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ABSTRACT 

Simulation modeling is a tool commonly used in support of 
intelligent decision making by senior managers, particu-
larly for extremely complex problems.  This article uses an 
example from the United States Army Recruiting Com-
mand to illustrate some of the statistical pitfalls an analyst 
may encounter when using simulation modeling.  These 
pitfalls include conflicting results, both due to different 
modeling approaches and choice of input distributions, and 
incorrect interpretation of the simulation experimental re-
sults.  The paper also provides implications for analysts 
who encounter these situations. The analyst who uses 
simulation in support of senior decision-makers must un-
derstand simulation’s capabilities, limitations, and statisti-
cal underpinnings.  Failing to do so can result in decisions 
based on incorrect information.  Analysts can guard against 
these pitfalls through careful consideration of statistics, 
preparation, and communication. 

1 INTRODUCTION 

The United States Army provides a good example for how 
analytical support helps senior management make intelli-
gent decisions.  The Army relies on its pool of operations 
researchers to produce analyses and other analytic products 
to underpin decisions by leaders and managers at all levels 
of the Department of Defense (DOD), and to enable solu-
tions to varied and complex strategic, operational, tactical 
and managerial issues (DA PAM 600-3, 1998).  Army 
leaders, like their civilian counterparts, must make myriad, 
complex business types of decisions concerning the daily 
institutional operations.  However, the Army senior man-
agement must also make decisions required by the opera-
tional forces, which are either deployed or preparing for 
combat operations.  Discrete event and other simulation 
models typically support these functions because of their 
ability to reasonably depict extremely complex systems.  In 
many cases, a simulation model may be the only feasible 
alternative for the military analyst.  The military analyst 
 
who uses simulation in support of senior decision makers, 
as well as their civilian counterparts, must understand its 
capabilities and limitations, as well as its statistical founda-
tions in order to avoid misleading results.   

In the Army, a large percentage of the simulation work 
routinely falls in the combat modeling application.  How-
ever, analysis of the military’s daily institutional operations 
is just as relevant for simulation models.  One example of 
an organization that is increasing its use of simulation 
models for its business decisions is the United States Army 
Recruiting Command (USAREC).  Simulation is a tool 
with powerful potential, but failure to understand the statis-
tics underlying applications can lead to erroneous infer-
ences.  This paper will explore some of the more sensitive 
areas in terms of causes of the problems and implications 
for analysts. A contrived simulation example from 
USAREC using ARENA software will provide a detailed 
example of each point. 

2 SIMULATION’S POTENTIAL PITFALLS 

Simulation studies can be powerful tools if developed with 
a solid statistical foundation and with correct analysis and 
interpretation of results.  Inadvertent mistakes can occur 
because many of the real world systems under study and 
their associated simulation models are very complex.  Even 
with correctly built and executed models, it is still easy to 
apply statistics incorrectly and reach faulty conclusions.  
The two potential pitfalls we will discuss are conflicting 
results from different simulation models and incorrect in-
terpretation of the output measures. 

2.1 Conflicting Results 

The first area of concern is the potential for conflicting re-
sults.  It is conceivable and even likely that two well-
qualified and knowledgeable analysts who are modeling 
the same data set can achieve different models for the sys-
tem under study.  More disturbing, it is also possible for 
the same two modelers to reach different conclusions when 
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modeling the same scenarios from the same data from a 
common system under study.  This is possible because of 
differing statistical analysis of the data at the front end of 
the study that yields different models and because of dif-
ferent choices of input distributions.   

2.1.1 Model Differences 

There are several reasons why two modelers may arrive at 
different simulation models.  The process of a simulation 
study is the representation of a real system with stochastic 
and random data in a synthetic world for the purposes of 
studying some specific aspect of the real world system (Vin-
cent, 1998).  The data by its very nature will vary to some 
extent.  We assume for the purposes of this article that the 
data is available, and is observed rather than collected by a 
deliberate experiment.  These assumptions are consistent 
with the recruiting example.  The first step of input modeling 
is generally to assess the data in terms of its relationships 
and independence, and to see if assumptions concerning in-
dependence and identical distribution (iid) are valid.  The 
next step is to observe the data more closely through plots, 
like histograms, and summary level statistics.  These steps 
will help determine at what level and grouping to model the 
data.  This is the where the analytical water begins to get 
murky.  Much of data analysis is art rather than science.  
With extremely complex data, the relationships may be dif-
ficult to determine, and could lead to different although rea-
sonable modeling approaches.  This first step can be the 
source of great divergence among analysts. 

