
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

A GAME ENGINE BASED SIMULATION OF THE NIST URBAN SEARCH AND RESCUE ARENAS

Jijun Wang
Michael Lewis
Jeffrey Gennari

School of Information Sciences

University of Pittsburgh
Pittsburgh, PA, U.S.A.

ABSTRACT

We are developing interactive simulations of the National
Institute of Standards and Technology (NIST) Reference
Test Facility for Autonomous Mobile Robots (Urban
Search and Rescue). The NIST USAR Test Facility is a
standardized disaster environment consisting of three sce-
narios of progressive difficulty: Yellow, Orange, and Red
arenas. The USAR task focuses on robot behaviors, and
physical interaction with standardized but disorderly rubble
filled environments. The simulation will be used to test
and evaluate designs for teleoperation interfaces and robot
sensing and cooperation that will subsequently be incorpo-
rated into experimental robots. This paper describes our
novel simulation approach using an inexpensive game en-
gine to rapidly construct a visually and dynamically accu-
rate simulation for both individual robots and robot teams.

1 INTRODUCTION

Large-scale coordination tasks in hazardous, uncertain, and
time stressed environments are becoming increasingly im-
portant for fire, rescue, and military operations. Substitut-
ing robots for people in the most dangerous activities could
greatly reduce the risk to human life and even allow new
and more hazardous tasks to be undertaken. Because such
emergencies are relatively rare and demand full focus on
the immediate problems there is little opportunity to insert
and experiment with robotic assistants (Murphy 2003).

1.1 NIST Arenas

The National Institute of Standards’ (NIST) Reference Test
Facility for Autonomous Mobile Robots for Urban Search
and Rescue (USAR) (Jacoff, et al. 2001) is an attempt to
replicate the challenges of such environments in a safe and
reproducible way. The NIST USAR Test Facility is a stan-
dardized disaster environment consisting of three scenar-
ios: Yellow, Orange, and Red physical arenas of progress-

ing difficulty shown in Figure 1. The USAR task focuses
on robot behaviors, and physical interaction with standard-
ized but disorderly rubble filled environments.

Figure 1: Orange Arena (NIST Photograph)

 The Yellow Arena resembles an office environment
with a flat floor, perpendicular walls, and few obstacles.
The challenges in the Yellow Arena are predominately per-
ceptual. There are mirrors, transparent Lucite obstacles,
venetian blinds, and large areas completely darkened by
tarps. Success in the Yellow Arena depends on reliable
redundant sensing and places little demand on locomotion.
 The Orange Arena presents challenges of both sorts. It
is constructed in two levels separated by difficult to navi-
gate stairs and a ramp. Some of the floor is littered with
paper while another area is strewn with dowels and small
sections of pipe. Walls of some of the rooms are painted in
optical illusion inducing stripes and patterns to confuse im-
age processing and venetian blinds are again used as ap-
parent obstacles. A negative obstacle (drop off) is intro-
duced on the platform in the form of an open ventilation
shaft. (Negative obstacles present a significant problem in
robotics because they are often not apparent from an image
and are more difficult to sense than ‘positive’ obstacles

Wang, Lewis, and Gennari

that reflect signals.) Successfully navigating the Orange
Arena requires both reasonably robust sensing and locomo-
tion able to handle stairs and some surface irregularities.
 The Red Arena eschews perceptual difficulties and
places maximal demand on locomotion. The design re-
sembles an actual rubble pile with mounds of cement
blocks and slabs, chicken wire, and other debris. The ter-
rain is so irregular that it becomes difficult even for rugge-
dized robots to traverse without becoming entangled with
rubbish, stuck in crevices, or rolling over. Despite the im-
provement of documented reference tasks over idiosyn-
cratic rubble piles, developing and comparing robots and
robot teams remains a difficult task. Very few researchers
have access to the permanent arenas in Maryland, Califor-
nia, and Japan and portable arenas are only available to
competitors for short periods during major meetings such
as the International Joint Conference on Artificial Intelli-
gence (IJCAI). Because researchers much wait so long
between discovering flaws at one conference, implement-
ing fixes, and testing then at the next conference, progress
is slowed significantly.

1.2 Simulation Desiderata

 One solution to the lack of accessible reference environ-
ments will be to develop simulations that allow researchers
to test some aspects of their solutions without requiring
complete implementation or access to a physical arena.
The success of this approach will depend on:

• Expense and availability of simulation hardware
and software to USAR robotics community.

