
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

PIGGY-BACKED TIME-STEPPED SIMULATION WITH ‘SUPER-STEPPING’

S.C. Tay

Centre for Remote Imaging, Sensing and Processing
National University of Singapore

Kent Ridge, 119260, SINGAPORE

 G.S.H. Tan
K. Shenoy

School of Computing

National University of Singapore
Kent Ridge, 119260, SINGAPORE

ABSTRACT

We propose an optimization technique for reducing global
synchronizations in traditional time-stepped simulations.
Time-stepped simulations are known to be efficient when
events are frequent or dense. However, when events are
less frequent (when compared to the size of time-steps) the
performance of time-stepped simulations drop noticeably.
This paper aims at improving the performance of tradi-
tional time-stepped simulations during low frequency peri-
ods and maintaining its efficiency during high frequency
periods. We focus on interactive simulations which have
tight real-time interactive constraints. The proposed opti-
mization is achieved by informing the host about future
events. This information is ‘piggybacked’ on the ready
messages sent by the participating Processing Elements
(PE) to the host. We maintain simulation efficiency by
switching between the proposed technique and the tradi-
tional technique depending on the observed event density.
To achieve this switching we introduce a concept called
'super-stepping'. A probabilistic method is used to optimize
'super-step' size.

1 INTRODUCTION

Computer simulations are widely used by the scientific
community and industry today for studying, analyzing and
predicting the behavior of real-world systems. In this paper
we focus on the time-stepped approach that has been
commonly used to synchronize events for war game simu-
lation on a parallel or distributed platform. In the conven-
tional time-stepped approach, the time interval to be ad-
vanced after synchronization is performed is usually pre-
determined and is equal to the step-size. In the real world
the density of events can be highly varying depending on
the period of time being simulated. Defense simulations
have marked differences in event densities during time of
war (high event density combined with need for fine-
granularity and real-time response) as compared to peace
time (relatively low density and response time is not mis-

sion critical). This research work is aimed at optimizing the
synchronization for such simulations without affecting
causality constraints and without violating any real-time
constraints.

During low event density intervals PEs invest process-
ing time in scanning through the event queue at each time
step even though some of the time-steps may not contain
any events. The proposed technique informs PEs about a
time-step only when there are events to be processed at that
step. To achieve this, each PE informs the host about the
future events spawned by it. Though the proposed tech-
nique reduces the number of synchronization events com-
pared to the conventional technique, it also introduces an
overhead in terms of processing time at the host and at the
participating PEs. From our experiments we observe that
as event density increases beyond a threshold, the tradi-
tional time-stepping algorithm performs more efficiently.
As simulation is a dynamic process, an adaptive approach
which switches between the techniques based on the simu-
lation parameters seems appropriate. In order to facilitate
this switching we introduce a super-stepping mechanism
which partitions the simulation time into larger non-
overlapping intervals.

The rest of this paper proceeds as follows. Section 2
defines some terms used in this paper. Section 3 gives an
overview of time-stepped simulation and throws light on
some previous work. Section 4 introduces the piggy-
backing technique. Section 5 proposes the super-stepping
technique and its use in technique switching. Section 6
contains our experimental results and Section 7 contains
our concluding remarks.

2 DEFINITIONS

2.1 Event Density

Event Density is defined as the average number of events
received by a PE per unit simulation time during an ob-
served simulation time interval. We represent Event Den-

Tay, Tan, and Shenoy

sity using],[yxδ , where x and are the lower and up-
per bounds of the observed time interval, throughout our
work. If 23 events are observed in an interval of 10 time-
units then the Event Density for that PE during the ob-
served period is 2.3.

y

2.2 Event Coverage

Event Coverage is the number of time-units at which the
PE under observation has an event destined for it. We de-
note Event Coverage by],[yxκ where x and are the
lower and upper bounds of the observed time interval.
Event coverage can also be viewed as the probability that a
time-step has events to be executed. Hence,

y

1],[0 ≤≤ yxκ . If 3 out of 10 observed time-steps had
events to be executed at a particular PE then the Coverage
for that PE during the observed period is 0.3.

