
Proceedings of the 2003 Winter Simulation Conference 
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds. 
  

 
 
AUTOMOBILE MANUFACTURING SUPPLY CHAIN SIMULATION IN THE GRIDS ENVIRONMENT 

 
 

Gary Tan 
Na Zhao 

 
School of Computing 

National University of Singapore 
3 Science Drive 2 

Singapore 117543, SINGAPORE 
  
 

 Simon J. E. Taylor 
 

Department of Information Systems and Computing 
Brunel University  

Uxbridge UB8 3PH, U.K. 
  
 
 

 

ABSTRACT 

A Supply Chain is the series of activities that an organiza-
tion uses to deliver value to its customers. In today’s com-
petitive environment, the globalization of markets has rap-
idly substituted the traditional integrated business. The 
competitive success of an organization no longer depends 
only on its own efforts, but relies on the efficiency of the 
entire supply chain. Therefore, building an effective supply 
chain is fast becoming paramount in today’s marketplace. 
Distributed Supply Chain (DSC) Simulation has been iden-
tified as one of the best means to test and analyze the per-
formance of supply chains. The Generic Runtime Infra-
structure for Distributed Simulation (GRIDS) is a 
middleware that supports the reuse and interoperation of 
DSC simulations. This paper reports the experience on 
employing the GRIDS to support the distributed collabora-
tion of an automobile manufacture supply chain simula-
tion. Several advantages of GRIDS are also discussed here 
which make it an ideal middleware for DSC simulations. 

1 INTRODUCTION 

A Supply Chain is the series of activities that an organiza-
tion uses to deliver value, either in the form of a product, a 
service, or a combination of both, to its customers (Archi-
bald 1999). In today’s globalization environment, the in-
tense competition has driven the traditional monolithic in-
tegrated business to a more efficient practice of 
outsourcing. The trend of globalization of markets has 
forced organizations to rely on numerous external firms or 
suppliers to deliver value to the ultimate customers. The 
competitive success of an organization no longer depends 
only on its own efforts, but relies on the efficiency of the 
entire supply chain. Therefore, building an effective supply 
chain is fast becoming paramount in today’s marketplace.  

The effort of managing and coordinating the activities 
between separate entities is referred to as Supply Chain 
Management (SCM). A supply chain is a complex system 
 
with large sources of uncertainties. As a result of the mix of 
outside firms, it is often difficult to know the impact of 
changes or poor performance on the supply chain. Therefore 
successful SCM requires a carefully defined approach to test 
and analyse the performance of the chain. Distributed Sup-
ply Chain (DSC) Simulation has been identified as one of 
the best means to perform what-if analysis on supply chains. 
It offers analysts and decision-makers a means to replicate 
the behaviors of complex systems. There is also a reduction 
of costs and time of building a new model, which is derived 
from the reuse of existing models. Therefore, companies can 
react faster to the global competition by using this approach 
to investigate efficiency in their supply chains and imple-
ment constant improvements on them.  

The Generic Runtime Infrastructure for Distributed 
Simulation (GRIDS) is a middleware that supports the re-
use of capabilities available in different simulations and the 
possibility of distributed collaborative development of a 
complex DSC simulation application (Sudra and Taylor, 
2002). It is a lightweight component-based runtime infra-
structure with extensible features and package interfaces. It 
originally catered to the needs of DSC simulation and is 
rapidly growing to be widely applicable across a full range 
of simulation application areas, including education, train-
ing, transportation and so on.  

In this paper, we report the experience on how to de-
velop an automobile manufacture supply chain simulation 
and integrate it with the GRIDS environment. The GRIDS 
architecture and GRIDS Object Exchange Model Template 
(OEMT) are briefly introduced in Section 2. Section 3 ex-
plains the theory background (JIT Production theory) and 
provides a conceptual model of the automobile manufac-
ture supply chain simulation. Section 4 of the article covers 
the development process of the simulation system in 
GRIDS environment. Section 5 reports and analyzes the 
execution results of the automobile manufacture simula-
tion. The experience we get from employing GRIDS to 
support the distributed collaboration of DSC supply chain 



Tan, Zhao, and Taylor 

 
simulation is presented in Section 6. This paper ends with 
the conclusion and future work in Section 7. 