• Ease of programming to reflect targeted aspects of
design.

• Fidelity of simulation w.r.t. aspects of design to be
tested.

 We have identified four characteristics of USAR ro-
bots, their tasks, and environments that need to be accom-
modated within a general purpose simulation:

1. Simulated video feed- for teleoperation and visual
search and identification.
To date all robots used in actual USAR operations
have been teleoperated. The most crucial feature of
their human-computer interface is the video feed
from the robot’s camera. This imagery must be
used both to navigate the robot through an unknown
environment and to locate and identify victims.
Casper (2002) reports that perceptual errors and
confusions were by far the greatest problems in ro-
botic rescue attempts at the World Trade Center
site. Fidelity in simulation of a video feed requires
an accurate model of both surfaces and (visual) tex-
tures of the arena and control over camera FOV
(field of view) and attitude (tilt and pan)

2. Simulated robot dynamics- for teleoperation and
autonomous control.
Experiments with either manual control or auto-
matic control algorithms need an accurate model
of robot dynamics. Ideally we would like to be
able to tell from simulation whether or not a robot
could climb stairs or might get stuck in chicken
wire. While this level of realism may be difficult
to attain an approximation which differentiates
easy from difficult to traverse areas and models an
increasing error in heading when navigating rough
terrain would capture many crucial features.

3. Sensor simulation- for autonomous control and
fused displays.
Accurate simulations of sensors are needed to
simulate robot behavior. While a human teleop-
erator can easily extract 3D information from a
video display, this remains a difficult problem for
machine vision. For expendable robots of the sorts
likely to be used in USAR ranging sensors such as
sonar, flir, or ladar are likely candidates and need
to be modeled.

4. Multiple entity simulation- to allow interaction and
cooperation among teams of robots.
Because the size and complexity of USAR tasks
require multiple robots it is essential that simula-
tions do as well.

2 USING GAME ENGINES
FOR SIMULATION

The cost of developing ever more realistic games has
grown so huge that even game developers can no longer
rely on recouping their entire investment from a single
game. This has led to the emergence of game engines—
modular simulation code—written for a specific game but
general enough to be used for a family of similar games.
This separability of function from content is what now al-
lows game code to be used for more general simulation
(Lewis and Jacobson 2002).
 The game’s engine refers to the collection of modules
of simulation code that do not directly specify the game’s
behavior (game logic) or game’s environment (level data).
The engine includes modules handling input, output (3D
rendering, 2D drawing, sound), networking and generic
physics and dynamics. The level defines a 3-D environ-
ment in much the same way as VRML virtual reality mark-
up language) and may use many of the same tools. The
game code handles most of the basic mechanics of simula-
tion including simple physics, display parameters, net-
working, and the base or atomic-level actions for anima-
tions and can be modified using a game-specific scripting
language. Multiplayer games use a client-server architec-
ture in which the server maintains the reference state of the
simulation while clients perform the complex graphics
computations needed to display their individual views.

Wang, Lewis, and Gennari

2.1 The Unreal Engine

Our simulations of the NIST USAR arenas are based on
the updated version of the Unreal Engine released by Epic
Games with Unreal Tournament 2003. The simulation is
written as a combination of levels, describing the 3-D lay-
out of the arenas and modifications, scripts redefining the
simulation’s behavior. The engine to run the simulation
can be inexpensively obtained by buying the game. The
Unreal Engine is an excellent platform for rapid prototyp-
ing because it provides a sophisticated graphical develop-
ment environment and a variety of specialized tools includ-
ing the Karma physics engine and a skeletal animation
system which simplify the detailed tasks of modeling
physical processes. In this paper we discuss the ways in
which we have used these tools to create a USAR simula-
tion meeting our earlier desiderata.

2.1.1 Unreal Client-Server Architecture

The client-server model used in Unreal is the “generalized
client-server model”. The server controls the interaction
among clients and the authoritative state of the simulation.
On the client side, the client sends data to the server about its
actions. It then displays to the user changes it has been given
by the server. The client locally maintains a subset of the
simulation state, which can be used to predict subsequent
states. It executes the same code as the server but according
to its local state. Thus, the client can approximately predict
the next simulation state. The prediction technology can in-
crease visible detail while lowering bandwidth usage, elimi-
nate perceived latency in client movement and decrease the
amount of data that needs to be exchanged between the cli-
ents and server. The client gets the simulation state from the
server through “replication”. In Unreal, replication deals
with how information is sent from the server to the client
and vice versa. Only a subset of the simulation state that af-
fects a particular client is sent to it.