2.3 Barrier Synchronization

In Discrete Event Simulation (DES) all events have an as-
sociated time-stamp indicating at what simulated time the
event should occur. In a sequential simulation the events
are processed in time stamp order to ensure that an event
cannot affect its past history (if this should occur it is
known as a causality error). In Parallel DES, each PE
asynchronously processes events in parallel with the other
PEs. Thus, instead of a centralized clock, the PE has its
own logical clock, the Local Virtual Time, that runs inde-
pendently of the other PEs. For this reason, the PEs have to
be synchronized to avoid causality errors. A commonly
used technique to achieve this synchronization is by using
the barrier primitive. When a process invokes the barrier
primitive, it will block until all other processors have also
invoked the barrier primitive. When the last process in-
vokes the barrier, all processes can proceed further in
simulation time. Barrier Synchronization is required be-
cause the calculation of the next set of safe events assumes
that there are no events in transit and that all events that
were sent have been received.

3 TIME-STEPPED SIMULATION
AND PREVIOUS WORK

In time-stepped simulations all participating entities in the
simulation are at the same time-step at any point in wall-
clock time. Typically the entire span of simulation is di-
vided into equal-sized time steps and the simulation ad-
vances from one time step to the next. At the ith step, the
algorithm simulates all events that fall in the time interval
[(i – l)∆, i∆], where ∆ is a design parameter (Eick, Green-
berg, Lubachevsky, and Weiss 1993). If ∆ is very small the
efficiency of the method degenerates since barrier syn-
chronization is wasted on intervals that can contain no
events. Thus, ∆ is chosen large enough so that a processing
element typically has several events to process in any
given interval [(i – l)∆, i∆].
 However, if the value of ∆ is too large the simulation be-
comes coarse-grained as all events in the interval are simu-
lated as if they occur simultaneously. Figure 1 illustrates the
advancement of conventional time-stepped simulations.

The optimization proposed in this paper is an attempt to
apply some concepts from event-driven simulations to the
traditional time-stepped mechanism. In this section a brief
survey of some of the relevant previous work in the field of
conservative synchronization techniques is presented.

Figure 1: Simulation Progress in Traditional Time-Stepped
Simulations

Conservative synchronization algorithms fall under 3

major categories depending on the approach used in han-
dling deadlock. The first category of algorithms aims to
avoid deadlocks entirely. The second category allows
simulations to proceed until a deadlock is detected and
then deadlock recovery algorithms (Chandy and Misra
1981) are applied to resume simulation progress. The third
category is similar to the second category but the only dif-
ference is that these algorithms explicitly control the simu-
lation progress when the entire computation stops rather
than relying on the system becoming deadlocked. In order
to achieve this, these algorithms rely on a mechanism
called barrier synchronization.

The ideas presented in this paper were influenced by
the time-of-next-event (TNE) algorithm proposed by
Groselj and Tropper (1988), the windowing algorithms
proposed by Lubachevsky (1988) and by Ayani (1988) and
the Conservative Superstep protocol proposed by Cai,
Letertre, and Turner (1999). The TNE approach deals with
the case where more than one PE is mapped onto the same
physical processor. It uses the greatest lower bound of the
timestamps of the event messages expected to arrive next
at all empty links on the PEs on that processor to unblock
the PEs on its succeeding link.

Windowing algorithms proceed in three distinct
phases separated by barrier synchronization (Dickens and
Reynolds 1991). In the first phase, PEs determine the
simulation window cooperatively such that all events with
timestamps falling within the window can be executed
concurrently without the possibility of any causality errors.
The second phase of a windowing algorithm consists of the

Tay, Tan, and Shenoy

concurrent execution of all events having timestamps
within the window. In the third phase, events generated as
a result of the processing in the second phase are passed on
to other PEs. The primary difference between the various
windowing algorithms is the mechanism used to determine
the events that can be processed concurrently.

