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ABSTRACT 

We propose an optimization technique for reducing global 
synchronizations in traditional time-stepped simulations. 
Time-stepped simulations are known to be efficient when 
events are frequent or dense. However, when events are 
less frequent (when compared to the size of time-steps) the 
performance of time-stepped simulations drop noticeably. 
This paper aims at improving the performance of tradi-
tional time-stepped simulations during low frequency peri-
ods and maintaining its efficiency during high frequency 
periods. We focus on interactive simulations which have 
tight real-time interactive constraints. The proposed opti-
mization is achieved by informing the host about future 
events. This information is ‘piggybacked’ on the ready 
messages sent by the participating Processing Elements 
(PE)  to the host. We maintain simulation efficiency by 
switching between the proposed technique and the tradi-
tional technique depending on the observed event density. 
To achieve this switching we introduce a concept called 
'super-stepping'. A probabilistic method is used to optimize 
'super-step' size. 

1 INTRODUCTION 

Computer simulations are widely used by the scientific 
community and industry today for studying, analyzing and 
predicting the behavior of real-world systems. In this paper 
we focus on the time-stepped approach that has been 
commonly used to synchronize events for war game simu-
lation on a parallel or distributed platform. In the conven-
tional time-stepped approach, the time interval to be ad-
vanced after synchronization is performed is usually pre-
determined and is equal to the step-size. In the real world 
the density of events can be highly varying depending on 
the period of time being simulated. Defense simulations 
have marked differences in event densities during time of 
war (high event density combined with need for fine-
granularity and real-time response) as compared to peace 
time (relatively low density and response time is not mis-
 
sion critical). This research work is aimed at optimizing the 
synchronization for such simulations without affecting 
causality constraints and without violating any real-time 
constraints.  

During low event density intervals PEs invest process-
ing time in scanning through the event queue at each time 
step even though some of the time-steps may not contain 
any events. The proposed technique informs PEs about a 
time-step only when there are events to be processed at that 
step. To achieve this, each PE informs the host about the 
future events spawned by it. Though the proposed tech-
nique reduces the number of synchronization events com-
pared to the conventional technique, it also introduces an 
overhead in terms of processing time at the host and at the 
participating PEs. From our experiments we observe that 
as event density increases beyond a threshold, the tradi-
tional time-stepping algorithm performs more efficiently. 
As simulation is a dynamic process, an adaptive approach 
which switches between the techniques based on the simu-
lation parameters seems appropriate. In order to facilitate 
this switching we introduce a super-stepping mechanism 
which partitions the simulation time into larger non-
overlapping intervals.  

The rest of this paper proceeds as follows. Section 2 
defines some terms used in this paper. Section 3 gives an 
overview of time-stepped simulation and throws light on 
some previous work. Section 4 introduces the piggy-
backing technique. Section 5 proposes the super-stepping 
technique and its use in technique switching. Section 6 
contains our experimental results and  Section 7 contains 
our concluding remarks. 

2 DEFINITIONS 

2.1 Event Density 

Event Density is defined as the average number of events 
received by a PE per unit simulation time during an ob-
served simulation time interval. We represent Event Den-



Tay, Tan, and Shenoy 

 
sity using  ],[ yxδ , where x  and  are the lower and up-
per bounds of the observed time interval,  throughout our 
work. If 23 events are observed in an interval of 10 time-
units then the Event Density for that PE during the ob-
served period is 2.3. 

y

2.2 Event Coverage 

Event Coverage is the number of time-units at which the 
PE  under observation has an event destined for it. We de-
note Event Coverage by ],[ yxκ  where x  and  are the 
lower and upper bounds of the observed time interval. 
Event coverage can also be viewed as the probability that a 
time-step has events to be executed. Hence, 

y

1],[0 ≤≤ yxκ . If 3 out of 10 observed time-steps had 
events to be executed at a particular PE then the Coverage 
for that PE during the observed period is 0.3. 