2 THE GENERIC RUNTIME  
INFRASTRUCTURE FOR  
DISTRIBUTED SIMULATION (GRIDS) 

Because the most attractive advantages of the distributed 
simulation approach are its modularity and the ability to 
mix and match the platforms and simulations to provide a 
business solution, the interoperability problem must be 
solved. Probably the most effective approach would be to 
use common programming interfaces and standard proto-
cols that provide a seamless manner of access to various 
simulations that reside on different platforms. Such stan-
dardized interfaces and protocols have come to be referred 
to as middleware infrastructure. The middleware, which 
cuts across all simulations, has the capability to hide the 
complexities and disparities of different simulations. It is 
used to overcome incompatibilities of various simulation 
products and is responsible for the communication between 
individual simulations. The Generic Runtime Infrastructure 
for Distributed Simulation (GRIDS) is such a middleware 
for reuse and interoperation of simulations.  

2.1 GRIDS Basic Architecture 

The GRIDS project was initiated in 1997 with the goal to 
develop an extensible component-based runtime infrastruc-
ture that could be used to coordinate the activities of dis-
tributed simulation components using a message-based 
communication scheme and to investigate issues in distrib-
uted simulation and how they impact on simulation meth-
odology and practice. Instead of the static and fixed func-
tionality advocated by the High Level Architecture (HLA) 
RTI specification, the GRIDS provides the basic simula-
tion services (communications, simulation interface and 
data services) to connect simulation models; and a mecha-
nism to add extra functions (thin agents services) where 
appropriate. The HLA is a general purpose middleware ar-
chitecture developed under the leadership of the Defense 
Modeling and Simulation Office (DMSO) to support reuse 
and interoperability across the large numbers of different 
types of simulation. The differences between HLA RTI 
and GRIDS are discussed in (Sudra and Taylor 2002). The 
extensibility is the principal difference between the GRIDS 
and other approaches to distributed simulation middleware. 

The middleware is composed of the following major 
elements: 

• 

• 

Boot Server: a single process used to coordinate 
the initialization, execution and termination of a 
distributed simulation. It is equivalent to the Cen-
tral Runtime Component (CRC). 
Client: used by the federate to interact with the 
other federates in the federation (in GRIDS, as 
GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Boot Server

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

GRIDS Client

Simulation/Federate

Thin
Agent

Service

Thin
Agent

Service

Thin
Agent

Service

Meta
Database

• 

• 

with common distributed simulation terminology, 
a single simulation component that participates as 
a part of the entire simulation is called a federate, 
while the entire simulation is called a federation). 
It is equivalent to the Local Runtime Component 
(LRC).  
Thin Agent: the GRIDS term which provides an 
extensible component service such as perform-
ance optimization, Time Management, Data Dis-
tribution Management and other special simula-
tion services.  
Metadatabase: the general data structure in 
GRIDS to store information.  

For a more detailed discussion of GRIDS and the thin 
agent, the reader is referred to (Sudra, Taylor and Janahan 
2000a, 2000b) and (Taylor, Saville and Sudra 1999). 

Figure 1 illustrates graphically the middleware’s setup 
in a typical GRIDS federation. Each simulation federate is 
connected to a GRIDS client via an interface. Thin agents 
are distributed to participating clients and instantiated to 
provide the required services.  

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Figure 1: A Typical GRIDS Federation 

2.2 GRIDS Object Exchange Model  
Template (OEMT)   

In a distributed simulation application, each federate is 
standalone. The interoperation among them is realized 
through the exchange of information. Normally, the pass-
ing of information is built upon the message-passing con-
cept. However, the message-passing is not enough to sat-
isfy all the requirements of distributed simulation. In some 
cases, federates produce objects instead of messages. For 
example, in a DSC simulation, the interactions among fed-
erates are object instances that are produced, sent and re-
ceived by the federates from one another. Employing ob-
ject-passing in DSC simulation area meets this requirement 



Tan, Zhao, and Taylor 

 
efficiently. It is easier to keep the details of the object and 
to establish a standard whereby objects can be recognized 
uniquely. In addition, there may be cases where variables 
are required to be input to the object to produce particular 
output or where the federate is interested in some interme-
diate information of the object which requires passing 
some parameters into the object before getting the results. 
The object-passing satisfies this requirement by allowing 
the provision of methods that the receiving federates may 
invoke to enter variables and get expected information.  

One important issue of distributed simulation is how 
to represent parameters and results in messages or objects 
so that they may be understood commonly by different 
federates in the federation. There will be no problem if all 
the federates are programmed in identical programming 
languages on the same type of machines with the same op-
erating system. However, if there are differences in these 
areas, the way that numbers and even text are represented 
in different federates might be different. The best way to 
solve this problem is to provide a standard format, so that 
the native parameters on any machine can be converted to 
the form of the standard representation. The HLA OMT is 
such a standard to describe the HLA object model with in-
dividual federates or federation. It focuses on the require-
ments and capabilities for federate information exchange 
through message-passing and interactions. However, the 
OMT does not provide appropriate definitions for the fore-
going exchange of objects. To aptly describe the exchange 
model, we introduced the Object Exchange Model Tem-
plate (OEMT) of GRIDS.  