2.1.2 GameBots Modification

Unreal Tournament has two types of entities, human play-
ers who run individual copies of the game and connect to
the server (typically running on the first player’s machine)
and ‘bots’ (short for robots) simulated players running sim-
ple reactive programs. Gamebots is a modification to the
Unreal Tournament game that allows bots to be controlled
through a normal TCP/IP socket (Kaminka et al. 2002).
Gamebots talks to the game engine directly, and opens its
own networking sockets. A protocol for interacting with
Unreal Tournament is defined in (Gamebots 2003). With a
simple text-based TCP/IP protocol Gamebots can be used
to create and manipulate bots in an Unreal Tournament in-
stance. Because the full range of bot commands and Un-
real scripts can be accessed over this connection GameBots
provides a more powerful and flexible entry into the simu-
lation than the player interface. The GameBot interface is
ideal for simulating USAR robots because it can both ac-
cess bot commands such as Trace to simulate sensors and
exert complicated forms of control such as adjusting motor
torques to control a simulated robot in the same fashion as
an actual one.

2.1.3 USAR Simulation Architecture

One of the client options in Unreal is the ‘spectate’ mode.
As a spectator, the client’s viewpoint (camera location and
orientation from which the simulation is viewed) can be
attached to any other player including ‘bots’. By combin-
ing a ‘bot’ controlled by GameBots with a spectator client
we can simulate a robot with access to both simulated sen-
sor data through the ‘bot’ and a simulated video feed
through the spectating client. By controlling the simulated
robot indirectly through GameBots rather than as a normal
client we gain the additional advantage of being able to
simulate an autonomous robot (controlled by a program) a
teleoperated robot (controlled by user input) or any level of
automation in between. In the larger project both simu-
lated and actual robots will be controlled through
RETSINA agents (Sycara et al. 1996), modular agents with
communication, planning, and execution monitoring capa-
bilities. Under this architecture planning, cooperation,
communication, and control are the same for actual and
simulated robots.

3 MODELING THE ORANGE ARENA

The Orange Arena is a simulated collapsed building. The
robot in this scene needs to move around in the building,
try to avoid the obstacles and find the victims. Simulation
objects in the arena are divided into three categories: static
geometric objects, dynamic geometric objects and envi-
ronmental objects.

1. Static geometric objects
These objects are part of the building that is un-
movable. They affect how the robot moves around
in the building. The material of the object may af-
fect the robot’s perception. For example, the glass
may affect the robot’s perception of distance; the
texture of a wall may affect the robot’s judgment
of target.

2. Dynamic geometric objects
This kind of objects can change their own states.
They may be bricks, rubbles, pipes, victims etc.
They have more complex interaction relationship
with the robot than the static geometric objects.
When they interact with the robot, they may
change their states such as position, gesture etc.

Wang, Lewis, and Gennari

3. Environmental objects
The environmental objects describe the ambient
conditions that make up the environment. They in-
clude lighting, sound, and other intangible features.

 The arena model has three layers corresponding to the
types of objects: a geometric layer, a dynamic layer and an
environment layer.
 The geometry layer includes all the static geometric
objects. This layer was built from Pro-Engineer solid mod-
els provided by NIST. The model was simplified using
NuGraf and exported in 3D Studio format. The simplified
model was then imported into the Unreal Tournament Edi-
tor to provide static geometry for the simulation.
 Digital photographs and other data collected by a pro-
ject team which visited the permanent installation at NIST
were used to embellish the bare geometry of the Orange
Arena to produce a simulation model difficult to distin-
guish visually from the original. The realistic model was
created by mixing static textures such as wallpaper, wood
surface, or brick surface with dynamic textures capable of
changing according to their lighting, for example, glass,
mirrors and the guardrail. The dynamic layer is a layer of
dynamic objects that include Unreal classes written in Un-
real Script to simulate interaction with these objects.. The
interactions are modeled using the Karma physics engine
which will be introduced in the next section.
 Two classes of dynamic objects were developed for
this simulation: obstacle and victim. The obstacle class ex-
tends the decoration class of Unreal Tournament. Accord-
ing to the mass of an object that collides with it, the obsta-
cle makes an appropriate response. The victim class is
extended from the Unreal Tournament xIntroPawn class.
With the skeletal modeling system, the victim can move its
hand or arm to simulate the gesture of asking for help. Fig-
ure 2 is a picture of the simulated arena.
 The environmental layer is presently limited to light-
ing effects and specifies light sources to reproduce ambient
lighting levels and contrasts (15:1) resembling those found
in the arena (figure 3). The resulting model faithfully re-
produces both the geometry of the Orange Arena and its
appearance through a simulated robot mounted camera.