An example can best describe this condition.  Suppose 
the United States Army is considering the addition of E-4 
Corporal (CPL) recruiters to its force. Before 1999, the re-
cruiting force in the Army did not allow soldiers of the lower 
enlisted ranks to participate in recruiting operations other 
than short-term supplementation through the Hometown Re-
cruiter Assistance Program (HRAP).  Although this deci-
sion-making scenario is historically accurate, our specific 
example is entirely contrived.  The genesis of the decision is 
that the lower grade enlisted may improve the recruiters abil-
ity to communicate and relate with youth while relieving the 
force of some of its large requirements for mid-grade non-
commissioned officers.  This type of decision serves as an 
excellent example because it is well  suited for the use of 
simulation in support of senior decision-making.  No re-
cruiters in the rank of CPL existed in the system, so there 
was no data available to model their behavior.  In addition, 
the decision to add CPL recruiters would eventually need to 
be made at the four-star level, so significant numbers and 
levels of analysts would become involved.   

Suppose the commander of USAREC is in the process 
of forming his position on CPL recruiters, and he has asked 
his Program and Evaluation Directorate (PAE) for support-
ing analysis and a recommendation.  The director assigns 
the task of modeling the scenario to two divisions—
Research and Plans (R&P) and the Strategic Plans Office 
(SPO).  These two offices will provide different perspec-
tives on the issue.  The director feels the most likely point 
in the recruiting process where a CPL can influence the 
process is after a recruiter has made an appointment with a 
prospect.  In this process, the prospect arrives into the sta-
tion; the recruiter will establish rapport with the individual 
and conduct a basic qualification assessment of education 
level, mental ability, and moral standards.  After these 
steps if the recruiter feels the prospect is qualified and 
available, he will begin a detailed sales pitch with specific 
individual features oriented to the prospect.  If the prospect 
remains interested, the recruiter closes the deal by complet-
ing an application and making an appointment at the Mili-
tary Entrance Processing Station (MEPS) where detailed 
qualification and contracting is completed.  The real-world 
process is actually very complicated with random attrition 
behavior present at all phases in the process and walk-in 
traffic arriving in addition to appointments, but we will 
only consider this simplified flow to allow focus on the sta-
tistical issues.  In addition, there could be multiple meas-
ures of effectiveness for this study, but we will only focus 
on a prospect’s mean time in the system. 

The analyst from  R&P considers the problem and de-
termines the best way to model the data is by using a logic 
model shown below in Figure 1.  He believes the best ap-
proach is to merge the rapport and basic qualification 
phases because of their frequent overlap during execution.  
He also believes in pairing the closing and application 
phases, since many recruiters will work on these phases 
simultaneously.  After lengthy discussion with subject mat-
ter experts, he also believes the CPL may influence each of 
these processes at different levels. 
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& Qualification

Close Sale & Complete
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Arrive for
Appointment

Depart Station

Arrive

Process

Depart

Establish Rapport
& Qualification
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Process
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Figure 1:  Research and Plans Model 
 
The analyst obtains data on a typical recruiting station 

to build the base model, using Arena simulation software.  
The analyst uses an arrival rate and two processing distri-
butions.  The analyst verifies and validates his model and 
then runs a series of 30 replications for comparison with 
the SPO office.  The results of the simulation experiment 
for the mean time in station are 88.72=rpµ  and 

.70.7=rpσ  
The analyst from SPO takes a different perspective.  