2.2.1 OEMT 

The GRIDS Object Exchange Model Template (OEMT) 
defines the format and syntax for recording information in 
GRIDS distributed simulation object models, as well as 
mandatory specific data that defines each model uniquely 
from others (Tan, Ng, and Taylor 2002). It is tasked to 
document object exchange models, which emulate as close 
to reality as possible, the actual entities passed between the 
simulation federates. The OEMT is also particularly useful 
for implementing Data Distribution Management (DDM) 
for distributed simulations in GRIDS, which reduces the 
network latency by filtering the data and sending output 
objects only to federates that need them.  

2.2.2 OEMT Components 

GRIDS Object Exchange Models are composed of a group 
of inter-related fields specifying information about the 
model. The template for the core of a GRIDS object ex-
change model shall use a tabular format for certain fields 
of the model, and shall consist of the following fields: 

• Name of Model: to record the product name that 
the model is emulating. 
• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Model Description Link: to record the URL link if 
the description of the model is located somewhere 
else on the internet. “Model Description Link” 
cannot co-exist with “Model Description” and 
“Technical Details”. 
Model Description: to record a detailed descrip-
tion of the purpose of this model and the product. 
Name of Parent Object: catering to the inheritance 
characteristic of object-oriented programming, to 
record the name of parent object of the current 
model. 
Names of Children Objects: to record the names 
of children objects of the current model. 
Technical Details: to specify the mandatory object 
attributes and methods that must be implemented 
of this model and the optional object components 
that exist in complex model. 
For each object attribute, the name, description, 
accessibility, and the data type of the attribute are 
required.  
For each object method, the name, description, 
accessibility by the public, parameters if any (pa-
rameter name and data type), and the return data 
types of the method are required.  
If object contains certain components, for each 
object component, the name, description and at-
tributes description of the component are required. 
Time Representation: to specify the timestamp 
and lookahead of the instances of the object which 
are used to synchronize all the federates in the 
federation. This field is described only when Time 
Management Thin Agent is used. 
Attribute Field Format Representation: to specify 
the data structure of object attributes used in ob-
ject model implementation.  
General Details of each Implemented Object: to 
specify each object that has been implemented us-
ing this model, the details of the company and the 
location of the object in the form of an URL.  

To facilitate the internet transfer and storage of object 
exchange model, the OEMT also has an XML format to 
carry the foregoing information. The DTD schema of the 
OEMT is given in the Appendix. 

3 AUTOMOBILE MANUFACTURE  
SUPPLY CHAIN MODEL 

In this section, we describe the design of a typical DSC 
simulation, an Automobile Manufacture Supply Chain 
Simulation, in the GRIDS environment. This case study 
investigates the relationship between the suppliers and the 
automaker. An automaker factory and four supplier facto-
ries are developed to construct a simulation federation. The 
suppliers provide parts to the automaker based on Just-In-



Tan, Zhao, and Taylor 

 
Time parts delivery, so that the minimum inventory and 
on-the-wheel inventory can be achieved.  

3.1  JIT Production Theory Overview 

The Just-In-Time (JIT) production theory of manufacturing 
supply chain (also known as lean production or stockless 
manufacturing) is a management philosophy that strives to 
increase value added and eliminate sources of manufactur-
ing waste by producing the necessary parts in necessary 
quantities at the necessary time. The benefits of JIT in-
clude improved delivery, low inventory levels, reduced 
operating costs, greater performance, higher quality and 
increased flexibility.  

A key point of successful JIT is maintaining low inven-
tory levels, which leads to faster reaction to customer’s de-
mands. Ideally, the supplier should produce a part just before 
the part is needed by a customer. In conventional production 
processes, suppliers build products according to a self-
ordained and pre-defined schedule. No consideration of cus-
tomers’ requirements is made. As a result, suppliers are 
normally left with many weeks or even months of inventory. 
What is more serious is that the large inventory may not 
even ensure having the specific products the customers 
want. In small-batch production (JIT), by contrast, custom-
ers encourage suppliers to deliver only what is needed by the 
assembly plant at a particular time, even if this means par-
tially filled trucks. Thus, products move rapidly through the 
suppliers’ plant and to their customers, and suppliers main-
tain much less inventory. A small-batch production not only 
means lower inventory maintaining costs, but also brings 
lots of other important benefits. Firstly, suppliers can re-
spond more quickly to changes in customers’ demand. They 
can identify any defects in products quickly and thus have 
fewer potentially defective parts that need to be reworked 
(Liker and Wu 2000). Secondly, fewer people are needed to 
perform wasteful activities, such as moving large batches of 
inventory from place to place in the plant. Productivity rises 
via labour force saving.  

