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ABSTRACT 

We are developing interactive simulations of the National 
Institute of Standards and Technology (NIST) Reference 
Test Facility for Autonomous Mobile Robots (Urban 
Search and Rescue). The NIST USAR Test Facility is a 
standardized disaster environment consisting of three sce-
narios of progressive difficulty: Yellow, Orange, and Red 
arenas. The USAR task focuses on robot behaviors, and 
physical interaction with standardized but disorderly rubble 
filled environments.  The simulation will be used to test 
and evaluate designs for teleoperation interfaces and robot 
sensing and cooperation that will subsequently be incorpo-
rated into experimental robots.   This paper describes our 
novel simulation approach using an inexpensive game en-
gine to rapidly construct a visually and dynamically accu-
rate simulation for both individual robots and robot teams. 

1 INTRODUCTION 

Large-scale coordination tasks in hazardous, uncertain, and 
time stressed environments are becoming increasingly im-
portant for fire, rescue, and military operations.  Substitut-
ing robots for people in the most dangerous activities could 
greatly reduce the risk to human life and even allow new 
and more hazardous tasks to be undertaken.  Because such 
emergencies are relatively rare and demand full focus on 
the immediate problems there is little opportunity to insert 
and experiment with robotic assistants (Murphy 2003).   

1.1 NIST Arenas 

The National Institute of Standards’ (NIST) Reference Test 
Facility for Autonomous Mobile Robots for Urban Search 
and Rescue (USAR) (Jacoff, et al. 2001) is an attempt to 
replicate the challenges of such environments in a safe and 
reproducible way.  The NIST USAR Test Facility is a stan-
dardized disaster environment consisting of three scenar-
ios: Yellow, Orange, and Red physical arenas of progress-
 
ing difficulty shown in Figure 1. The USAR task focuses 
on robot behaviors, and physical interaction with standard-
ized but disorderly rubble filled environments.   
 

 
Figure 1: Orange Arena  (NIST Photograph) 

 
 The Yellow Arena resembles an office environment 
with a flat floor, perpendicular walls, and few obstacles.  
The challenges in the Yellow Arena are predominately per-
ceptual.  There are mirrors, transparent Lucite obstacles, 
venetian blinds, and large areas completely darkened by 
tarps.   Success in the Yellow Arena depends on reliable 
redundant sensing and places little demand on locomotion.   
 The Orange Arena presents challenges of both sorts.  It 
is constructed in two levels separated by difficult to navi-
gate stairs and a ramp.  Some of the floor is littered with 
paper while another area is strewn with dowels and small 
sections of pipe. Walls of some of the rooms are painted in 
optical illusion inducing stripes and patterns to confuse im-
age processing and venetian blinds are again used as ap-
parent obstacles.  A negative obstacle (drop off) is intro-
duced on the platform in the form of an open ventilation 
shaft.  (Negative obstacles present a significant problem in 
robotics because they are often not apparent from an image 
and are more difficult to sense than ‘positive’ obstacles 
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that reflect signals.)   Successfully navigating the Orange 
Arena requires both reasonably robust sensing and locomo-
tion able to handle stairs and some surface irregularities. 
 The Red Arena eschews perceptual difficulties and 
places maximal demand on locomotion.  The design re-
sembles an actual rubble pile with mounds of cement 
blocks and slabs, chicken wire, and other debris.  The ter-
rain is so irregular that it becomes difficult even for rugge-
dized robots to traverse without becoming entangled with 
rubbish, stuck in crevices, or rolling over.  Despite the im-
provement of documented reference tasks over idiosyn-
cratic rubble piles, developing and comparing robots and 
robot teams remains a difficult task.  Very few researchers 
have access to the permanent arenas in Maryland, Califor-
nia, and Japan and portable arenas are only available to 
competitors for short periods during major meetings such 
as the International Joint Conference on Artificial Intelli-
gence  (IJCAI).  Because researchers much wait so long 
between discovering flaws at one conference, implement-
ing fixes, and testing then at the next conference, progress 
is slowed significantly.  

1.2 Simulation Desiderata 

 One solution to the lack of accessible reference environ-
ments will be to develop simulations that allow researchers 
to test some aspects of their solutions without requiring 
complete implementation or access to a physical arena.  
The success of this approach will depend on: 

• Expense and availability of simulation hardware 
and software to USAR robotics community. 

• Ease of programming to reflect targeted aspects of 
design. 

• Fidelity of simulation w.r.t. aspects of design to be 
tested. 

