson random variable.
e

n.
n

Remark 1 QOS Criterion The QOS criterion (3)
is equivalent to

Yit ≥ µit , for eachi and t (4)

where

µit = min

{
µ :

∞∑
n=0

(
P{Rit = n} · e−µ

∞∑
k=n

µk/k!
)

≥ αit

}
.

(5)

See Riaño et al. (2002) for justification and derivation.
The equivalent QOS criterion (4) is a linear inequality

of the release quantitiesxit ’s, since the expected outputYit

given by (1) is a linear function of thexit ’s. The µit ’s,
which are functions of the specified requirement probabilities
P{Rit = n}, can be computed directly from (5) and used
as input data for optimizing thexit ’s by the LP in the next
subsection.

2.5 Auxiliary Constraints

The last feature of the production system areauxiliary
constraintsrelated to resources, personnel scheduling, etc.,
that affect the production flows. The SPP model can contain
constraints that are linear functions of the release quantities
xit . For illustrative purposes, we will include the constraints

at ≤
I∑

i=1

(xit − xi (t−1)) ≤ bt , t = 2, . . . , T. (6)

This ensures a smoother production loading by bounding the
difference between release quantities in adjacent periods
Additional upper and lower bound constraints on release
quantities that one might use are

âit ≤ xit ≤ b̂it , or ãit ≤
t∑

s=1

xis ≤ b̃it .

Additional linear capacity constraints can also be incor-
porated to reflect manufacturing capacity, resource capacity
or WIP constraints.

2.6 LP Optimization

This subsection describes SPP as a linear program (LP)
for optimizing the release quantities for the production
system described in the preceding section. A dynamic
implementation of this linear program is discussed in the
next section.

For the system described above, the general aim is to
find optimal release quantitiesxit ’s that minimize the system
cost function (2) subject to the quality of service constraints
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(4), and the production smoothing constraint (6). Although
we consider here only the quality of service and productio
smoothing constraints, additional linear constraints on th
manufacturing capacity or WIP can be easily incorporated

Our approach to the problem is to use a dynamic
implementation of a linear program. The linear program
we will use is as follows.

min
xit ,uit ,zit

I∑
i=1

T∑
t=1

[
cit uit + hit zit

+h̄it

(
M∑

k=1

wi0(k) +
t∑

s=1

xis − Yit

)]
, (7)

such that

Yit =
M∑

k=1

wi0(k)Fi (t; k) +
t∑

s=1

xis Fi (t − s + 1)

Yit ≥ µit (8)

at ≤
I∑

i=1

(xit − xi (t−1)) ≤ bt

uit ≥ Rit − Yit

zit ≥ Yit − Rit , i = 1, . . . , I , t = 1, . . . , T,

xit , uit , zit are nonnegative.

The uit ’s and zit ’s are artificial variables introduced
to make the objective function linear. When the cost is
minimized, they are forced to be

uit = (Rit − Yit )
+ , zit = (Rit − Yit )

− .

Note that eitheruit or zit is 0, anduit + zit = |Rit − Yit |.
The LP above provides a “ static” optimization of the

release quantities for a fixed planning horizon. To use th
model in a simulation or for actual planning over a series
of time periods, one would run the LP in each time period
with updated information as described in the next section

3 IMPLEMENTATION OF THE MODEL

To represent demand driven production environments, in
corporating APS procedures in DES is a practical way o
translating customer demand into feasible input rates (Len
dermann et al. 2002). This section describes how the SP
model formulated as an LP in the previous section would
be used to generate production plans for a series of tim
periods in a simulation.

The model would naturally be implemented by arolling-
horizon procedureas follows. At the beginning of each time
period, the system would perform the following steps:

• Observe the production output from the previous
period and the current WIP quantitieswi0(k).

• Update the requirements for the nextT time periods
based on new demand forecasts and the previou
n
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period output (increase or decrease future requir
ments by backlogged products or extra finishe
products, respectively, from previous period).