The SPO already has a strategic level simulation model, 
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also using Arena simulation software, which he feels will 
be sufficient for analysis of the CPL problem with slight 
modification.  Figure 2 shows the logic flow of his model.  
The SPO analyst considers one processing node that com-
bines all four phases of the recruiter-prospect interaction.  
The SPO analyst considers the same data set and informa-
tion obtained and used by the R&P analyst for his simula-
tion model.  The difference is that the SPO analyst The 
SPO analyst considers the same data set and information 
obtained and used by the R&P analyst for his simulation 
model.  The difference is that the SPO analyst combines 
the process data into one set and builds a single process in-
put distribution for his model.  He then conducts verifica-
tion, validation, and runs 30 replications.  The results of his 
model for mean time in station have 10.78=spoµ  and 

.67.9=spoσ  
 

Establish Rapport, 
Qualification, Close, & 
Complete Application

Arrive for
Appointment

Depart Station

Arrive

Process

Depart

Establish Rapport, 
Qualification, Close, & 
Complete Application

Arrive for
Appointment

Depart Station

Arrive

Process
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Figure 2: Strategic Plans Office Model 

 
Comparison of the mean time in the station for the two 

models shows statistically significantly different results.  
Using a two-sample t-test, without an equal variance as-
sumption, the null hypothesis is sporp µµ = .  The test sta-
tistic for the difference in the two simulation scenarios is –
5.22, which yields a p-value of 0.02.  Since the p-value is 
less than our α  value of 0.05, the result is rejection of the 
null hypothesis, and thus sporp µµ ≠ .   

Evidence exists substantiating a significant difference 
in the two modeler’s results.  The two analysts reach dif-
ferent conclusions although both are well qualified, use 
logically accurate models, and model the same data at dif-
ferent levels.  What does this difference imply for the di-
rector of PAE?  How does it affect the development of a 
position on the CPL issue? 

Resolution of such analytical conflict needs as much 
consideration as the statistical choices in simulation model-
ing.  In a conflict such as this where two differing ap-
proaches yield different results the key is to model at the 
level that most efficiently and effectively represents the 
real system under consideration.  The decision-maker must 
be aware of the differing assumptions of the approaches 
and how they impact modeling of the proposed changes.  
The SPO model considers the system at a more aggregated 
level, which will provide more efficiency but may sacrifice 
resolution.  If the eventual impact of a CPL recruiter oc-
curs at a level that is more disaggregated than in the SPO’s 
single process, it will not be possible to accurately model 
the effects of change; in this case, the R&P model may be 
a better choice.  If the differences are not easy to deter-
mine, or if the impact is not known, a technique employed 
at Recruiting Command is the “murder board.”  In this 
technique, the opposing analysts would present positions to 
an audience of analysts within the organization that would 
challenge the assumptions, present issues, and brainstorm 
on possibilities.  These sessions frequently help identify 
issues that lead to conflict resolution.   

2.1.2 Input Distributions 

The next area where the modelers may diverge is in selec-
tion of input distributions.  After understanding the data 
set, the modeler then seeks to find appropriate sets of input 
distributions.  The modeler will analyze a hypothesized 
candidate distribution or group of distributions for good-
ness of fit with the data, and he will attempt to find a rea-
sonable representation (Vincent, 1998).  The definition of 
reasonable will certainly vary between analysts.  One can 
accomplish this through manual statistical calculation, or 
with software designed to automate and simplify the proc-
ess.  As a modeler attempts to fit a distribution, several al-
ternatives are possible.  The first, and probably least likely, 
is that he finds a candidate theoretical distribution that is 
the only one that meets appropriate goodness of fit criteria.  
The second is that there are several distributions that meet 
the modelers hypothesis, and each results in good fitness 
scores.  The last is that the modeler may find that none of 
the common theoretical distributions will work.  In the last 
two cases, the method by which the analyst resolves his di-
lemma will vary.  To resolve the problem the analyst 
should assume the measure of effectiveness of the study is 
very sensitive to his choice, use prior experience, apply 
relevant applicable theory, and use the data (Vincent, 
1998).  Again, this is an area where art may override sci-
ence, so results among analysts can vary even though the 
logical structure of the models are identical.  In any case, 
the analyst also faces the choice of an empirical distribu-
tion versus a theoretical distribution.  This option creates 
another dimension of input modeling possibilities and 
trade-offs (Kelton, et al., 1990).  Research has even shown 
that output measures such as mean wait in queue are sensi-
tive to the choice of input distributions (Gross, 1999).  As a 
result, modelers who decide to use different distributions, 
even in very similarly constructed models, may reach dif-
ferent conclusions.  The procedure becomes even more dif-
ficult in the absence of data or when simple models fail 
(Nelson, et. al., 1995 and Schmeiser, 1999). 