The Conservative Superstep Protocol (Cai, Letertre,
and Turner 1999) proposed a technique wherein the simu-
lation proceeded in a series of supersteps, where each su-
perstep was followed by a barrier synchronization. Each
superstep consisted of two phases - the computation phase
and the communication phase. The communication phase
involved the communication of event messages among the
participating PEs and the computation phase involved the
calculation of the safetime by the PEs. In this technique,
the concept of supersteps is similar to that of a 'window' in
which events are guaranteed to be causally safe. Several
refinements to the Conservative Superstep Protocol were
proposed in Gan et. al. (2001) based on the way the safe-
time of each PE is calculated.

4 THE ‘PIGGY-BACKED’ OPTIMIZATION

The traditional time-stepped technique relies on the Pending
Event List (PEL) to store the events spawned (and to be exe-
cuted in the future) at each PE. At each time-step the proc-
essed events are cleared from the PEL. To implement the
piggy-backing technique, we introduce a new Future Time
List (FTL) at the Host, in addition to the PEL that is main-
tained at the PEs. A simulation proceeding using the piggy-
backing technique involving two PEs and a central Host will
now explained in detail. Let E1, E3 and E4 be the local enti-
ties residing at PE1 and E2 and E5 be the ones residing at PE2.
 To initiate the simulation the Host adds a Start event
destined to all the participating PEs in its FTL and then
dispatches it to all the PEs (Figure 2).

Figure 2: Initiation of the Simulation by the Host

When PEs receive the Start message from the host they

scan through the PEL and execute the residing local entities.
This might result in new events being generated which are
meant to be processed during future times. The generated
new events are added to the PEL. Figure 3 shows the PELs
of PE1 and PE2 after the insertion of newly generated events.

Figure 3: PELs with Newly Generated Events

Once all the local entities have been executed the PE

sends the Ready message to the host piggy-backed with in-
formation about the new events that have been spawned as
shown in Figure 4. This information is the time-stamps that
destination PEs need to be informed about in order to re-
ceive Time Advance signals from the Host corresponding
to those time-stamps.

Figure 4: Piggy-Backed Ready Signals from the PEs

The Host extracts this piggy-backed information on

receiving the Ready message and updates its FTL, as
shown in Figure 5.

Figure 5: Updating of FTL by Host

Tay, Tan, and Shenoy

The Host then sends Advance to t where t is the mini-
mum time-stamp in its FTL, to those PEs corresponding to
time t in the FTL. In this case, the Host sends an Advance
to t=2 message to PE1 and PE2, as shown in Figure 6. Once
the PEs have been informed about the advance, the list cor-
responding to t=2 in the FTL is emptied.

Figure 6: Advance Signal Being Sent to PEs

After receiving the Advance message from the Host,

the PEs scan through the PEL, execute the residing local
entities and then send the piggy-backed Ready signal to the
Host again as shown in Figure 7 and Figure 8.

It is to be noted here that the Host only waits for
Ready messages from those PEs that had been sent Ad-
vance messages during the previous time-step. When the
Host receives information that it already possesses in its
FTL it conveniently ignores the information. For instance,
in Figure 8, the Host is already aware of the fact that PE1
and PE2 need to be sent an Time Advance signal when t=4.
Therefore, the information that PE1 and PE2 need to be in-
formed about time-stamp 4 in the new piggy-backed Ready
signal being received by the Host is ignored. This process
of the Host sending Advance signals and then waiting for
Ready signals from the PEs repeats until the simulation is
terminated.