2.3 Barrier Synchronization 

In Discrete Event Simulation (DES) all events have an as-
sociated time-stamp indicating at what simulated time the 
event should occur. In a sequential simulation the events 
are processed in time stamp order to ensure that an event 
cannot affect its past history (if this should occur it is 
known as a causality error). In Parallel DES, each PE 
asynchronously processes events in parallel with the other 
PEs. Thus, instead of a centralized clock, the PE has its 
own logical clock, the Local Virtual Time, that runs inde-
pendently of the other PEs. For this reason, the PEs have to 
be synchronized to avoid causality errors. A commonly 
used technique to achieve this synchronization is by using 
the barrier primitive. When a process invokes the barrier 
primitive, it will block until all other processors have also 
invoked the barrier primitive. When the last process in-
vokes the barrier, all processes can proceed further in 
simulation time. Barrier Synchronization is required be-
cause the calculation of the next set of safe events assumes 
that there are no events in transit and that all events that 
were sent have been received. 

3 TIME-STEPPED SIMULATION  
AND PREVIOUS WORK 

In time-stepped simulations all participating entities in the 
simulation are at the same time-step at any point in wall-
clock time. Typically the entire span of simulation is di-
vided into equal-sized time steps and the simulation ad-
vances from one time step to the next. At the ith step, the 
algorithm simulates all events that fall in the time interval 
[(i – l)∆, i∆], where ∆ is a design parameter (Eick, Green-
berg, Lubachevsky, and Weiss 1993). If ∆ is very small the 
efficiency of the method degenerates since barrier syn-
chronization is wasted on intervals that can contain no 
events. Thus, ∆ is chosen large enough so that a processing 
element typically has several events to process in any 
given interval [(i – l)∆, i∆].  
 However, if the value of ∆ is too large the simulation be-
comes coarse-grained as all events in the interval are simu-
lated as if they occur simultaneously. Figure 1 illustrates the 
advancement of conventional time-stepped simulations. 

The optimization proposed in this paper is an attempt to 
apply some concepts from event-driven simulations to the 
traditional time-stepped mechanism. In this section a brief 
survey of some of the relevant previous work in the field of 
conservative synchronization techniques is presented. 
 

 
Figure 1: Simulation Progress in Traditional Time-Stepped 
Simulations 

 
Conservative synchronization algorithms fall under 3 

major categories depending on the approach used in han-
dling deadlock. The first category of algorithms aims to 
avoid deadlocks entirely. The second category allows 
simulations to proceed until a deadlock is detected and 
then deadlock recovery algorithms (Chandy and Misra 
1981) are applied to resume simulation progress. The third 
category is similar to the second category but the only dif-
ference is that these algorithms explicitly control the simu-
lation progress when the entire computation stops rather 
than relying on the system becoming deadlocked. In order 
to achieve this, these algorithms rely on a mechanism 
called barrier synchronization. 

The ideas presented in this paper were influenced by 
the time-of-next-event (TNE) algorithm proposed by 
Groselj and Tropper (1988), the windowing algorithms 
proposed by Lubachevsky (1988) and by Ayani (1988) and 
the Conservative Superstep protocol proposed by Cai, 
Letertre, and Turner (1999).  The TNE approach deals with 
the case where more than one PE is mapped onto the same 
physical processor. It uses the greatest lower bound of the 
timestamps of the event messages expected to arrive next 
at all empty links on the PEs on that processor to unblock 
the PEs on its succeeding link.  

Windowing algorithms proceed in three distinct 
phases separated by barrier synchronization (Dickens and 
Reynolds 1991). In the first phase, PEs determine the 
simulation window cooperatively such that all events with 
timestamps falling within the window can be executed 
concurrently without the possibility of any causality errors. 
The second phase of a windowing algorithm consists of the 
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concurrent execution of all events having timestamps 
within the window. In the third phase, events generated as 
a result of the processing in the second phase are passed on 
to other PEs. The primary difference between the various 
windowing algorithms is the mechanism used to determine 
the events that can be processed concurrently. 