For another specific example, consider the analyst 
from the R&P division mentioned earlier.  When building 
the simulation model with two distinct processes, the ana-
lyst found several potential input distributions.  Using 
Arena’s input analyzer, the set of data yielded four candi-
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date distributions available for input distributions of the 
Rapport and Qualification Process and six candidate input 
distributions for the Close and Application phase as shown 
in Table 1.  These choices did not consider using empirical 
or more complex distributions, such as a Johnson.  The set 
of potential distributions could very easily be larger. 

 
Table 1: Input Distributions 

R&Q Distribution Fit Table Process 1 
Distri-
bution 

Parameters Square 
Error 

Chi-
Square 
P-value 

KS 
P-
value 

Beta  21+27*Beta 
(2.06. 1.77) 

0.113 0.231 >0.15 

Normal Norm (35.5, 
6.08) 

0.008 0.151 >0.15 

Trian-
gular 

Tria (21, 
36.2, 48) 

0.007 0.355 >0.15 

Weibull 21+Weib 
(16.1, 2.41) 

0.011 0.226 >0.15 

C&A Distribution Fit Table Process 2 
Distri-
bution 

Parameters Square 
Error 

Chi-
Square 
P-value 

KS 
P-
value 

Beta 9+71*Beta 
(1.49, 2.14) 

0.009 0.38 >0.15 

Erlang 9+Erla 
(14.6, 2) 

0.019 0.07 >0.15 

Gamma 9+Gamm 
(16.3, 1.8) 

0.021 0.03 0.09 

Normal Norm (38.2, 
16.1) 

0.005 0.56 >0.15 

Trian-
gular 

Tria (9, 
40.1, 80) 

0.015 0.1 0.056 

Weibull 9+Weib 
(32.1, 1.67) 

0.011 0.27 >0.15 

 
Consider the impact of changing distributions on the 

measure of effectiveness of mean time in the station.  The 
first model uses the triangular distribution for the rapport 
and qualification process and the beta distribution for the 
close and application process.  The results of 30 replica-
tions of the model yield 88.72=aµ  and 70.7=aσ  for our 
measure of effectiveness.  Now, let us change the distribu-
tion for rapport and qualification to the beta and the close 
and qualification to a triangular.  This change results in  

98.77=bµ  and 67.6=bσ .  A two-sample t-test compares 
means with a null hypothesis of ba µµ = .  The test statistic 
is –5.10 with a p-value of 0.00.  Since the p-value is less 
than our α  value of 0.05, we reject the null hypothesis and 
determine there is a difference in output from the two ap-
proaches.  In this case, the choice of input distributions 
significantly affects the output of the model, even though 
all choices are valid.  What does this sensitivity tell the 
analyst as he is making a recommended position for the di-
rector or the senior level decision-maker? 

Specific resolution of the choice of input distributions is 
not a straightforward issue.  One way to resolve problems is 
to consider historic approaches of other researchers model-
ing similar systems.  The analyst must also spend a great 
deal of time studying the data and considering the impact of 
various distribution choices, particularly with respect to the 
tail ends of the distribution.  The analyst must also discuss 
the issue with experts on the real system to determine any 
characteristics that may influence the choice.  Once the 
choices are narrowed to a small group, the analyst can also 
conduct sensitivity analysis to learn more about specific im-
pacts of changes in input distributions on output measures 
and general model performance.  Sensitivity analysis may 
reveal problems with data as well.  If the sensitivity of the 
model is isolated to a particular input, the analyst should 
consider another data collection if possible.  However, this 
approach is not always feasible.  Even in cases when the 
simulation model remains sensitive to a particular input, the 
sensitivity analysis is crucial to providing information about 
the critical aspects of the simulation model. 

The situation of conflicting results described above is 
nothing new to simulation modelers.  However, it is impor-
tant to contemplate the impacts of the potential differences 
before presenting results on a high priority project to senior 
managers.  Since different analysts, staffs, or agencies 
working on the same problem may reach differing conclu-
sions, the key to conflict resolution is early and frequent 
communication about modeling approaches and assump-
tions.  The true benefit of the simulation study is the in-
formation it provides about the system, not necessarily a 
precise output from a model.  In addition, the analyst must 
always strive for robust results that provide useful informa-
tion in a wide variety of conditions.  It is important to dis-
cover, compare, and analyze differences in models or ap-
proaches before a formal presentation.  If the groups are 
“allies” on the issue, like different members of a single 
staff office in our example, this step may be easier than if 
the groups are in different camps. 