3.2 Simulation System Conceptual Model 

The distributed automobile manufacture supply chain 
simulation system is a model representation of the real life 
process of a typical DSC. This system, which is called 
AutoSim Federation, consists of one automaker, the Car 
Assembly Factory where the cars are assembled, and four 
suppliers, the Tyre Factory, the Engine Factory, the Car-
body Factory and the Lamp Factory which supply neces-
sary parts to the Car Assembly Factory. These five simula-
tion models (federates) run separately and cooperate 
through the exchange of objects (product entities). The in-
teraction relationship of the five semi-independent feder-
ates in the system is shown in Figure 2.  
This system is designed based on the JIT Production 
theory. According to the JIT theory we introduced in sec-
tion 3.1, the Car Assembly Factory does not keep large in 
ventory, it sends an order to the corresponding Component 
Factory when a certain kind of component is lacking and 
expects immediate supply. A late supply will result in de-
lay of car production. To avoid this harmful condition, the 
 

Figure 2: Models Interaction Relationship 
 

Component Factory, when it receives an order, must fulfill 
the order and deliver parts according to the demand as soon 
as possible. But, given that it takes time to machine the 
parts, buffer stock is required to keep the Car Assembly 
Factory from waiting. The problem that needs to be ad-
dressed is how fast each Component Factory should pro-
duce parts so that it can satisfy the requirement of the Car 
Assembly Factory and keep minimum buffer stock at the 
same time. In this system, the Component Factories will 
adjust their production speed dynamically according to the 
order number and current buffer stock size. The pseu-
docode of the Component Factory algorithm is as follows:  

 
While simulation not terminated 
Waiting for next order (event) 
New order object arrive 
Extract the PartsNeeded and timeMark from 
order object  
Estimate current produce capability  
Produce parts  
Advance simulation time 
Deliver parts to Car Assembly Factory  
Decide production speed for next production 
cycle 
Adjust production speed 

Endwhile 



Tan, Zhao, and Taylor 

 
4 SIMULATION IMPLEMENTATION PROCESS  

To implement the automobile manufacture supply chain 
simulation within GRIDS environment, the first step is to 
decide the messages and objects that are produced and ex-
changed in the federation, and the object publish-subscribe 
relationships of the federates should also be confirmed. Then 
the object exchange models are specified using the OEMT 
standard so that they can be commonly understood by all the 
GRIDS federates. After that, the execution requirements of 
the federation are considered to determine which GRIDS 
thin agent services are needed to support the simulation. 
Certain documents are created to assist these services. Fi-
nally, the simulation system is developed, integrated and 
tested before executing the system to get the results. These 
processes are detailed separately in this section.  

4.1 Object Exchange Model Specification 

In this simulation system, the federates keep sending and 
receiving objects between one another during their life 
time. The objects include the product objects (parts) trans-
ferred from the four Component Factories to the Car As-
sembly Factory, and the order object which the Car As-
sembly Factory sends to the Component Factories to notify 
the order demand of parts. The GRIDS OEMT is employed 
to specify these objects. The template has a certain set of 
information to be filled in. The basic methods and vari-
ables are made known in this template, so that other feder-
ates can access them appropriately.  
 Tables 1 to 5 use the TyrePackage as an example to 
show the use of the OEMT in the system design. The 
TyrePackage object is published by the Tyre Factory Fed-
erate and is subscribed by the Car Assembly Factory. Each 
package contains many tyres. We can regard it as a truck 
which delivers tyres to the Car Assembly Factory.  

The OEMT specifies the attributes, methods and other 
information of the TyrePackage object.  

 
Table 1: Exchange Object Information 
Object Exchange Model Template (OEMT) 

Category Information 
Name of Model TyrePackage 

Model Description Link Nil 

Model Description 

The TyrePackage represent the ob-
ject transferred from the Tyre Fac-
tory to the Car Assembly Factory. 
Each package encapsulates numbers 
of tyres as components.  

Name of Parent Object  Nil 
Names of Children  

Objects Nil 

Technical Details …… 
Attribute Field Data Type DOM Tree 
General Details of each 

Implemented Object …… 

 

Table 2: Exchange Object Attributes Table 
Mandatory Object Attributes Table 

 Category  Information 

1 Attribute Name PackageSize 
 Attribute Description Max number of components  

the package can carry. 
 Attribute Accessibility private 

 Data Type int 

2 Attribute Name CompType 

 Attribute Description Stores the type of components  
in the package. 