Figure 7: Flushing of PELs and Appending of New Event
Information at PEs

Figure 8: Sending of Piggy-Backed Ready Signals to Host

5 SUPER-STEPPING

Simulation is an inherently dynamic process. It is difficult
to predict the behavior of any of the simulation variables
reliably and accurately. Typically, an important variable to
be considered is the event density. A technique that is well-
suited for simulations with low event densities may prove
to be inefficient when used in cases where the event den-
sity is very high.
 Communication cost of inter-process messages is an-
other factor to be considered. Communication messages are
typically intra-process, LAN-based or WAN-based depend-
ing on the geographical distances between participating
processes in a simulation. Techniques that avoid inter-PE
communication by adding a lot of complexity at each PE
may not be very useful in case the entities are being simu-
lated by the same PE or if the PEs reside on a shared LAN.
On the other hand, saving inter-PE messages at the cost of
some extra overhead at the PEs is worthwhile in a WAN en-
vironment. Therefore, simulation techniques should be cho-
sen based on prevailing variable values in the simulation.
 Any switching of technique requires a particular
switching point which is agreed upon by all entities. We
can call this as the "clean-slate" time which means that this
time is such that PEs contain within themselves all infor-
mation about their states and can proceed smoothly should
there be a change in simulation technique.
 The super-step boundary in our techniques provides
the PEs with such "clean-slate" points. At each super-step
boundary the participating PEs calculate the next super-
step size and inform the host about their predicted values.
The Host then uses the mean of these predicted values as
the super-step sizes for time-stepped execution. We ab-
stract the number of future events by a probabilistic ap-
proach. Since the events occurring in the non-overlapping
super-steps are assumed to be independent, the Poisson
probability density function is used in our prediction. The
chi-square test with a 95% confidence measure is used to
ensure the goodness-of-fit. In cases where a Poison fit is
not available we resort to a linear average for estimating
the next super-step size.

Tay, Tan, and Shenoy

5.1 Mathematical Estimate of the Super-Step

We estimate the next super-step size () based on the
observed pattern of events so far. The analysis assumes
that the simulation has advanced t time units. Let these t
time units comprise say n number of simulation super-steps
each of variable size.

1+n

 If, from previous knowledge, we estimate that an event
count of ‘χ’ per simulation super-step is acceptable then
we can calculate using: 1+n

1+n =





























+
Ψ

+−

+

Ψ−
used) isfit Poisson (when |)1(*2

used) isfit linear (when
 * 2

λ

χ

λκ
χ

λ Se

where denotes the history period being observed (with Ψ
Ψ denoting the length of), κ is the observed event

coverage,

Ψ

Ψ
S is the number of synchronization points in

and Ψ λ is the observed event density in Ψ (Please refer
to Appendix: Super-step size estimation for details).

6 EXPERIMENTS AND RESULTS

When translating the conceptual model into a computer
program, the modeler adopts a particular world-view or
orientation. The world-view may be dictated by the simu-
lation language or package chosen for the implementation
or constitutes a design choice when implementing in a
general-purpose language. The most common world-
views for DES are: event oriented modeling, process ori-
ented modeling, and activity scanning modeling (Banks,
Carson, and Nelson 1996). The application domain used
in this paper is war game simulation where combating
federates interact with each other, and the activity scan-
ning world-view was adopted.

6.1 The Simulation Testbed

The activity scanning conceptual framework (Buxton and
Laski 1962) was chosen for implementing the simulation
due to its common use in simulations that use fixed time in-
crements (time-steps). The flow mechanism (Page 1997)
adopted by such simulations is shown in Figure 9. One
evaluation of each condition represents a single scan. If any
condition is satisfied in a scan then the complete set of con-
ditions must be re-scanned because the actions performed
due to the previous condition being satisfied might have
caused some new conditions to be satisfied. If no conditions
are satisfied in a single scan then Phase 2 terminates.
 Our technique aims to improve the efficiency of simu-
lations by reducing the synchronization intervals when the

Figure 9: Activity Scan Flow Diagram

event coverage is not dense. Parameters that need to be
considered are the savings introduced by the new technique
in the number of synchronizations, number of overhead
messages exchanged and the condition, namely the event
coverage, under which these savings (if any) were ob-
served. These parameters have been chosen based on cur-
rent literature (Fujimoto 1989 and Nicol 1993).