Confusing the decision maker can be a major problem, 
and this is particularly true when the decision maker is not 
an analyst.  It is difficult to explain in layman’s terms the 
causes for the differences without preparation and careful 
thought.  Otherwise, the conversation may slip into “statis-
tics-speak” and you will lose the staff, audience, decision 
maker, and potentially your own credibility.   

The next issue is making sure the decision-maker un-
derstands the likelihood of different conclusions if he is 
taking the results to an outside agency, headquarters, or 
higher-echelon organization.  It seems as if the number of 
analysts investigating a problem increases proportionally 
with the level of the brief and impact of the decision.  Dif-
fering conclusions by these groups are almost inevitable.  
The boss must fully understand the relationships and in-
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formation learned from a simulation study, not just the fi-
nal output numbers.  If he understands this, he will be pre-
pared to confront differing positions and the study will be 
successful.  Information that supports intelligent decisions, 
regardless of the specific outcome determines success. 

2.2 What Do the Output Measures Really Mean? 

The nature of a stochastic simulation model is that random 
numbers drive the model through various input distribu-
tions.  As a result, the output numbers are random as well.  
This has several implications, the least of which is that the 
analyst must use caution with the statistics used in analysis.  
However, more importantly, it is easy for the model’s ran-
dom numbers to fool you.  These random numbers will 
have a variance associated with them that directly affect 
the output measures (Kelton, 1997).  This variance can also 
result in very broad half-widths for confidence intervals 
and make interpretation difficult.  The estimates could dif-
fer greatly from the true characteristics of the model and 
lead the analyst to incorrect conclusions. 

In addition, the interpretation of a confidence interval 
is also easily misunderstood.  The correct interpretation of 
a 90 percent confidence interval is “90 percent of the time 
the confidence interval formed between the upper and 
lower bounds of the interval (a and b) covers µ .”  An in-
correct interpretation is “I am 90 percent confident that µ  
lies between a and b.”  In our simulation example this 
means that if we ran 100 replications of the R&P or SPO 
experiments, the µ  will be included in 90 of the experi-
ment’s confidence intervals, not that there is a 90 percent 
chance it is included in each of the 100 experimental out-
puts (Law & Kelton, 2000). 

Multiple measures of performance exacerbate the vari-
ance problem And there are implications from the Bon-
ferroni inequality.  Suppose that Is is a 100(1-α ) percent 
confidence interval for the measure of performance sµ .  
The probability that all k confidence intervals simultane-
ously contain their respective true measure satisfies 

P( ∈sµ  Is, for all s=1, 2, …, k)  (Law & Kel-

ton, 2000).  It means that if we had five measures of effec-
tiveness with 90 percent confidence intervals for each, the 
probability that each of the five contain the true measure of 
performance is an overall confidence of 50 percent rather 
than 90 percent.  This scenario can add even more confu-
sion to the interpretation and explanation of the results.  
Illustration of multiple measures of effectiveness through 
our recruiting example is addition of mean number of ap-
plicants, queue time in the station, attrition rate, and time 
of departure of last prospect to the current single measure 
of effectives of the mean time in the station. 

∑
=

−≥
k

s
s

1
1 α
Since the half-widths of the confidence intervals can 
be broad, conclusions that are meaningful and easily inter-
preted are difficult to achieve.  One way to counter this ef-
fect is to conduct larger numbers of simulation runs.  How-
ever, this approach may not be feasible or effective in all 
cases.  If not, there are several variance reduction tech-
niques available to the simulation practitioner to counter 
the broad confidence interval problem.  These techniques 
include common random numbers, antithetic variables, 
control variates, indirect estimation, and conditioning tech-
niques.  Variance reduction techniques induce correlation 
and dependency in an attempt to achieve more narrow half-
widths for the confidence intervals.  The aim of each tech-
nique is to improve statistical efficiency based on im-
proved precision (Law & Kelton, 2000). 