 Attribute Accessibility private 

 Data Type String 

3 Attribute Name TimeMark 

 Attribute Description Stores the time stamp of the  
package object 

 Attribute Accessibility private 

 Data Type int  

 
Table 3: Exchange Object Component Table 

Object Component Table 
Category Information 

Component 
Name 

Tyre 

Component 
Description 

Tyre is the component in Tyre package. 

  1 Component Attribute 
Name 

CompID 

 Attribute Description Index of individal 
tyre 

 Attribute  
Accessibility 

private 

 Data Type int 
 2 Component Attribute 

Name 
UTQG 

 Attribute Description The Uniform Tire 
Quality Grade 
(UTQG) labelling 
 system is a rating  
for tread-wear, trac-
tion, and tempera-
ture resistance. 

 Attribute  
Accessibility 

private 

 Data Type String 
  3 Component Attribute 

Name 
MaxLoad 

 Attribute Description Maximum load  
 Attribute  

Accessibility 
private 

 Data Type float 
  4 Component Attribute 

Name 
MaxInflationPress 

 Attribute Description Maximum inflation 
press 

 Attribute  
Accessibility 

private 

Component 
Detail 

 Data Type float 
 



Tan, Zhao, and Taylor 

 

Table 4: Exchange Object Methods Table 
Mandatory Object Methods Table 

 Category Information 
1 Method Name getCompNode 
 Method Description get a component Node from Tyre-

Package 
 Method Accessibility public 
 Method Return Data 

Type 
XML DOM Node 

2 Method Name getCompNodeAttribute 
 Method Description extract String attribute value from a 

component Node 

 Method Accessibility public 
Parameter Name CompNode 
Parameter Data 
Type 

XML DOM 
Node 

Parameter Name attrName 

 Method Parameters  

Parameter Data 
Type 

String 

 Method Return Data 
Type 

String 

3 Method Name getPackageSize 
 Method Description get the capacity of the tyrepackage 
 Method Accessibility public 
 Method Return Data 

Type 
int 

4 Method Name getTimeMark 
 Method Description get the time mark of the TyrePackage 

object 
 Method Accessibility public 
 Method Return Data 

Type 
int 

5 Method Name getCompType 
 Method Description get the compType attribute of the tyre-

package 
 Method Accessibility public 
 Method Return Data 

Type 
String 

 
Table 5: General Details of Exchange Object 

General Details of Each Implemented Object 

Category Information 
Company Name NUS SOC 
Company Contact Info (65) 68744366 

First Name Na Company Contact Person  
Last Name  Zhao 

Company Email Address Nil 

Version 1.1 

Day 30 
Month 12 

Date of Version 

Year 2002 
Implementation Platform Java 

Reference Link to  
Implemented Object 

Nil 

 
The Car Assembly Factory also subscribes to the En-

ginePackage, CarbodyPackage, LampPackage objects 
from the other three Component Factories and publishes 
order objects at the same time. The four children objects 
of the order object - TyreOrder, EngineOrder, CarBody-
Order and LampOrder are subscribed respectively by the 
Component Factories. The object specifications for the 
above exchange objects in this system are similar to that 
of the TyrePackage and are omitted due to the limited 
space. The object specifications provide the uniform 
meaning of each exchange object, so that the federates 
can access the objects and extract required information 
from them through calling the methods.   

4.2 Exchange Object Implementation 

To implement the object exchange model, the attributes of 
TyrePackage object take a unique hierarchical structure -  
Document Object Model (DOM) Tree. The DOM is a 
W3C product to facilitate XML file manipulation by pars-
ing it into a computer-friendly tree structure (DOM 2002). 
As Figure 3 shows, the attributes and components de-
scribed in OEMT are converted to the DOM Tree format. 

 

 
Figure 3: DOM Tree Framework 

 
 The value of each attribute or component can be ac-

cessed by invoking the methods of the object. For example, 
when the automaker receives the TyrePackage object, it can 
get the package size or a single tyre through invoking the 
methods “getPackageSize” or “getCompNodeAttribute”, 
which are described and acknowledged in the OEMT 
method table. 