4 MODELING DYNAMICS

In the real world, objects interact with each other according
to the laws of physics. Because difficulties in teleoperation
and locomotion are significant problems in the USAR do-
main it is important to model these aspects of the domain
as accurately as possible. The current release of the Unreal
engine as well as Sony Playstation and the Microsoft Xbox
all use the Karma physics engine to simulate interactions
among solid objects such as crates, tires or bones, as well
as different joints, motors or springs that make up me-
chanical objects.

Figure 2: Simulated Orange Arena Without rubble

Figure 3: Lighting Levels in Orange Arena

4.1 Karma Engine

The Karma engine is a rigid-body physics engine devel-
oped by MathEngine. It provides physics modeling, rigid-
body dynamics with constraints and collision detection.
Using a variety of computational strategies to simplify,
speed up, and exclude non interacting objects it achieves
animation level speed without sacrificing physical fidelity.
Each simulated object has its own mass and inertia, obeys
Newton’s laws of motion, and interacts with other objects
according to mass, inertia, friction, restitution, and gravity.
 Every object has kinematic attributes that describe its
position and movement, such as: position of the center of
mass, orientation of the body, acceleration/velocity of the
center of mass and angular acceleration/velocity, which de-
scribes the change of orientation. Forces and torques are
the dynamic attributes used in Karma. Constraints are used
to describe the restriction on the motion of an object. There
are two types of constraints: joints and contacts. Joint at-
taches two objects and restricts one or more of the degrees
of freedom between them. 14 joint types such as Ball And
Socket, Cone Limit, Hinge, and Car Wheel Joint are pro-
vided in Karma. With joints, two or more rigid bodies can

Wang, Lewis, and Gennari

Figure 4: Victim and Fencing from Real
Arena Above with Similar Scene from Simu-
lation Below

construct a multi-rigid object such as four wheeled vehicles
or human bodies. Contacts limit how an object can move.
For example, when a stone falls onto the floor, it will strike
the floor and rebound back. Karma uses collision detection
to detect whether two bodies are in contact and supports
collisions between geometries of a variety of types.

4.2 Robot Dynamics

Simulating robot dynamics is greatly simplified by the Un-
real engine’s vehicle class which uses the Karma engine’s
Car Wheel Constraint joint A vehicle is made of a chassis,
one or more wheels and the joints that connect the wheels
to the chassis. The wheel rotates about its rolling or hinge
axis; the chassis travels along the suspension direction and
the wheels steer about the steering axis. The vehicle is
driven by a motor whose output torque is provided by in-
terpolating along its Torque-SpinSpeed curve.
 Our initial arena robot is a vehicle class object mirror-
ing the design of actual robots being built by other re-
searchers on our project. The robot is driven by two
wheels each with its own motor. The steering axis of the
vehicle class has been locked to cause the simulated robot
to turn by driving the two wheels with different spin speeds
as in the actual robots’ design.
 Within Unreal there are two ways to simulate physical
events: scripted behavior (animation), and bespoke solu-
tions. Scripted behaviors control the movement of an ob-
ject according to a predefined sequence of events. Bespoke
solutions generate movements by applying the appropriate
mathematical equations. These two approaches can be used
together or switched according to context. Most of our ro-
bot simulation depends on bespoke solutions controlled by
the Karma engine. However, in certain situations such as
crossing a floor strewn several inches deep with paper it
would be prohibitively expensive to model the geometry of
individual sheets so scripted behavior is used instead. To
solve this problem Unreal Scripts were used to randomly
change the floor friction to simulate slippage as the robot
crosses the paper.