Consider our example of the SPO analyst model of the 
single recruiter process that includes establishing rapport, 
qualification, closing the sale, and completing an applica-
tion.  The SPO analyst ran his base model in Arena, and 
then created a second simulation model for comparison of 
the potential improvement by adding a CPL recruiter.  The 
SPO analyst used a Beta distribution (44+69*BETA(1.38, 
1.82, 5)) to model the original system and obtained 

9.78=baseµ  and 6.16=baseσ  for the mean time in the 
station after 15 replications of the model.  Based on ex-
amination of HRAP data and SME input, the analyst built a 
second model reflecting the improvement of the station 
with the CPL recruiter.  The data showed potential im-
provements in the range of 10 to 15 percent in the process 
by adding a CPL recruiter.  The improvement data set 
yielded a triangular input distribution (TRIA( 55, 56.3, 
94)).  The SPO analyst ran 15 independent replications for 
the improved model and it yielded mean time in the station 
with 43.70=cplindepµ  and 83.3=cplindepσ .  The ana-
lyst compared these results to the base model with a two-
sample t-test.  The null hypothesis was 

cplindepbase µµ = .  The test statistic is 1.92 with a p-
value of 0.07.  Since the p-value is greater than our α  of 
0.05, we cannot reject the null hypothesis.  This indicates 
there is not enough evidence to suggest a change from add-
ing the CPL recruiter.  These results do not please the ana-
lyst, so he decides to use common random number seeds to 
see if there is a difference in the results.  In this case, the 
parameters of the models do not change at all; the only dif-
ference is the modeler ensures the second simulation model 
is using the same string of random numbers to feed the dis-
tributions as the first model.  The statistics from the first 
models do not change: 9.78=baseµ  and 6=base .16σ .  
The results from the CPL model with common random 
numbers is 37.68=cpldepµ  and 43.5=cpldepσ .  A 
paired t-test compares the results from both models with 
common random numbers, since the outputs are now de-
pendent.  The null hypothesis is cpldepbase µµ = .  The 
comparison yields a test statistic of 3.60 with a p-value of 
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0.003.  Since the p-value is less than our α  of 0.05, we re-
ject the null hypothesis.  The common random number 
technique seems to improve precision enough to suggest a 
difference by adding the CPL recruiters.  However, is this 
difference practically significant?  Would you be comfort-
able recommending a position that advocates adding CPL 
recruiters and improved performance knowing that the re-
sults did not hold up in a scenario where simulation runs 
were independent, but did when they were dependent? 

Resolution of the issue of common random numbers 
depends on the scenario the analyst faces.  If possible, us-
ing the exact same simulation model, to include random 
numbers, when comparing a current system with a new 
proposal should be employed.  This approach shows that 
nothing in the model changes with the exception of the 
modifications to the system for which the study was de-
signed.  In this case any difference between the two models 
will likely be due to the changes in the system and not a 
modeling issue.  However, variance reduction techniques 
are not guaranteed to work on all models, and the impact of 
the same random numbers may affect two models differ-
ently (Law and Kelton, 2000).  As a result, the last and 
most important factor is to remember the relationship be-
tween statistical and practical significance.  The ability to 
obtain a “statistically significant” result should not be the 
sole focus of simulation studies.  Consider significance 
from both a statistical and practical vantage, and weigh the 
level of difference between alternative scenarios that en-
genders a practical difference together with choice of ana-
lytical techniques and variance reduction methods.   

3 IMPLICATIONS 

Several statistical pitfalls of simulation modeling have 
been presented along with specific, simplified examples.  
Each example contained specific implications for each of 
the potential pitfalls.  These are easily summarized into 
four groups: careful consideration of statistics, preparation, 
resolution, and communication.  Simulation studies are 
complex endeavors, and as the real world systems under 
consideration become more complex, the opportunity to 
build misleading simulations and to incorrectly apply sta-
tistics increases.  Analysts must ensure that they have a 
solid statistical background and carefully consider the sta-
tistical implications of each step of the study.  In addition, 
the study should include a sensitivity analysis component 
to provide specific detail on the portions of the model that 
may have the greatest potential for influencing results. 