The Conservative Superstep Protocol (Cai, Letertre, 
and Turner 1999) proposed a technique wherein the simu-
lation proceeded in a series of supersteps, where each su-
perstep was followed by a barrier synchronization. Each 
superstep consisted of two phases - the computation phase 
and the communication phase. The communication phase 
involved the communication of event messages among the 
participating PEs and the computation phase involved the 
calculation of the safetime by the PEs. In this technique, 
the concept of supersteps is similar to that of a 'window' in 
which events are guaranteed to be causally safe. Several 
refinements to the Conservative Superstep Protocol were 
proposed in Gan et. al. (2001) based on the way the safe-
time of each PE is calculated. 

4 THE ‘PIGGY-BACKED’ OPTIMIZATION 

The traditional time-stepped technique relies on the Pending 
Event List (PEL) to store the events spawned (and to be exe-
cuted in the future) at each PE. At each time-step the proc-
essed events are cleared from the PEL. To implement the 
piggy-backing technique, we introduce a new Future Time 
List (FTL) at the Host, in addition to the PEL that is main-
tained at the PEs. A simulation proceeding using the piggy-
backing technique involving two PEs and a central Host will 
now explained in detail. Let E1, E3 and E4 be the local enti-
ties residing at PE1 and E2 and E5 be the ones residing at PE2.  
 To initiate the simulation the Host adds a Start event 
destined to all the participating PEs in its FTL and then 
dispatches it to all the PEs (Figure 2).  
 

 
Figure 2: Initiation of the Simulation by the Host 

 
When PEs receive the Start message from the host they 

scan through the PEL and execute the residing local entities. 
This might result in new events being generated which are 
meant to be processed during future times. The generated 
new events are added to the PEL. Figure 3 shows the PELs 
of PE1 and PE2 after the insertion of newly generated events. 
 
Figure 3: PELs with Newly Generated Events 

 
Once all the local entities have been executed the PE 

sends the Ready message to the host piggy-backed with in-
formation about the new events that have been spawned as 
shown in Figure 4. This information is the time-stamps that 
destination PEs need to be informed about in order to re-
ceive Time Advance signals from the Host corresponding 
to those time-stamps. 

 

 
Figure 4: Piggy-Backed Ready Signals from the PEs 
 
The Host extracts this piggy-backed information on 

receiving the Ready message and updates its FTL, as 
shown in Figure 5.  

 

 
Figure 5: Updating of FTL by Host 
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The Host then sends Advance to t where t is the mini-
mum time-stamp in its FTL, to those PEs corresponding to 
time t in the FTL. In this case, the Host sends an Advance 
to t=2 message to PE1 and PE2, as shown in Figure 6. Once 
the PEs have been informed about the advance, the list cor-
responding to t=2 in the FTL is emptied. 

 

 
Figure 6: Advance Signal Being Sent to PEs 

 
After receiving the Advance message from the Host, 

the PEs scan through the PEL, execute the residing local 
entities and then send the piggy-backed Ready signal to the 
Host again as shown in Figure 7 and Figure 8.  

It is to be noted here that the Host only waits for 
Ready messages from those PEs that had been sent Ad-
vance messages during the previous time-step. When the 
Host receives information that it already possesses in its 
FTL it conveniently ignores the information. For instance, 
in Figure 8, the Host is already aware of the fact that PE1 
and PE2 need to be sent an Time Advance signal when t=4. 
Therefore, the information that PE1 and PE2 need to be in-
formed about time-stamp 4 in the new piggy-backed Ready 
signal being received by the Host is ignored. This process 
of the Host sending Advance signals and then waiting for 
Ready signals from the PEs repeats until the simulation is 
terminated. 