The traditional time-stepped mechanism was used as
the benchmark. Figure 1 shows the number of synchroniza-
tion points and overhead / time advance messages involved
in the conventional technique. It is quite evident from the
figure that two overhead events are required per PE per
unit simulation time for proper synchronization when the
traditional technique is used. Since synchronization occurs
at every time step the number of synchronizations are
equal to the number of time steps.

The activity scanning technique usually employs enti-
ties which are made up of several models. Each model is
assigned a current state which is changed when an event
targeted to that particular model is received either from an-
other model within itself or from a foreign model residing
in another entity. Our experimental evaluation was done
using four-, eight- and sixteen-PE setups. Each participat-
ing entity in the simulation contains the following three
distinct types of models:

•
•

•

Action models (models that encapsulate motion)
Behavioral models (viz. models that simulate pa-
trolling, scanning for target etc)
Physical models (models that actually change
physical characteristics of an entity such as loca-
tion, color, capabilities etc).

For our experiments we used entities built of 5 be-
havioral models, 1 physical and 1 action model. These

Tay, Tan, and Shenoy

models when combined with their ability to generate
events at random gave us sufficient flexibility to vary the
Event Coverage.

6.2 Results and Analysis

The optimized technique was evaluated with respect to the
number of overhead messages (as compared to the tradi-
tional time-stepped technique) and the physical time over-
head at the host due to the introduction of the FTL.

6.2.1 Overhead Messages

Figures 10, 11 and 12 show the average cumulative super-
step boundaries, overhead messages and time advances re-
spectively across 8 PEs participating in the simulation over
time for different values of event count and event coverage.
 The graphs display two important properties, viz. re-
sponse to changes in the super-step throttle and the re-
sponse to variation in the event coverage.

Figure 10: Cumulative Super-Step Boundaries (8 PEs)

Figure 11: Cumulative Overhead Events (8 PEs)

Figure 12: Cumulative Time Advances (8 PEs)

6.2.1.1 Response to Super-Step Throttle

The super-step throttle, as derived in the analysis section,
dictates the size of the super-step used by the technique.
On the positive side, large values can lead to an increase in
size of the super-step and thus potentially delay synchroni-
zations that involve all the participating PEs, as can be ob-
served from Figure 10.
 However, large super-steps preclude that the event
coverage will not change within the span of the super-step
and leads to wider periods in which the simulation tech-
nique cannot be changed.

An inordinately large sized super-step is potentially
dangerous because event density that is randomly varying
may exponentially rise during the course of the super-step
and the PEs cannot vote for a change in the simulation
technique until the completion of the current super-step.
Consider the following example: At time T=200 if we de-
cide to use a super-step of size 18 and at T=204 we have a
sudden burst in the event density. It is now not possible to
switch to the traditional time-stepped mode of simulation
until T= 218.

To overcome this potential hazard we introduce a
threshold value for the maximum allowable number of
time steps that can elapse between two mandatory global
synchronizations. This threshold, denoted by the variable
MAX_SUPER_STEP, was set to 10 throughout our ex-
periments.

6.2.1.2 Response to Event Coverage

From the graph for overhead events (Figure 11) it is clear
that the number of synchronizations and the number of
overhead messages are less than the benchmark in all
cases. This can also be seen from the analysis shown in the
previous section. Recall that the worst-case overhead based
on linear regression from the previous section was shown
to be 2 events per time-unit versus 2 events per time unit of

Tay, Tan, and Shenoy

the benchmark algorithm. Hence, when the event coverage
equals 1, the performance of our proposed technique
equals that of the conventional technique. This is evident
from the experimental values obtained. The number of
overhead messages, which is a crucial consideration factor
in distributed simulations running on a LAN/WAN, is pro-
portional to the event coverage in the proposed technique.