4.3 Integration with GRIDS 

To meet the interoperation requirement of the system, the 
GRIDS is used as the distributed simulation middleware to 
integrate the federates together. It integrates seamlessly with 
Java’s Object Serialization technology, enabling object-
passing between remote federates. The timely transfer of ob-
jects between the elements of the automobile manufacture 
supply chain is the responsibility of the GRIDS. To connect 
the GRIDS Client, the federates are required to realize two 
interfaces: SimInterface and SimStartInterface. A “.DDM” 
file is created for each federate to declare the publication or 
subscription of objects. Each federate keeps certain attrib-
utes such as netPort, federateName and a clock to record its 
current “time”. These publication, subscription information 
and namespace will be used in the future to register to the 
Boot Server. The Data Distributed Management thin agent is 



Tan, Zhao, and Taylor 

 
employed to control the routes of objects transfer. Figure 4 
shows the makeup of an individual federate. 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 4: Federate Makeup with GRIDS Client 

5 EXECUTION AND RESULT ANALYSIS 

First of all, the GRIDS is initialized by starting the Boot 
Server. Then individual simulation nodes register to the 
boot server when the federate starts simulation through in-
voking GRIDS system functions “initSim” and “startSim”. 
The boot server builds up the namespace of all the clients 
registering, and builds a central entity list of all the ex-
change objects in the simulation with the information of 
their publishers and subscribers. Upon a simulation “Start” 
event, the boot server broadcasts to all registered clients 
the entire entity list. The entity list is stored in the internal 
database on each GRIDS client. Once all entity lists and 
namespaces are broadcast to the individual clients, the 
server issues a “go” command to all the clients, signaling 
the start of the simulation. At this point, the server ceases 
its interactions with the clients. The clients then communi-
cate directly as necessary in a peer to peer fashion to other 
nodes in the simulation.  

For the setup, Six PIII 700 MHz PCs with 256 MB 
RAM are used to run the whole system. One PC is used to 
run the GRIDS Boot Server; the other 5 PCs each carry 
one federate. The simulation terminates after 500 cars were 
produced in simulation time of 1356 hours and 18 minutes. 
The average car assembly time is about 2 hours and 43 
minutes per car. It was found that the Car Assembly Fac-
tory spent 97 hours and 12 minutes waiting for parts. The 
delay rate was 7.2%. This delay can be avoided by employ-
ing a safe stock in the Car Assembly Factory. Figures 5 
and 6 are two graphs that show the fluctuation of the stock 
size and the production time in the Carbody Factory and 
the Tyre Factory throughout the production process.  

During the production process, the Carbody Factory re-
ceived 141 orders from the Car Assembly Factory when 
the Tyre Factory fulfilled 87 orders. This difference is due  
 

 
Figure 5: Carbody Factory Execution Result 

 

 
Figure 6: Tyre Factory Execution Result 

 
to the different number of parts required in the order by 
considering the volume of parts and capacity of delivery 
tools in real life. The production time is extended (produc-
tion speed increase) by a given coefficient (different for 
each factory according real life experience) when the stock 
is close to maximum capacity and is decreased when the 
order demand cannot be satisfied. As we can see in figures 
5 and 6, the ability to automatically adjust production time 
makes the stock size fluctuate within a certain range. Other 
factors such as the random defect rate, order demand, dif-
ferent inventory capacity and so on also affect the wave pe-
riod and form of the curve. Comparing the two Figures 
above, the stock size of the Carbody Factory fluctuates 
faster than the Tyre Factory. The main reason is because 
the inventory capacity of the Carbody Factory is much 
smaller than the Tyre Factory. The production time of the 
Tyre Factory is also more stable. (Note: the exceptional 
drop of stock size in Tyre Factory around time 3000 is due 
to the fact that the defect rate of previous batch of tyres is 
abnormally high. This conclusion is made via analysis of 
the factory’s production record.) 



Tan, Zhao, and Taylor 

              
 
6 EXPERIENCE GAINED 

6.1 GRIDS Federation Development Process 

From the experience we obtained from the development of 
the automobile supply chain simulation, the GRIDS federa-
tion development process can be described in six steps as 
follows: 

1. Define federation objectives; 
2. Develop federation conceptual model;  
3. Design federation (particular OEMT object speci-

fication development);  
4. Develop federation;  
5. Integrate and test federation;  
6. Execute federation and results analysis.  
This series of activities is necessary to design and 

build the GRIDS federation. The six steps need not be per-
formed in a strictly sequential manner. A spiral develop-
ment approach might be more effective.  