5 MODELING SENSORS

While simulating a video feed and robot dynamics allows
us to investigate teleoperation and robot design it cannot
model autonomous behavior that requires input from the
environment. There has been much work on modeling sen-
sors for virtual environments and the Unreal engine has
many of the features needed to generate sensor data.
Simulating sensors has little to do with their actual opera-
tion but instead involves degrading the perfect knowledge
available from the simulation to resemble that available
through noisy and imperfect sensors. The challenge is to
the mimic the forms of distortion found for different
classes of sensors, for example, blind spots due to specular
reflections for sonar.

5.1 Proximity Sensors

The term proximity sensor refers to sensors that provide
location data on objects relative to the sensing body. One
of the oldest and most well known proximity sensors is so-
nar. Sonar operates by transmitting a pulse wave out into
the environment. As the wave collides with objects it is
reflected back to the transmitter. Based on the received
signal the transmitter can estimate the distance to the for-
eign object. Every entity in Unreal has a vector represent-
ing its location as a triple: X-coordinate, Y-coordinate, and
Z-coordinate. The Trace function will trace a line through
the environment and return a reference to the first object
the line collides with be it a wall, another entity, or some
other obstruction. The location data returned can be ma-
nipulated in much the same way sonar data is. Sonar can
be simulated by restricting the distance and accuracy of
Trace data provided to the robot controller.

Wang, Lewis, and Gennari

5.2 Laser Based Sensors

Laser based sensors use lasers to scan an object and assimi-
late the data gathered into a three dimensional image. An
example of a laser based sensor that is becoming popular is
laser radar (LADAR). LADAR provides detailed ranging
data which is sometimes enhanced to produce near photo-
graphic quality imagery. LADAR is much better adapted
to automatic target recognition (ATR) than intensity based
imaging because the location and shapes of objects are rep-
resented unambiguously. LADAR based ATR can be
simulated using the Trace function in much the same way
as sonar. In this case, however, entity types for classes
having ATR templates can be returned from a confusion
matrix to simulate inaccuracies in sensing and recognition.
LADAR imagery can be simulated for human viewing by
applying a grayscale filter to visible imagery. While the
resulting images resemble LADAR imagery they do not
preserve its other characteristics.

5.3 Thermal Sensors

Thermal sensors measure temperature differences in the
environment and convert that information into a present-
able format. Forward looking infrared (FLIR) is a widely
used form of thermal sensing that generates images show-
ing thermal differences. However, FLIR is problematic to
simulate as it requires input from many variables, not all of
which are present in our simulation. These variables in-
clude solar radiation, weather, internal heat, and the ther-
modynamics of physical materials all of which must be
considered in order to accurately predict temperature. For
robot use, FLIR is less capable than LADAR because it
provides even less unambiguous detail than visual imagery.
For robots using FLIR to locate and move toward sources
of heat which may signal potential victims, this functional-
ity can easily be simulated using the Trace function with
suitable degradations for distance and noise. Displaying
FLIR or fused imagery incorporating FLIR is more diffi-
cult and might require retexturing the entire arena to reflect
the scene as viewed through FLIR.
 Sensors have not yet been added to our USAR simula-
tion because of the wide variation in their characteristics.
We expect several sonar units to be installed on the robots
being built for use in a safeguarded (robot self protection)
operation mode and will add them to the simulation when
they are selected.

6 PRELIMINARY USES

Portions of the USAR simulation have already been used
in a series of teleoperation experiments involving camera
control (Hughes et al. 2003) and gravity referenced attitude
displays (Lewis et al. 2003). The full USAR simulation
was publicly demonstrated at the First Robocup American
Open held at Carnegie Mellon University April 30- May 4,
2003. In conjunction with regularly scheduled exhibitions
by USAR teams in the Orange Arena, attendees were al-
lowed to search for victims in the simulation using the
same interface that controlled the “corky” team’s robots.
The simulation is currently being used to evaluate pro-
posed changes to this interface.

7 DISCUSSION

Until recently accurate interactive virtual environment
simulations were expensive, time consuming, and difficult
to construct. The USAR simulation described in the paper,
by contrast was built in less than three months and already
meets the requirements we had laid out for it. While sev-
eral specialized graphics packages, 3D Studio Max and
NuGraf were used to speed development, the lion’s share
of work was done using tools provided with a fifty dollar
video game on a conventional personal computer.
 The simulation architecture described in section 2.1.3
is well suited for the USAR robotics community because it
allows researchers to test the aspects of physical or algo-
rithmic design in which they are interested without requir-
ing other supporting implementation. The simulation is
already being used for human factors research in teleopera-
tion and perceptual search where it is particularly power-
ful due to the excellence and control over graphics pro-
vided by a game engine. As development proceeds we
hope to provide user friendly tools to allow researchers to
assemble new designs and program the needed behaviors
with less effort. For other uses (teleoperation, perceptual
search, autonomous and team behaviors) the simulation is
already extremely easy to set up and use.