• Run the LP with the current WIP and updated
requirements for the new time horizon to obtain
optimal release quantitiesxit .

• Release the quantitiesxi1 into the system for the
current production period (the optimal quantities
xit for periods t ≥ 2 are “forecasts” of future
release quantities).

This procedure would yield production release time
generated one period at a time, at the beginning of ea
simulated period.

Incorporating SPP in a DES model facilitates more rea
istic representations of supply chain models and dynamic
and enables better evaluations of alternative production
supply chain strategies. Figure 1 illustrates how this rollin
horizon SPP procedure can be incorporated with a conve
tional simulation model to extend the traditional scope o
simulation studies.

Figure 1: Extended Scope of Simulation Study:
Incorporating SPP with Conventional Models

As SPP explicitly accounts for the stochastic nature o
demand and lead times, DES is a practical approach to te
its performance. In Section 5, SPP is integrated with a DE
model like above to test its performance against two othe
planning procedures.

4 COMPARISON WITH MRP-TYPE
CONTROL POLICIES

To assess the quality of the SPP model, we compare it wi
two alternative planning models: a classical MRP mode
and a Myopic Requirements Planning (MyRP) model. Thi
section describes these models.

We consider aclassical MRP modelthat generates
production plans under the assumption that, for each typei
product, the lead time is a specified nonrandom constantLi

measured in terms of time periods, and its requirementsRit
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are not random. The general MRP philosophy is to releas
quantities in each period that would cover the requirement
in the nextLi periods. For simplicity, assume there are no
auxiliary constraints on the release quantities.

Specifically, at the beginning of each time period, the
system would perform the following steps for each typei
product:

• Observe the production output from the previous
period and the current WIP quantitieswi0(k).

• Update the requirements based on new deman
forecasts and the previous period output (increase o
decrease future requirements by backlogged prod
ucts or extra finished products, respectively, from
previous period).

• Compute the current release quantities using th
formula

xi1 = (RiL i −
M∑

k=1

wi0(k))+, i = 1, . . . , I ,

where RiL i is the requirement for the nextLi

periods.
• Release the quantitiesxi1 into the system for the

current production period.
Although this model generates production plans dy-

namically, the release quantities do not depend on costs
QOS. Practitioners, recognizing that there are productio
uncertainties, might choose conservative lead times to tr
to ensure that requirements are satisfied on time with
high probability. For instance, one might set the lead time
constant to beLi = µ + σ , when one believes the lead
time to be a random variable with meanµ and standard
deviation σ . However, conservative lead times result in
higher holding costs for finished products.

We also compare the SPP model with aMyopic Re-
quirements Planning(MyRP) model. We briefly describe
the model here. For a more detailed description, see (Riañ
et al. 2002). The MyRP model is a one-period look ahead
model where, at the beginning of each period, the WIP
and next period requirements are observed, and a manag
releases enough products to meet the requirements with
desired probability.

The output distribution function of each period is mod-
eled as a convolution of several binomial random distri-
butions, and approximated by a normal distribution with
respective mean and variance

µi = xi1Fi (1) +
M∑

k=1

wi0(k)Fi (1; k), (9)

σ 2
i = xi1Fi (t) [1 − Fi (1)]

+
M∑

k=l

(wi0(k)Fi (1; k) [1 − Fi (1; k)]) . (10)
d.
e
s
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-
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Since this model is used only for comparisons, we
assume that the requirements are not random. Then t
QOS constraint (3) can be modeled as

8

(
Ri1 − µi

σi

)
≤ 1 − αi1, i = 1, . . . , I . (11)

where8(·) denotes the standard normal cumulative distri-
bution function.

Consequently, the MyRP policy would be to choose the
release quantities to be the smallestxi1 that satisfies (11).

In summary, the MyRP would operate as follows. At
the beginning of each time period, the system would perform
the following steps for each producti :

• Observe the production output from the previous
period and the current WIP quantitieswi0(k).