 We have identified four characteristics of USAR ro-
bots, their tasks, and environments that need to be accom-
modated within a general purpose simulation: 

1. Simulated video feed- for teleoperation and visual 
search and identification. 
To date all robots used in actual USAR operations 
have been teleoperated.  The most crucial feature of 
their human-computer interface is the video feed 
from the robot’s camera.  This imagery must be 
used both to navigate the robot through an unknown 
environment and to locate and identify victims.  
Casper (2002) reports that perceptual errors and 
confusions were by far the greatest problems in ro-
botic rescue attempts at the World Trade Center 
site.  Fidelity in simulation of a video feed requires 
an accurate model of both surfaces and (visual) tex-
tures of the arena and control over camera FOV 
(field of view) and attitude (tilt and pan) 

2. Simulated robot dynamics- for teleoperation and 
autonomous control. 
Experiments with either manual control or auto-
matic control algorithms need an accurate model 
of robot dynamics.  Ideally we would like to be 
able to tell from simulation whether or not a robot 
could climb stairs or might get stuck in chicken 
wire.  While this level of realism may be difficult 
to attain an approximation which differentiates 
easy from difficult to traverse areas and models an 
increasing error in heading  when navigating rough 
terrain would capture many crucial features. 

3. Sensor simulation- for autonomous control and 
fused displays. 
Accurate simulations of sensors are needed to 
simulate robot behavior.  While a human teleop-
erator can easily extract 3D information from a 
video display, this remains a difficult problem for 
machine vision.  For expendable robots of the sorts 
likely to be used in USAR ranging sensors such as 
sonar, flir, or ladar are likely candidates and need 
to be modeled. 

4. Multiple entity simulation- to allow interaction and 
cooperation among teams of robots. 
Because the size and complexity of USAR tasks 
require multiple robots it is essential that simula-
tions do as well. 

2 USING GAME ENGINES  
FOR SIMULATION 

The cost of developing ever more realistic games has 
grown so huge that even game developers can no longer 
rely on recouping their entire investment from a single 
game. This has led to the emergence of game engines—
modular simulation code—written for a specific game but 
general enough to be used for a family of similar games. 
This separability of function from content is what now al-
lows game code to be used for more general simulation 
(Lewis and Jacobson 2002). 
 The game’s engine refers to the collection of modules 
of simulation code that do not directly specify the game’s 
behavior (game logic) or game’s environment (level data). 
The engine includes modules handling input, output (3D 
rendering, 2D drawing, sound), networking and generic 
physics and dynamics. The level defines a 3-D environ-
ment in much the same way as VRML virtual reality mark-
up language) and may use many of the same tools.  The 
game code handles most of the basic mechanics of simula-
tion including simple physics, display parameters, net-
working, and the base or atomic-level actions for anima-
tions and can be modified using a game-specific scripting 
language.  Multiplayer games use a client-server architec-
ture in which the server maintains the reference state of the 
simulation while clients perform the complex graphics 
computations needed to display their individual views. 
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2.1 The Unreal Engine 

Our simulations of the NIST USAR arenas are based on 
the updated version of the Unreal Engine released by Epic 
Games with Unreal Tournament 2003.   The simulation is 
written as a combination of levels, describing the 3-D lay-
out of the arenas and modifications, scripts redefining the 
simulation’s behavior.  The engine to run the simulation 
can be inexpensively obtained by buying the game.  The 
Unreal Engine is an excellent platform for rapid prototyp-
ing because it provides a sophisticated graphical develop-
ment environment and a variety of specialized tools includ-
ing the Karma physics engine and a skeletal animation 
system which simplify the detailed tasks of modeling 
physical processes.  In this paper we discuss the ways in 
which we have used these tools to create a USAR simula-
tion meeting our earlier desiderata.  

2.1.1 Unreal Client-Server Architecture 

The client-server model used in Unreal is the “generalized 
client-server model”. The server controls the interaction 
among clients and the authoritative state of the simulation. 
On the client side, the client sends data to the server about its 
actions. It then displays to the user changes it has been given 
by the server. The client locally maintains a subset of the 
simulation state, which can be used to predict subsequent 
states. It executes the same code as the server but according 
to its local state. Thus, the client can approximately predict 
the next simulation state. The prediction technology can in-
crease visible detail while lowering bandwidth usage, elimi-
nate perceived latency in client movement and decrease the 
amount of data that needs to be exchanged between the cli-
ents and server. The client gets the simulation state from the 
server through “replication”. In Unreal, replication deals 
with how information is sent from the server to the client 
and vice versa. Only a subset of the simulation state that af-
fects a particular client is sent to it.  