ACKNOWLEDGMENTS

This project is supported by NSF grant NSF-ITR-0205526.
Katia Sycara and Illah Nourkbaksh of Carnegie Mellon
University are co-pi’s on the project. Mary Berna, Alex-
ander Gutierrez, Terence Keegan, Kevin Oishi, Binoy
Shah, Steven Shamlian, Mark Yong, and Josh Young as-
sisted in data collection.

REFERENCES

Casper, J. 2002. Human-robot interactions during the ro-
bot-assisted urban search and rescue response at the
World Trade Center, MS Thesis, Computer Science
and Engineering, USF, Apr. 2002.

Gamebots 2003. Network API. http://www.cs.cmu.edu/-
galk/GameBots/WEB/docapi.html.

Hughes, S., Manojlovich, J., Lewis, M., and Gennari, J. 2003.
Camera control and decoupled motion for teleoperation.
to appear in Proceedings of the 2003 IEEE International
Conference on Systems, Man, & Cybernetics.

http://www.cs.cmu.edu/-galk/GameBots/WEB/docapi.html
http://www.cs.cmu.edu/-galk/GameBots/WEB/docapi.html
http://www.cs.cmu.edu/-galk/GameBots/WEB/docapi.html
http://www.cs.cmu.edu/-galk/GameBots/WEB/docapi.html

Wang, Lewis, and Gennari

Jacoff, A., Messina, E., Evans, J. 2001. Experiences in de-

ploying test arenas for autonomous mobile robots, Pro-
ceedings of the 2001 Performance Metrics for Intelli-
gent Systems (PerMIS) Workshop, Mexico City,
Mexico.

Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adob-
bati, R., Marshall, A., Scholer, A., and Tejada, S. 2002.
GameBots:A flexible test bed for multiagent team re-
search, Communications of the Association for Com-
puting Machinery(CACM),NY:ACM45(1),43-45.

Lewis, M. & Jacobson, J. 2002. Game engines in research.
Communications of the Association for Computing
Machinery (CACM), NY: ACM 45(1), 27-48.

Lewis, M., Wang, J., Manojlovich, J., Hughes, S., and Liu,
X. 2003. Experiments with attitude: Attitude displays
for teleoperation to appear in Proceedings of the 2003
IEEE International Conference on Systems, Man, &
Cybernetics.

Murphy, R. 2003. Gaps in rescue robotics, presentation to
IEEE Workshop on Safety, Security, and Rescue Ro-
botics, USF, Tampa, FL, Feb 19, 2003.

Sycara, K., Decker, K., Pannu, A., Williamson, M. and
Zeng, D. 1996. Distributed intelligent agents. IEEE-
Expert; vol 11; number 6; 36-45.

AUTHOR BIOGRAPHIES

JIJUN WANG is a Ph.D. student in the School of Informa-
tion Sciences at the University of Pittsburgh. He has B.S.
and M.S. degrees in Electo-Mechanical Engineering from
Tsinghua University of China. Before entering the Univer-
sity of Pittsburgh, he spent 3 years in the IT industry.
<jiw1+@pitt.edu>

MICHAEL LEWIS is an Associate Professor in the School
of Information Sciences at the University of Pittsburgh. He
received his Ph.D. and M.S. degrees from the Georgia Insti-
tute of Technology. His current research involves informa-
tion fusion and human control of mixed-initiative systems.
<ml@sis.pitt.edu>

JEFFREY GENNARI is a MSIS student in the School of
Information Sciences at the University of Pittsburgh where
he also received his BSIS degree. <jgennari@mail.
sis.pitt.edu>

mailto:jgennari@mail.�sis.pitt.edu
mailto:jgennari@mail.�sis.pitt.edu
mailto:jiw1+@pitt.edu
mailto:ml@sis.pitt.edu
mailto:jgennari@mail.sis.pitt.edu
mailto:jgennari@mail.sis.pitt.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1039
	02: 1040
	03: 1041
	04: 1042
	05: 1043
	06: 1044
	07: 1045