 

 
Figure 7: Flushing of PELs and Appending of New Event 
Information at PEs 
 
Figure 8: Sending of Piggy-Backed Ready Signals to Host 

5 SUPER-STEPPING 

Simulation is an inherently dynamic process. It is difficult 
to predict the behavior of any of the simulation variables 
reliably and accurately. Typically, an important variable to 
be considered is the event density. A technique that is well-
suited for simulations with low event densities may prove 
to be inefficient when used in cases where the event den-
sity is very high.  
 Communication cost of inter-process messages is an-
other factor to be considered. Communication messages are 
typically intra-process, LAN-based or WAN-based depend-
ing on the geographical distances between participating 
processes in a simulation. Techniques that avoid inter-PE 
communication by adding a lot of complexity at each PE 
may not be very useful in case the entities are being simu-
lated by the same PE or if the PEs reside on a shared LAN. 
On the other hand, saving inter-PE messages at the cost of 
some extra overhead at the PEs is worthwhile in a WAN en-
vironment. Therefore, simulation techniques should be cho-
sen based on prevailing variable values in the simulation. 
 Any switching of technique requires a particular 
switching point which is agreed upon by all entities. We 
can call this as the "clean-slate" time which means that this 
time is such that PEs contain within themselves all infor-
mation about their states and can proceed smoothly should 
there be a change in simulation technique.  
 The super-step  boundary in our techniques provides 
the PEs with such "clean-slate" points. At each super-step 
boundary the participating PEs calculate the next super-
step size and inform the host about their predicted values. 
The Host then uses the mean of these predicted values as 
the super-step sizes for time-stepped execution. We ab-
stract the number of future events by a probabilistic ap-
proach. Since the events occurring in the non-overlapping 
super-steps are assumed to be independent, the Poisson 
probability density function is used in our prediction. The 
chi-square test with a 95% confidence measure is used to 
ensure the goodness-of-fit. In cases where a Poison fit is 
not available we resort to a linear average for estimating 
the next super-step size. 
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5.1 Mathematical Estimate of the Super-Step 

We estimate the next super-step size ( ) based on the 
observed pattern of events so far. The analysis assumes 
that the simulation has advanced t time units. Let these t 
time units comprise say n number of simulation super-steps 
each of variable size.  

1+n

 If, from previous knowledge, we estimate that an event 
count of  ‘χ’ per simulation super-step is acceptable then 
we can calculate  using: 1+n

 
1+n  =  





























+
Ψ

+−

+

Ψ−
used) isfit Poisson (when   |)1(*2

used) isfit linear (when    
  * 2

λ

χ

λκ
χ

λ Se

 

 
where  denotes the history period being observed (with Ψ
Ψ denoting the  length of ), κ is the observed event 

coverage, 

Ψ

Ψ
S  is the number of synchronization points in 

and Ψ λ  is the observed event density in  Ψ  (Please refer 
to Appendix: Super-step size estimation for details). 

6 EXPERIMENTS AND RESULTS  

When translating the conceptual model into a computer 
program, the modeler adopts a particular world-view or 
orientation. The world-view may be dictated by the simu-
lation language or package chosen for the implementation 
or constitutes a design choice when implementing in a 
general-purpose language. The most common world-
views for DES are: event oriented modeling, process ori-
ented modeling, and activity scanning modeling (Banks, 
Carson, and Nelson 1996). The application domain used 
in this paper is war game simulation where combating 
federates interact with each other, and the activity scan-
ning world-view was adopted.   