2.1.2 GameBots Modification 

Unreal Tournament has two types of entities, human play-
ers who run individual copies of the game and connect to 
the server (typically running on the first player’s machine) 
and ‘bots’ (short for robots) simulated players running sim-
ple reactive programs.  Gamebots is a modification to the 
Unreal Tournament game that allows bots to be controlled 
through a normal TCP/IP socket (Kaminka et al. 2002). 
Gamebots talks to the game engine directly, and opens its 
own networking sockets. A protocol for interacting with 
Unreal Tournament is defined in (Gamebots 2003).  With a 
simple text-based TCP/IP protocol Gamebots can be used 
to create and manipulate bots in an Unreal Tournament in-
stance.  Because the full range of bot commands and Un-
real scripts can be accessed over this connection GameBots 
provides a more powerful and flexible entry into the simu-
lation than the player interface.  The GameBot interface is 
ideal for simulating USAR robots because it can both ac-
cess bot commands such as Trace to simulate sensors and 
exert complicated forms of control such as adjusting motor 
torques to control a simulated robot in the same fashion as 
an actual one. 

2.1.3 USAR Simulation Architecture 

One of the client options in Unreal is the ‘spectate’ mode.  
As a spectator, the client’s viewpoint (camera location and 
orientation from which the simulation is viewed) can be 
attached to any other player including ‘bots’.  By combin-
ing a ‘bot’ controlled by GameBots with a spectator client 
we can simulate a robot with access to both simulated sen-
sor data through the ‘bot’ and a simulated video feed 
through the spectating client.  By controlling the simulated 
robot indirectly through GameBots rather than as a normal 
client we gain the additional advantage of being able to 
simulate an autonomous robot (controlled by a program) a 
teleoperated robot (controlled by user input) or any level of 
automation in between.  In the larger project both simu-
lated and actual robots will be controlled through 
RETSINA agents (Sycara et al. 1996), modular agents with 
communication, planning, and execution monitoring capa-
bilities. Under this architecture planning, cooperation, 
communication, and control are the same for actual and 
simulated robots. 

3 MODELING THE ORANGE ARENA 

The Orange Arena is a simulated collapsed building. The 
robot in this scene needs to move around in the building, 
try to avoid the obstacles and find the victims. Simulation 
objects in the arena are divided into three categories: static 
geometric objects, dynamic geometric objects and envi-
ronmental objects. 

1. Static geometric objects 
These objects are part of the building that is un-
movable. They affect how the robot moves around 
in the building. The material of the object may af-
fect the robot’s perception. For example, the glass 
may affect the robot’s perception of distance; the 
texture of a wall may affect the robot’s judgment 
of target. 

2. Dynamic geometric objects 
This kind of objects can change their own states. 
They may be bricks, rubbles, pipes, victims etc. 
They have more complex interaction relationship 
with the robot than the static geometric objects. 
When they interact with the robot, they may 
change their states such as position, gesture etc. 
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3. Environmental objects 
The environmental objects describe the ambient 
conditions that make up the environment. They in-
clude lighting, sound, and other intangible features.  

 The arena model has three layers corresponding to the 
types of objects: a geometric layer, a dynamic layer and an 
environment layer.  
 The geometry layer includes all the static geometric 
objects. This layer was built from Pro-Engineer solid mod-
els provided by NIST. The model was simplified using 
NuGraf and exported in 3D Studio format.  The simplified 
model was then imported into the Unreal Tournament Edi-
tor to provide static geometry for the simulation.   
 Digital photographs and other data collected by a pro-
ject team which visited the permanent installation at NIST 
were used to embellish the bare geometry of the Orange 
Arena to produce a simulation model difficult to distin-
guish visually from the original.  The realistic model was 
created by mixing static textures such as wallpaper, wood 
surface, or brick surface with dynamic textures capable of 
changing according to their lighting, for example, glass, 
mirrors and the guardrail. The dynamic layer is a layer of 
dynamic objects that include Unreal classes written in Un-
real Script to simulate interaction with these objects.. The 
interactions are modeled using the Karma physics engine 
which will be introduced in the next section.  
 Two classes of dynamic objects were developed for 
this simulation: obstacle and victim. The obstacle class ex-
tends the decoration class of Unreal Tournament. Accord-
ing to the mass of an object that collides with it, the obsta-
cle makes an appropriate response. The victim class is 
extended from the Unreal Tournament xIntroPawn class. 
With the skeletal modeling system, the victim can move its 
hand or arm to simulate the gesture of asking for help. Fig-
ure 2 is a picture of the simulated arena. 
 The environmental layer is presently limited to light-
ing effects and specifies light sources to reproduce ambient 
lighting levels and contrasts (15:1) resembling those found 
in the arena (figure 3).  The resulting model faithfully re-
produces both the geometry of the Orange Arena and its 
appearance through a simulated robot mounted camera. 