• Determine the requirementsRi1 for the “next” pe-
riod based on demand forecasts and the previou
period output (increase or decrease the old require
ments by backlogged products or extra finished
products, respectively, from previous period).

• Release the quantitiesxi1 into the system for the
current production period, wherexi1 is the smallest
quantity that satisfies (11).

The prime consideration here is the QOS constraint
the lead time distribution is used in a limited way for a
one-period look ahead. In contrast, the MRP model doe
not use the lead time distribution, but implicitly attempts to
satisfy the QOS by inflating the lead time. Neither mode
uses costs to determine release quantities.

5 SIMULATION STUDY

In order to evaluate the SPP procedure with the two othe
MRP-like control policies in an integrated simulation envi-
ronment, a simulation model of a manufacturing network
shown in Figure 2 was constructed. As the focus is on
high-level planning, we use a single-stage lead time distr
bution to represent the time for several production stage
in the multi-station production network.

Figure 2: A Manufacturing Network

To implement the SPP procedure, the simulation mode
is interfaced with MOSEK (an optimization software) to
solve the LP model for each period as shown in Figure 3
At the start of each time period of the simulation, the LP is
solved for the optimal release quantities for the next T time
periods based on the observed output of the previous perio
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Figure 3 also illustrates how the MRP and MyRP mode
are integrated with the simulation model. The performan
measure used for the comparison is the total average co
which includes the late costs, early costs and in transit cos
for operating under each model’s policy.

Figure 3: Integration of the Three Plan-
ning Models with the Simulation Model

We simulated the operations of the manufacturing ne
work under the three planning models for a single produ
over T = 50 time periods. For each simulation scenario
we ran 50 replications. For each time period we simulate
the completion times of the release quantities determined
the lead time and residual lead time distributions. A com
mon lead time distribution assumption used in the literatu
(Sculli and Wu 1981) is the normal distribution. Here we
consider a normal lead time distribution with mean 2 an
variance 1, and a normal distribution with a larger mea
5 and variance 3. As the time periods are discretized, w
also consider a discrete distribution with cumulative prob
abilities (.1, .3, .7, .9, 1) to test the distribution effects o
the release patterns and costs.

To minimize distortions from initial settings like the
initial WIP, we considered the first 20 periods as warmu
and only collected data on costs and observed QOS for
last 30 periods.

In Section 5.1, we first study the characteristics o
the SPP model for various cost ratios and QOS levels.
Section 5.2, we study the release patterns of the three mod
(SPP, MRP, MyRP) and compare the total average costs
operating under each model.

5.1 Simulation Results for SPP Model

The operations of the manufacturing network was simulat
with the SPP planning procedure for a variety of cost ratio
and lead time distributions. Figure 4 shows the overa
ls
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release quantities under the SPP procedure with variou
cost ratios for the different lead time distributions when the
QOS level is set at 0.67. This level corresponds to meetin
the requirements at least two thirds of the time.

Figure 4: Total Release Quantity for Various Cost
Ratios for the SPP model, where QOS = 0.67

The release quantities are higher when the late costs a
high and lower when the early costs are high for the norma
distributed lead times. This is intuitive as more is released
when the late penalty costs is high and less is release
when it is expensive to be early. The release quantitie
for the discrete distribution are similar for the various cost
ratios. As the optimality of the solution to the LP can
only be affected when the cost coefficients or ‘production
rates’ are changed, in the case of the discrete lead time
the range of variation of the costs are still insufficient to
change the optimal solution at each period to a differen
extreme point of the solution space. This indicates that in
certain situations, the quality of service constraints are mor
crucial in determining the release quantities than costs.

Figure 5 plots the average cumulative release quantitie
for equal costs with varying QOS levels for the discrete
lead time distribution. As expected, the average releas
quantities increase as the QOS level increases. Simila
trends are seen for the normal(2,1) and normal(5,3) lea
time distributions.