6.1 The Simulation Testbed 

The activity scanning conceptual framework (Buxton  and 
Laski 1962) was chosen for implementing the simulation 
due to its common use in simulations that use fixed time in-
crements (time-steps). The flow mechanism (Page 1997) 
adopted by such simulations is shown in Figure 9. One 
evaluation of each condition represents a single scan. If any 
condition is satisfied in a scan then the complete set of con-
ditions must be re-scanned because the actions performed 
due to the previous condition being satisfied might have 
caused some new conditions to be satisfied. If no conditions 
are satisfied in a single scan then Phase 2 terminates.  
 Our technique aims to improve the efficiency of simu-
lations by reducing the synchronization intervals when the 
 

 
Figure 9: Activity Scan Flow Diagram 

 
event coverage is not dense. Parameters that need to be 
considered are the savings introduced by the new technique 
in the number of synchronizations, number of overhead 
messages exchanged and the condition, namely the event 
coverage, under which these savings (if any) were ob-
served. These parameters have been chosen based on cur-
rent literature (Fujimoto 1989 and Nicol 1993). 

The traditional time-stepped mechanism was used as 
the benchmark. Figure 1 shows the number of synchroniza-
tion points and overhead / time advance messages involved 
in the conventional technique. It is quite evident from the 
figure that two overhead events are required per PE per 
unit simulation time for proper synchronization when the 
traditional technique is used. Since synchronization occurs 
at every time step the number of synchronizations are 
equal to the number of time steps. 

The activity scanning technique usually employs enti-
ties which are made up of several models. Each model is 
assigned a current state which is changed when an event 
targeted to that particular model is received either from an-
other model within itself or from a foreign model residing 
in another entity. Our experimental evaluation was done 
using four-, eight- and sixteen-PE setups. Each participat-
ing entity in the simulation contains the following three 
distinct types of models: 

• 
• 

• 

Action models (models that encapsulate motion)  
Behavioral models (viz. models that simulate pa-
trolling, scanning for target etc) 
Physical models (models that actually change 
physical characteristics of an entity such as loca-
tion, color, capabilities etc). 

For our experiments we used entities built of 5 be-
havioral models, 1 physical and 1 action model. These 
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models when combined with their ability to generate 
events at random gave us sufficient flexibility to vary the 
Event Coverage. 

6.2 Results and Analysis 

The optimized technique was evaluated with respect to the 
number of overhead messages (as compared to the tradi-
tional time-stepped technique) and the physical time over-
head at the host due to the introduction of the FTL. 

6.2.1 Overhead Messages 

Figures 10, 11 and 12 show the average cumulative super-
step boundaries, overhead messages and time advances re-
spectively across 8 PEs participating in the simulation over 
time for different values of event count and event coverage.  
 The graphs display two important properties, viz. re-
sponse to changes in the super-step throttle and the re-
sponse to variation in the event coverage. 
 

 
Figure 10: Cumulative Super-Step Boundaries (8 PEs) 

 

 
Figure 11: Cumulative Overhead Events (8 PEs) 
 
Figure 12: Cumulative Time Advances (8 PEs) 

6.2.1.1 Response to Super-Step Throttle 

The super-step throttle, as derived in the analysis section, 
dictates the size of the super-step used by the technique. 
On the positive side, large values can lead to an increase in 
size of the super-step and thus potentially delay synchroni-
zations that involve all the participating PEs, as can be ob-
served from Figure 10. 
 However, large super-steps preclude that the event 
coverage will not change within the span of the super-step 
and leads to wider periods in which the simulation tech-
nique cannot be changed. 

An inordinately large sized super-step is potentially 
dangerous because event density that is randomly varying 
may exponentially rise during the course of the super-step 
and the PEs cannot vote for a change in the simulation 
technique until the completion of the current super-step. 
Consider the following example: At time T=200 if we de-
cide to use a super-step of size 18 and at T=204 we have a 
sudden burst in the event density. It is now not possible to 
switch to the traditional time-stepped mode of simulation 
until T= 218.  

To overcome this potential hazard we introduce a 
threshold value for the maximum allowable number of 
time steps that can elapse between two mandatory global 
synchronizations. This threshold, denoted by the variable 
MAX_SUPER_STEP, was set to 10 throughout our ex-
periments. 