Experiments were repeated using four nodes and sixteen
nodes and the observed decrease in case of four participating
PEs (or increase in case of the sixteen PEs) in the number of
overhead messages was proportional to the decrease (or in-
crease) in the number of PEs participating in the simulation.

6.3 Overhead Time

The introduction of the FTL results in some overhead at
the host. Since we are reducing the number of overhead
messages at the cost of introducing an additional data
structure at the central host it is important to measure the
physical time spent by the host in maintaining the data
structure. This time is affected by two parameters –the
number of time stamps already in the FTL and the number
of time stamps newly introduced. We varied these two pa-
rameters from 0 to 500 and observed (Figure 13) that when
both the parameters were varied beyond 350, the physical
time taken ranged between 0.005 to 0.020 seconds.

Figure 13: Overhead Physical Time at Central Host

The overhead time consumed for ‘piggybacking’ informa-
tion on to the Ready messages was also measured. How-
ever, the time consumed was negligible (<10 msec) even
when 1000 new time-stamps were piggybacked. Figure 14
shows the observed results.

7 FURTHER WORK AND CONCLUSIONS

This paper introduces an optimization to traditional time-
stepped simulations, particularly in the domain of war

Figure 14: Overhead Physical Time at PEs

game simulations. A super-stepping mechanism is also in-
troduced so as to facilitate swtching between simulation
techniques to ensure efficiency. Our experimental results
show that substantial savings in overhead can be achieved
when this piggy-backing optimization is used in simula-
tions when compared to the conventional time-step tech-
nique. The proposed mechanism is simple and robust.
 Though the optimization suggested in this paper ad-
dresses simulations with sparse event coverage it does not
provide for utilization of any available lookaheads between
participating entities. Our further work will focus on build-
ing a probabilistic super-step based model to efficiently
simulate entities with sparse event sets and with intermit-
tent availability of lookaheads while fundamentally main-
taining the time-stepped paradigm.

ACKNOWLEDGMENTS

This research was supported by the NUS-Ministry of De-
fence, Singapore Collaboration project GR6757.

APPENDIX: SUPER-STEP SIZE ESTIMATION

Let the average simulation event density of a PE be repre-
sented by ∂ . Thus, the event densities of PE1, PE2 … PEn

will be represented by 1∂ , … ∂ respectively. Further,
let the superscript denote the simulation time unit to which
the event density corresponds. For instance the event den-
sity of PE

2∂

n

n

2 in simulation time unit 't' will be denoted as ∂ .
Since each super-step consists of one or more simulation
time units it is important to represent the length of a super-
step by a variable. Let represent the length of the n

t
2

th
simulation time super-step in units of simulation time. Fi-
nally, since most of our predictions about the future will be
based on the observed behavior from the past we denote

Tay, Tan, and Shenoy

the length of the history period considered (in simulation
time units) as Ψ and the history period itself as Ψ .

Ψ

Ψ

 For each PE we have two types of events – overhead
events and simulation events represented by and
respectively. Overhead events are those events that are used
to support the simulation. Synchronization costs, fault-
tolerance costs are some examples of overheads. Simulation
events are those that actually form a part of the simulation
and modify the system state in some way or another.

overhead
n 1+ς sim

n 1+ς

Estimating

Ψ+
overhead
n 1ς (overhead events in Ψ):

We abstract the following two overheads:
• Cost incurred by each PE during the history pe-

riod in informing the centralized host about the
time-stamps of future events generated by it, rep-
resented by

Ψ+
send
n 1ς

• Cost incurred in informing the PEs to advance in
simulation time, represented by

+
receive
n 1ς .