Analysts must consider these relationships and con-
duct detailed preparation before embarking on a study in 
support of senior management.  The analyst must base the 
modeling approach on a solid theoretical foundation, in 
terms of both the dynamics of the system under considera-
tion and the statistical tools used in the course of analysis.  
This sound beginning will allow an analyst to consider al-
ternative analysis options, and will result in a robust study.  
The analyst should be able to explain his analysis as com-
pared to competing models, and more importantly to pro-
vide good information to senior decision-makers.   

Resolution of differing results in multiple approaches 
or models demands the same level of careful consideration 
as the other statistical aspects.  Model at the level, which 
describes the system under consideration at the best effi-
ciency and effectiveness.  Consider sensitivity analysis and 
the information it provides.  Use a critical review process; 
it can illuminate differences in assumptions as well as their 
implications.  Finally, always be aware of agendas accom-
panying different modeling approaches.  Remember the 
larger goal of obtaining information about the system un-
der study without putting too much emphasis on the de-
tails.  Remember the big picture and the risk accompanying 
all options.   

Communication is another key to success both with 
other analysts and with decision-makers.  Since different, 
competing analyses can easily occur, communication with 
other analysts is extremely important to facilitate explana-
tion and examination of each approach.  Other analysts’ 
results can blind-side you based on a lack of communica-
tion.  Allowing a senior manager not fluent in statistics to 
discover competing scenarios by chance will result in dis-
aster.  Complex and surprising analyses can be difficult to 
convey to simulation novices, especially without prepara-
tion.  Those unfamiliar with statistics and simulation may 
perceive this as the use of “smoke and mirrors” to get to a 
predetermined answer.  The objectives of the study should 
always be to consider the whole process in an unbiased 
manner and base the study on a sound foundation based on 
expert level, experiential, and theoretical knowledge from 
both a system and simulation model point of view. 

Conflict resolution is another significant aspect of 
simulation studies.  In each specific scenario, the example 
concluded with questions posed to the analysts or leaders.  
The methods by which conflicts are resolved need as much 
consideration as do the statistical choices upon which the 
analysis is based.   

4 CONCLUSION 

Simulation tools are crucial in aiding the analyst support-
ing intelligent decisions by senior managers.  The use of 
these tools is proliferating in the United States Army in ap-
plications for daily operations support and is not limited 
just to the combat modeling environment.  These tools are 
just as relevant in the business sector.  The analyst who 
uses simulation in support of senior decision-makers must 
understand its capabilities, limitations, and statistical un-
derpinnings.  Failing to do so can result in poor interpreta-
tion and/or use of output measures.  Worse yet, it could re-
sult in a decision maker resorting to a “seat-of-the-pants” 
or “that’s how its always been done” decision which can be 
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infinitely worse than intelligent use of simulation even 
with pitfalls.  Analysts can guard against these pitfalls 
through careful consideration of statistics, preparation, and 
communication. 
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APPENDIX A: MODELING LOG 

The purpose of this appendix is to provide the modeling 
methodology used to build the contrived simulation model 
examples and the desired statistical properties provided in 
the article.  The intent of the article was to develop trivial 
simulation models that would realistically illustrate the po-
tential statistical pitfalls of using simulation modeling.  
Our general approach was to keep most of the factors in 
the various models constant and only change the specific 
parameters necessary to illustrate each point.  Each simula-
tion model used the same arrival scheme: scheduled arri-
vals beginning at 0800 in the morning with seven total ap-
plicants staggered by a constant 80-minute interval.  Each 
simulation used only one recruiter in the process nodes.  
The measure of effectiveness for the simulated study was 
mean time in the system for the applicants. 

Our modeling process differed slightly from the man-
ner in which we presented the results in the article.  Rather 
than start with the comparison of differing models, we 
started with using different input distributions in the same 
model.  We then looked at separate models next and fin-
ished with the variance reduction approach. 