6.2.1.2 Response to Event Coverage 

From the graph for overhead events (Figure 11) it is clear 
that the number of synchronizations and the number of 
overhead messages are less than the benchmark in all 
cases. This can also be seen from the analysis shown in the 
previous section. Recall that the worst-case overhead based 
on linear regression from the previous section was shown 
to be 2 events per time-unit versus 2 events per time unit of 
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the benchmark algorithm. Hence, when the event coverage 
equals 1, the performance of our proposed technique 
equals that of the conventional technique. This is evident 
from the experimental values obtained. The number of 
overhead messages, which is a crucial consideration factor 
in distributed simulations running on a LAN/WAN, is pro-
portional to the event coverage in the proposed technique. 

Experiments were repeated using four nodes and sixteen 
nodes and the observed decrease in case of four participating 
PEs (or increase  in case of the sixteen PEs) in the number of 
overhead messages was proportional to the decrease (or in-
crease) in the number of PEs participating in the simulation. 

6.3 Overhead Time 

The introduction of the FTL results in some overhead at 
the host. Since we are reducing the number of overhead 
messages at the cost of introducing an additional data 
structure at the central host it is important to measure the 
physical time spent by the host in maintaining the data 
structure.  This time is affected by two parameters –the 
number of time stamps already in the FTL and the number 
of time stamps newly introduced. We varied these two pa-
rameters from 0 to 500 and observed (Figure 13) that when 
both the parameters were varied beyond 350, the physical 
time taken ranged between 0.005 to 0.020 seconds.  

 

 
Figure 13: Overhead Physical Time at Central Host 

 
The overhead time consumed for ‘piggybacking’ informa-
tion on to the Ready messages was also measured. How-
ever, the time consumed was negligible (<10 msec) even 
when 1000 new time-stamps were piggybacked. Figure 14 
shows the observed results. 

7 FURTHER WORK AND CONCLUSIONS 

This paper introduces an optimization to traditional time-
stepped simulations, particularly in the domain of war 
 

 
Figure 14: Overhead Physical Time at PEs 

 
game simulations. A super-stepping mechanism is also in-
troduced so as to facilitate swtching between simulation 
techniques to ensure efficiency.  Our experimental results 
show that substantial savings in overhead can be achieved 
when this piggy-backing optimization is used in simula-
tions when compared to the conventional time-step tech-
nique. The proposed mechanism is simple and robust. 
 Though the optimization suggested in this paper ad-
dresses simulations with sparse event coverage it does not 
provide for utilization of any available lookaheads between 
participating entities. Our further work will focus on build-
ing a probabilistic super-step based model to efficiently 
simulate entities with sparse event sets and with intermit-
tent availability of lookaheads while fundamentally main-
taining the time-stepped paradigm. 
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APPENDIX: SUPER-STEP SIZE ESTIMATION 

Let the average simulation event density of a PE be repre-
sented by ∂ . Thus, the event densities of PE1, PE2 … PEn 

will be represented by 1∂ ,  … ∂  respectively. Further, 
let the superscript denote the simulation time unit to which 
the event density corresponds. For instance the event den-
sity of PE

2∂

n

n

2 in simulation time unit 't' will be denoted as ∂ . 
Since each super-step consists of one or more simulation 
time units it is important to represent the length of a super-
step by a variable. Let represent the length of the n

t
2

th 
simulation time super-step in units of simulation time. Fi-
nally, since most of our predictions about the future will be 
based on the observed behavior from the past we denote 
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the length of the history period considered (in simulation 
time units) as Ψ  and the history period itself as Ψ .  

Ψ

Ψ

 For each PE we have two types of events – overhead 
events and simulation events represented by and  
respectively. Overhead events are those events that are used 
to support the simulation. Synchronization costs, fault-
tolerance costs are some examples of overheads. Simulation 
events are those that actually form a part of the simulation 
and modify the system state in some way or another.  

overhead
n 1+ς sim

n 1+ς

 
Estimating 

Ψ+
overhead
n 1ς  (overhead events in Ψ ): 

We abstract the following two overheads: 
• Cost incurred by each PE during the history pe-

riod in informing the centralized host about the 
time-stamps of future events generated by it, rep-
resented by 

Ψ+
send
n 1ς  

• Cost incurred in informing the PEs to advance in 
simulation time, represented by 

+
receive
n 1ς . 