 The total overhead cost incurred across is the sum
of

Ψ
Ψ+

send
n 1ς and

Ψ+
receive
n 1ς . Therefore,

Ψ+
overhead
n 1ς =

Ψ+
send
n 1ς +

Ψ+
receive
n 1ς (A-1)

 The ready for time advance events sent to the host from
the entities are replied with one single safe time declaration
event by the host. In addition, there might not be any event
at a PE at the boundary of a super-step). In the worst case,
all boundaries of super-steps in the history period may not
have an event to be executed at an PE. Therefore,

Ψ+
receive
n 1ς ≤

Ψ+
send
n 1ς +

Ψ
S (A-2)

where

Ψ
S is the count of synchronization points in .

Using (A-1) and (A-2) we have:

Ψ+

overhead
n 1ς (2 * ≤

Ψ+
send
n 1ς) +

Ψ
S . (A-3)

 The χ2 test either supports the hypothesis that the ob-
served events in the history period obeys a Poisson distri-
bution or rejects it.

• Case 1: Successful Poisson fit
 Since we have a successful Poisson fit we use
the Poisson mean represented by λ .

Ψ+
send
n 1ς = Ready events sent to Host

 = P [Time-step has events]* Ψ

 = (1 – P [∂n = 0]) * Ψ

 = (*)1 λ−− e Ψ .
 For ease of analysis we reduce the result in
(A-3) to an equality by considering only the worst
case behavior. Hence,

Ψ+

overhead
n 1ς = 2 * (*)1 λ−− e Ψ +

Ψ
S . (A-4)

• Case 2: Unsuccessful Poisson fit

 For this case, we use a simple linear estimate.
This rudimentary method does not provide us any
means of knowing what the probability that a par-
ticular entity has an event to be executed in any
simulation time unit is. Hence we estimate the
overhead directly based on the event coverage ‘κ’
observed during the history period. Therefore,

Ψ+

overhead
n 1ς = 2 * κ * Ψ . (A-5)

 This is because every time stamp that has an
event involves a synchronization message and a
ready message exchanged between the entity and
the host.

Estimating
Ψ+

sim
n 1ς (simulation events in Ψ):

We base our estimation, like before, on the observed
events in the history period. Firstly, the total simulation
event count in the history period is :

Ψ+
sim
n 1ς = ∑ . (A-6)

Ψ∈

∂
t

t
n

This is the same as the product of mean observed

event density during the history period and the length of
the history period. That is:

Ψ+

sim
n 1ς = λ * Ψ . (A-7)

Using the above results we can now calculate the

length of the next super-step that will yield us the desired
number of total events in a super-step. For instance, by
previous observations if we have concluded that the near-
ness to real world offered by an event count of ‘χ’ per su-
per-step is acceptable then we can estimate using: 1+n

 = 1+n

)(

11 Ψ+Ψ+ +
Ψ∗

sim
n

overhead
n ςς

χ (A-8)

where ‘χ’ is the desired number of total events in a super-
step. Equation (A-8) follows from the fact that +

 number of events have been observed in number of
time-steps and we would like to see number of events in
the next super-step of length .

overhead
n 1+ς

sim
n 1+ς

1+n

Tay, Tan, and Shenoy

 Substituting (A-4)/(A-5) and (A-7) in (A-8) and sim-
plifying, we have:

 = 1+n





























+
Ψ

+−

+

Ψ−
used) isfit Poisson (when |)1(*2

used) isfit linear (when
 * 2

λ

χ

λκ
χ

λ Se

. (A-9)

REFERENCES

Ayani, R. 1989. A parallel simulation scheme based on dis-
tance between objects, Proceedings of the SCS Multi-
conference on distributed simulations. Volume 21,
Pages 113-118.

Banks, J., Carson II, J.S., and Nelson, B.L. 1996. Discrete-
Event System Simulation, Second Edition, Prentice
Hall.

Buxton, J. N., and Laski J. G. 1962. Control and Simula-
tion Language, Computer Journal, Volume 5(3), 1962.