The modeling process began by using subject matter 
expert information about the process to create distributions 
that realistically reflected the process.  Based on their infor-
mation, we created a distribution for Rapport and Qualifica-
tion (RQ) that was normal with mean 36.5 and standard de-
viation of 6.67; Close and Application (CA) had normal with 
mean 37.5 and standard deviation of 15.  These base distri-
butions were used in Minitab to generated random numbers 
from each of them that would serve as input data from which 
to model input distributions.  We conducted these steps to 
simulate the type of data we might have collected in a real 
study of recruiting stations.  The statistics for these sample 
distributions was mean 35.51 and standard deviation of 
6.124 for RQ and mean 38.2 and standard deviation of 16.23 
for CA.  These sets of data then went to the Arena input ana-
lyzer and fit distributions for each of them.  The RQ fit four 
candidate distributions and the CA fit six candidate distribu-
tions.  Table 1 of the article shows these results.  To fit a dis-
tribution for the combined process, we added the two 70 ob-
servation samples to create a combination sample.  Again, 
the Arena input analyzer fit distributions and was able to fit 
six candidate distributions.  The result of this step was crea-
tion of data used for input modeling and a set of candidate 
input distributions for each process. 

The next step in the process was creating a simulation 
model of the system.  The intent was to create a simple 
model illustrating the statistical issues, so we ignored many 
of the real-world complications, like attrition.  Figure 1 of 
the article shows the diagram representing this model.  The 
first model was a system representation with two processes 
and a very simple arrival scheme.  We conducted 30 repli-
cations of this model to use as a base output result.  This 
model had a TRIA (21, 36.2, 48) in the Rapport and Quali-
fication process module and a 9+71*BETA (1.49, 2.14) in 
the close and application.   

The next step was to use different input distributions in 
the two processes of the model to obtain a statistically dif-
ferent output.  We built a second model that changed the dis-
tributions to 21+27*BETA(2.06, 1.77) in the Rapport and 
Qualification process module and a TRIA (9, 40.1, 80) in the 
close and application.  We also ran this model at 30 replica-
tions.  We ensured the models ran with independent replica-
tions and used Minitab to conduct a comparison of means.  
Results from a two-sample t-test concluded the means are 
not equal between the two models.  We describe these re-
sults in detail in the input distribution section of the article. 

After obtaining differing results for alternate input dis-
tributions, we desired to model the system with a different 
approach to try and get statistically differing results.  The 
model representing the alternative approach combined the 
two processes of the first model.  This model used the 
44+69*BETA (1.38, 1.82) input distribution for the single 
process and ran for thirty replications.  Again, we took the 
data to Minitab to compare means.  The results show that 
the means are different as explained in detail in the Model 
Differences section of the article.  The intent of this step 
was demonstration that you can have two statistically dif-
ferent results using two different and reasonable modeling 
approaches from the same data set.   

The final and most complex step was demonstration of 
the variance reduction by use of common random issue.  
Our methodology began by trying to create a set of data 
that represented a change or improvement by substituting  
the CPL recruiter with the more senior recruiters in the re-
cruiting station.  In other words, the model reflecting the 
CPL recruiter would still have only one recruiter in the 
process node.  The same basic simulation model would run 
the change.  The only changes would be the process input 
distribution reflecting the improvement, and the random 
number seed to reflect either independent or correlated 
runs.  The objective of this step was that the change in the 
model would not show a significant difference in the out-
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put when using independent runs, but would show a sig-
nificant difference using common random numbers.   

To obtain the hypothetical change or improvement in 
the process by changing the recruiter from a senior NCO to 
a CPL recruiter we took the original 30 data points used to 
build the input distribution for the single process model 
and randomly generated improvements between 10 and 15 
percent.  This new data set was taken to Arena to fit input 
distributions, and we were only able to fit two distributions 
in Arena’s input analyzer, 55+39*BETA (1.28, 2.44) and 
TRIA (55, 56.3, 54).  For the first series of simulation re-
sults, we set the random number seeds in the Arena soft-
ware to ensure independent trials.  The improvement 
model with the Beta distribution ran for 15 replications and 
analysis of the results in Minitab showed no difference in 
the means with a two-sample t-test.  The first step of our 
variance reduction example was complete—results with 
independent runs.   

The next step was to keep the same distributions in the 
processes and run a correlated simulation experiment, with 
the hopes of achieving statistically different results.  We 
set the Arena software to ensure use of the same random 
number seeds, which provided correlated runs.  Analysis of 
15 replications in Minitab with a paired t-test yielded a sta-
tistical difference.  The details of the variance reduction 
using the common random number technique is explained 
in the "What do the Output Measures Really Mean?" sec-
tion of the article.  This step achieved all results needed for 
the examples in the article. 
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