 The total overhead cost incurred across is the sum 
of 

Ψ
Ψ+

send
n 1ς  and 

Ψ+
receive
n 1ς . Therefore, 

 
 

Ψ+
overhead
n 1ς = 

Ψ+
send
n 1ς  + 

Ψ+
receive
n 1ς  (A-1) 

 
 The ready for time advance events sent to the host from 
the entities are replied with one single safe time declaration 
event by the host. In addition, there might not be any event 
at a PE at the boundary of a super-step). In the worst case, 
all boundaries of super-steps in the history period may not 
have an event to be executed at an PE. Therefore, 
 
 

Ψ+
receive
n 1ς   ≤

Ψ+
send
n 1ς  + 

Ψ
S  (A-2) 

 
where 

Ψ
S is the count of synchronization points in .              

Using (A-1) and (A-2) we have: 
 

 
Ψ+

overhead
n 1ς   (2 * ≤

Ψ+
send
n 1ς ) + 

Ψ
S . (A-3) 

 
 The χ2 test either supports the hypothesis that the ob-
served events in the history period obeys a Poisson distri-
bution or rejects it. 

• Case 1: Successful Poisson fit 
 Since we have a successful Poisson fit we use 
the Poisson mean represented by λ . 

Ψ+
send
n 1ς  =  Ready events sent to Host  

  = P [Time-step has events]* Ψ  

  = (1 – P [∂n = 0]) * Ψ  

  = ( *)1 λ−− e Ψ . 
 For ease of analysis we reduce the result in 
(A-3) to an equality by considering only the worst 
case behavior. Hence, 
 

 
Ψ+

overhead
n 1ς = 2 * ( *)1 λ−− e Ψ +

Ψ
S . (A-4) 

 
• Case 2: Unsuccessful Poisson fit  

 For this case, we use a simple linear estimate. 
This rudimentary method does not provide us any 
means of knowing what the probability that a par-
ticular entity has an event to be executed in any 
simulation time unit is. Hence we estimate the 
overhead directly based on the event coverage ‘κ’ 
observed during the history period. Therefore, 
 

 
Ψ+

overhead
n 1ς  = 2 * κ * Ψ .   (A-5) 

 
 This is because every time stamp that has an 
event involves a synchronization message and a 
ready message exchanged between the entity and 
the host. 
 

Estimating 
Ψ+

sim
n 1ς  (simulation events in Ψ ): 

We base our estimation, like before, on the observed 
events in the history period. Firstly, the total simulation 
event count in the history period is : 

 
 

Ψ+
sim
n 1ς = ∑  .  (A-6) 

Ψ∈

∂
t

t
n

 
This is the same as the product of mean observed 

event density during the history period and the length of 
the history period. That is: 

 

                      
Ψ+

sim
n 1ς  = λ * Ψ .  (A-7) 

 
Using the above results we can now calculate the 

length of the next super-step that will yield us the desired 
number of total events in a super-step. For instance, by 
previous observations if we have concluded that the near-
ness to real world offered by an event count of  ‘χ’ per su-
per-step is acceptable then we can estimate  using: 1+n

 
 = 1+n

)(
 

11 Ψ+Ψ+ +
Ψ∗

sim
n

overhead
n ςς

χ  (A-8) 

 
where ‘χ’ is the desired number of total events in a super-
step. Equation (A-8) follows from the fact that + 

 number of events have been observed in number of 
time-steps and we would like to see number of events in 
the next super-step of length  . 

overhead
n 1+ς

sim
n 1+ς

1+n
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 Substituting (A-4)/(A-5) and (A-7) in (A-8) and sim-
plifying, we have: 
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