6.2 Benefits of Using GRIDS 

The automobile manufacture simulation case study proved 
GRIDS as an alternative for HLA with simpler architecture 
and extensibility. The GRIDS has several advantages 
which make it an ideal middleware infrastructure for DSC 
simulations: 

• 

• 

• 

• 

• 

It supports high extensibility in several levels 
from user-defined message types to functionality 
extensions via the thin agents and internal data 
storage extensions via the MDB interface. Func-
tionality extensibility via thin agents is the key 
feature of GRIDS. This property allows additional 
services required for a DSC or other types of 
simulation are easily and rapidly developed and 
dynamically added in.  
It reduces the costs and time for building a new 
model, which is derived from the GRIDS’s ability 
to integrate an array of existing component-based 
simulation models. 
It is a light-weight and portable middleware and 
converting an existing application to use GRIDS is 
comparatively easy. The application interface 
within GRIDS is in the form of two basic object-
oriented interfaces that must be implemented dur-
ing development an application: the SimInterface 
(equivalent to the federate ambassador) and the 
GridsInterface (equivalent to the RTI ambassador).  
It supports peer-to-peer communication between 
federates. The traffic bottleneck is avoided be-
cause there is no central server that handles com-
munications. 
The architecture is easy to understand and hence, 
easy to learn and grasp. 
• The fault tolerance level is high because an error 
in a single node does not affect the execution of 
other nodes. 

7  CONCLUSION AND FUTURE WORK 

GRIDS, representing an early adopter of the component RTI 
philosophy, provides an extensibility mechanism to add ad-
ditional service components in the form of thin agents and 
package interfaces capable of supporting the demands of dis-
tributed simulation (Sudra and Taylor 2002). It is a powerful 
infrastructure for implementing various types of simulation, 
especially DSC simulation due to its lightweight and ease of 
extensibility. This paper presented an implementation of an 
automobile manufacture supply chain simulation in the 
GRIDS environment. We have shown how to develop a 
component-based supply chain simulation and integrated it 
with GRIDS middleware. The experience gained from the 
case study paves the way for prospective users in using 
GRIDS in their simulations.  

The current GRIDS and OEMT are built using the 
Java language. Our future work will realize interfaces to 
other programming languages, so that it can fit more simu-
lation models from different organizations. An online web 
database, the Object Exchange Model Repository (OEMR) 
will also be developed as a central location where all object 
exchange models’ information is stored to facilitate the re-
use of object models. 

APPENDIX  

Below is the DTD schema for the OEMT: 
<!ELEMENT objectModel (modelName, parentObjName?,  
 childrenObjName*, modelLink|(description, technicalDetails),                          
 time?, attrFieldDataType?, implementedObjectDetails*)> 

<!ELEMENT modelName (#PCDATA)> 
<!ELEMENT parentObjName (#PCDATA)> 
<!ELEMENT childrenObjName (#PCDATA)> 
<!ELEMENT modelLink (#PCDATA)> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT technicalDetails (objAttr+, objectComponent*  
 ,objMethod*)> 

<!ELEMENT objAttr (attrName, attrDescription, attrAccess,  
attrDataType)> 

<!ELEMENT attrName (#PCDATA)> 
<!ELEMENT attrDescription (#PCDATA)> 
<!ELEMENT attrAccess (private|protected|public)> 
<!ELEMENT attrDataType (#PCDATA)> 

<!ELEMENT objectComponent (ComponentName,  
 CompDescription, CompDetail)> 

<!ELEMENT ComponentName (#PCDATA)> 
<!ELEMENT CompDescription(#PCDATA)> 
<!ELEMENT CompDetail (CompAttr+)> 

<!ELEMENT CompAttr (attrName, attrDescription,  
 attrAccess, attrDataType)> 
<!ELEMENT attrName (#PCDATA)> 
<!ELEMENT attrDescription (#PCDATA)> 
<!ELEMENT attrAccess (private|protected|public)> 
<!ELEMENT attrDataType (#PCDATA)> 

<!ELEMENT objMethod (methodName, methodDescription,  
 methodAccess, methodParameters, methodReturnDataType)> 



Tan, Zhao, and Taylor 

 

<!ELEMENT methodName (#PCDATA)> 
<!ELEMENT methodDescription (#PCDATA)> 
<!ELEMENT methodAccess (private|protected|public)> 
<!ELEMENT methodParameters (pName,pDataType)*> 

<!ELEMENT pName (#PCDATA)> 
<!ELEMENT pDataType (#PCDATA)> 

<!ELEMENT methodReturnDataType (#PCDATA|void)> 
<!ELEMENT time (timeStamp?, lookahead?)> 

<!ELEMENT timeStamp (dataType, semantics)> 
<!ELEMENT dataType (#PCDATA)> 
<!ELEMENT semantics (#PCDATA)> 

<!ELEMENT lookahead (dataType, semantics)> 
<!ELEMENT dataType (#PCDATA)> 
<!ELEMENT semantics (#PCDATA)> 