Cai, W., Letertre, E., and Turner, S.J. 1997. Dag Consis-
tent Parallel Simulation: a Predictable and Robust
Conservative Algorithm, Proceedings of the 11th
Workshop on PADS, pp. 178-181.

Chandy, K.M., and Misra, J. 1981. Asynchronous Distrib-
uted Simulation via a Sequence of Parallel computa-
tions. Communications of the ACM, Volume 24(11),
pp. 198-206.

Dickens, P.M., and Reynolds Jr., P.F. 1991. A Perform-
ance Model for Parallel Simulation, Proceedings of the
Winter Simulation Conference, pp. 618-626.

Eick S.G., Greenberg A.G. Greenberg, Lubachevsky B.D.
and Weiss, A. 1993. Synchronous Relaxation for Par-
allel Simulations with Applications to Circuit-
Switched Networks, ACM Transactions on Modeling
and Computer Simulation, Volume 3(4), pp. 287-314.

Fujimoto, R.M. 1989. Performance Measurements of Dis-
tributed Simulation Strategies, Transactions of the So-
ciety for Computer Simulation, Volume 6, Pages 89-
132.

Gan, B.P., Low, Y.H., Cai, W., Turner, S.J., Jain, S., Hsu,
W.J., and Huang, S.Y. 2001. The Development of
Conservative Superstep Protocols for Shared Memory
Multiprocessor Systems, Parallel and Distributed
Computing Practices, Volume 4(1), pp. 1-17.

Groselj B., and Tropper C. 1988. The Time-of-Next-Event
Algorithm, Proceedings of the SCS Multiconference
on Distributed Simulation, pp. 25-29, Society for
Computer Simulation.

Nicol, D.M. 1993. The cost of conservative
synchronization in parallel discrete event simulations,
Journal of the ACM, Volume 40(2), pp. 304-333.

Lubachevsky, B.D. 1988. Bounded Lag Distributed Dis-
crete Event Simulation, Proceedings of the SCS Multi-
conference on Distributed Simulation, Pages 183-191,
Society for Computer Simulation.

Lubachevsky, B.D. 1989. Scalability of the bounded lag
distributed discrete event simulation, In Distributed
Simulation, Volume 21(2), pp. 100-107.

Page, E.H. 1997. Zero Lookahead in a Distributed Time-
Stepped Simulation, Simulation Digest, Volume 26(2),
pp. 4-13.

AUTHOR BIOGRAPHIES

SENG CHUAN TAY graduated from the National Uni-
versity of Singapore (NUS) with a Ph.D. degree in 1999.
His research interests include parallel and distributed simu-
lation (mechanism and modeling) and satellite image ap-
plications. He is also the Deputy Director of The Centre for
Remote Imaging, Sensing and Processing (CRISP) at NUS.
He can be reached at <crstaysc@nus.edu.sg>.

GARY S.H. TAN is a Senior Lecturer at the School of
Computing, National University of Singapore (NUS). His
research interests are Parallel and Distributed Systems,
Parallel and Distributed Simulation, and High Level Ar-
chitecture. He is a member of the Modelling and Simula-
tion Group at NUS and a member of the ACM and IEEE
Computer Society. His email address is <gtan@comp.
nus.edu.sg>.

KARTHIK SHENOY is a Masters student at the School
of Computing, National University of Singapore. He re-
ceived his B.E. degree in Computer Science from Manga-
lore University, India in 1999. His research interests are in
the domain of parallel and distributed systems. His email
address is <karthiks@comp.nus.edu.sg>.

http://www.comp.nus.edu.sg/~rpsim/MSG
http://www.comp.nus.edu.sg/~rpsim/MSG
http://www.comp.nus.edu.sg/~rpsim/MSG
http://www.comp.nus.edu.sg/~rpsim/MSG

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1077
	02: 1078
	03: 1079
	04: 1080
	05: 1081
	06: 1082
	07: 1083
	08: 1084
	09: 1085