5.2 Simulation Results for SPP, MRP, MyRP Models

To compare the pattern of releases, Figure 6, Figure 7 an
Figure 8 show the cumulative release quantity graphs for
single simulation run for the SPP model with equal costs
the classical MRP model and the MyRP models when the
QOS level is set at 0.67. For the classical MRP model, the
lead time is set to a constantµ+1 for the normal distributed
lead times. This corresponds approximately to the 71st and
84th percentile of the normal(5,3) and normal(2,1) lead time
distributions respectively. For the user defined lead time
the MRP lead time is set equal to 3. This corresponds to
the 70th percentile of the lead time distribution.
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Figure 5: Discrete Lead Time: Average Cu-
mulative Release Quantities for Period 50 for
Equal Costs, at Different QOS Levels

Figure 6: Discrete Lead Time: Cumulative
Release Quantity for SPP Model, MRP Model
and MyRP Model, where QOS = 0.67

The cumulative release quantities are smoother for th
SPP model as compared to the MyRP model. The MyRP
model does not account for the requirements for later period
and experiences large surges in release quantities when t
WIP becomes insufficient to fulfill the requirements. The
release quantities for the MRP model is parallel to the
requirements, but shifted back to account for the constan
lead time and initial WIP in system.

Next, we observe the total average costs for the variou
models. Table 1 shows the relative costs of the SPP mod
with respect to the MRP and MyRP models for differentQOS
levels. The SPP model has a much lower expected cost tha
the MyRP model (at least 25% less than the MyRP mode
for the different distributions and QOS levels considered)
This is because the SPP plan holds less finished invento
and WIP. The costs for the MRP model is comparable to
the costs of the SPP model for the discrete distribution
where the lead time and variance is small. For the norma
distributed lead times, the expected costs from the SPP pla
is at least 10% less than the MRP plans. As the averag
lead times and variances become larger, without accountin
e
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Figure 7: Normal(2,1) Lead Time: Cumulative
Release Quantity for SPP Model, MRP Model
and MyRP Model, where QOS = 0.67

Figure 8: Normal(5,3) Lead Time: Cumulative
Release Quantity for SPP Model, MRP Model
and MyRP Model, where QOS = 0.67

for the uncertainty in the lead times, the costs for the MRP
model becomes higher.

From the experiments conducted, we see that the SP
model outperforms the MyRP model in terms of costs. Th
releases for the SPP model are smoother than the relea
of the MyRP model. The SPP model has a cost advanta
over the classical MRP model as the lead times becom
larger and more uncertain, as it is more adaptive to the lea
time uncertainties.

6 CONCLUSIONS

In this paper, we have described a dynamic stochastic o
timization planning model that determines when to releas
raw materials into a production system or supply chain ne
work. The model is applicable to a variety of systems whos
lead times are random variables distributions of which ca
be estimated under “typical” operating conditions. As ou
approach is dynamic, it is flexible to various review poli-
cies, customer quality levels and costs. We have provide
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Table 1: Relative Total Costs Comparison of SPP Model with Respect to MRP,
MyRP Models (CostS P P/CostM R P) at Various QOS Levels

User Defined Normal (2,1) Normal (3,1) Normal (5,3)
MRP MyRP MRP MyRP MRP MyRP MRP MyRP

SPP.9 1.068 0.543 0.841 0.754 0.908 0.144 0.829 0.069
SPP.67 1.018 0.574 0.800 0.756 0.897 0.157 0.847 0.149
SPP0 0.997 0.460 0.788 0.570 0.856 0.149 0.770 0.327
t

d

r

d
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-

.
ll
a procedure for the practical implementation of the mod
in an extended simulation framework. We have also pr
sented initial simulation results that show that the model
more realistic than MRP models and determines less cos
production plans.

Future work includes the development of more gener
SPP models for production networks with multiple station
with several severs, explicit routing of products, and a
sembly of products. The lead times for these model mu
be formulated in more detail in terms of these network fe
tures, and the queueing delays depending on network loa
Successive approximation procedures developed in Ria
(2002) can be used to compute lead time distributions
these general cases, and applied in the dynamic optimiza
approach in the same spirit as the current SPP model.
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