<!ELEMENT attrFieldDataType (#PCDATA)> 
<!ELEMENT implementedObjectDetails (companyName,  
 companyContactInfo, companyContactPerson, companyEmail, 

      version, versionDate, referenceLink+) 
<!ELEMENT companyName (#PCDATA)> 
<!ELEMENT companyContactInfo (#PCDATA)> 
<!ELEMENT companyContactPerson (firstName,  
lastName)> 

<!ELEMENT firstName (#PCDATA)> 
<!ELEMENT lastName (#PCDATA)> 

<!ELEMENT companyEmail (#PCDATA)> 
<!ELEMENT version (#PCDATA)> 
<!ELEMENT versionDate (day, month, year)> 

<!ELEMENT day (#PCDATA)> 
<!ELEMENT month (#PCDATA)> 
<!ELEMENT year (#PCDATA)> 

<!ELEMENT implementationPlatform (#PCDATA)> 
<!ELEMENT referenceLink (#PCDATA)> 

REFERENCES  

Archibald,G., N. Karabakal, N. and P. Karlsson, P. 1999. 
Supply Chain vs. Supply Chain: Using Simulation to 
Compete Beyond the Four Walls. Proceedings of the 
1999 Winter Simulation Conference, 1207-1214. 

Document Object Model (DOM) Level 3 Core Specifica-
tion Version 1.0. 2002. W3C Working Draft 22 Octo-
ber 2002. 

Liker, J.K. and Y. Wu. 2000. Japanese Automakers, U.S. 
Suppliers and Supply-Chain Superiority, Sloan Man-
agement Review, Fall 2000. 81-93. 

Sudra, R., S.J.E. Taylor and T. Janahan. 2000a. Distributed 
Supply Chain Management in GRIDS, proceedings of 
the 2000 Winter Simulation Conference. Florida, 
USA. J. A. Joines, R. R. Barton, K. Kang, and P. A. 
Fishwick (eds.) USA ACM Press New York. 356-361. 

Sudra, R., S.J.E. Taylor and T. Janahan. 2000b. GRIDS: A 
Novel Architecture for Distributed Supply Chain 
Management, proceedings of the Fall 2000 Simulation 
Interoperability Workshop. Simulation Interoperability 
Standards Organization, Institute for Simulation and 
Training.  Florida. 00F-SIW-051, 2000. 

Sudra, R., S.J.E. Taylor. 2002. Extensibility: Modular HLA 
RTI Services, proceedings of 2002 European Simula-
tion Interoperability Workshop (E-SIW), North Lon-
don, UK, Jun 2002. 02E-SIW-049. 

Tan, G.,  W.N. Ng, and S. Taylor. 2002. Developing An 
Object Exchange Model Template (OEMT) for GRIDS 
Distributed Supply Chain (DSC) Simulations, proceed-
ings of 35th Annual Simulation Symposium, San 
Diego, USA. 

Taylor, S.J.E., J. Saville, R. Sudra. 1999. Developing Inter-
est Management Techniques in Distributed Interactive 
Simulation Using Java, proceedings of the 1999 Winter 
Simulation Conference, P. A. Farrington, H. B. Nemb-
hard, D. T. Sturrock, and G. W. Evans, eds. 518-523.  

AUTHOR BIOGRAPHIES 

DR GARY TAN SOON HUAT is a Senior Lecturer at the 
School of Computing, National University of Singapore 
(NUS). His research interests include parallel and distrib-
uted computing, scheduling and load balancing, declarative 
multiprocessors, dataflow and parallel machine simulation, 
parallel and distributed (interactive) simulation and High 
Level Architecture.  He is a member of the NUS Modeling 
and Simulation Group (MSG), and his email address is 
<gtan@comp.nus.edu.sg> 

NA ZHAO is currently doing her Masters in the National 
University of Singapore (NUS). She received her Bachelor 
in Computer Science from Beijing Normal University, 
PRC. Her research area is in the field of distributed simula-
tion. Her research interests include distributed and parallel 
systems, data base, and networking. 

DR SIMON J.E. TAYLOR is the Chair of the Simulation 
Study Group of the UK Operational Research Society. He 
is a Senior Lecturer in the Department of Information Sys-
tems and Computing and is a member of the Centre for 
Applied Simulation Modeling, both at Brunel University, 
UK. His main research interests are distributed simulation 
and applications of simulation health care. His email ad-
dress is <simon.taylor@brunel.ac.uk> 

mailto:gtan@comp.nus.edu.sg
mailto:simon.taylor@brunel.ac.uk

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1149
	02: 1150
	03: 1151
	04: 1152
	05: 1153
	06: 1154
	07: 1155
	08: 1156
	09: 1157