4 MODELING DYNAMICS 

In the real world, objects interact with each other according 
to the laws of physics.  Because difficulties in teleoperation 
and locomotion are significant problems in the USAR do-
main it is important to model these aspects of the domain 
as accurately as possible.  The current release of the Unreal  
engine as well as Sony Playstation and the Microsoft Xbox 
all use the Karma physics engine to simulate interactions 
among solid objects such as crates, tires or bones, as well 
as different joints, motors or springs that make up me-
chanical objects.  

 

 
Figure 2:  Simulated Orange Arena Without rubble 

 

 
Figure 3:  Lighting Levels in Orange Arena 

4.1 Karma Engine 

The Karma engine is a rigid-body physics engine devel-
oped by MathEngine. It provides physics modeling, rigid-
body dynamics with constraints and collision detection.  
Using a variety of  computational strategies to simplify, 
speed up, and exclude non interacting objects it achieves 
animation level speed without sacrificing physical fidelity.  
Each simulated object has its own mass and inertia, obeys 
Newton’s laws of motion, and interacts with other objects 
according to mass, inertia, friction, restitution, and gravity. 
 Every object has kinematic attributes that describe its 
position and movement, such as: position of the center of 
mass, orientation of the body, acceleration/velocity of the 
center of mass and angular acceleration/velocity, which de-
scribes the change of orientation. Forces and torques are 
the dynamic attributes used in Karma. Constraints are used 
to describe the restriction on the motion of an object. There 
are two types of constraints: joints and contacts. Joint at-
taches two objects and restricts one or more of the degrees 
of freedom between them. 14 joint types such as Ball And 
Socket, Cone Limit, Hinge, and Car Wheel Joint are pro-
vided in Karma. With joints, two or more rigid bodies can  
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Figure 4: Victim and Fencing from Real 
Arena Above with Similar Scene from Simu-
lation Below 

 
construct a multi-rigid object such as four wheeled vehicles 
or human bodies. Contacts limit how an object can move. 
For example, when a stone falls onto the floor, it will strike 
the floor and rebound back. Karma uses collision detection 
to detect whether two bodies are in contact and supports 
collisions between geometries of a variety of types. 

4.2 Robot Dynamics 

Simulating robot dynamics is greatly simplified by the Un-
real engine’s vehicle class which uses the Karma engine’s 
Car Wheel Constraint joint   A vehicle is made of a chassis, 
one or more wheels and the joints that connect the wheels 
to the chassis. The wheel rotates about its rolling or hinge 
axis; the chassis travels along the suspension direction and 
the wheels steer about the steering axis. The vehicle is 
driven by a motor whose output torque is provided by in-
terpolating along its Torque-SpinSpeed curve. 
 Our initial arena robot is a vehicle class object mirror-
ing the design of actual robots being built by other re-
searchers on our project.   The robot is driven by two 
wheels each with its own motor. The steering axis of the 
vehicle class has been locked to cause the simulated robot 
to turn by driving the two wheels with different spin speeds 
as in the actual robots’ design. 
 Within Unreal there are two ways to simulate physical 
events: scripted behavior (animation), and bespoke solu-
tions. Scripted behaviors control the movement of an ob-
ject according to a predefined sequence of events. Bespoke 
solutions generate movements by applying the appropriate 
mathematical equations. These two approaches can be used 
together or switched according to context. Most of our ro-
bot simulation depends on bespoke solutions controlled by 
the Karma engine. However, in certain situations such as 
crossing a floor strewn several inches deep with paper it 
would be prohibitively expensive to model the geometry of 
individual sheets so scripted behavior is used instead. To 
solve this problem Unreal Scripts were used to randomly 
change the floor friction to simulate slippage as the robot 
crosses the paper. 

5 MODELING SENSORS 

While simulating a video feed and robot dynamics allows 
us to investigate teleoperation and robot design it cannot 
model autonomous behavior that requires input from the 
environment.  There has been much work on modeling sen-
sors for virtual environments and the Unreal engine  has 
many of the features needed to generate sensor data.  
Simulating sensors has little to do with their actual opera-
tion but instead involves degrading the perfect knowledge 
available from the simulation to resemble that available 
through noisy and imperfect sensors.  The challenge is to 
the mimic the forms of distortion found for different 
classes of sensors, for example, blind spots due to specular 
reflections for sonar.  

5.1 Proximity Sensors 

The term proximity sensor refers to sensors that provide 
location data on objects relative to the sensing body.  One 
of the oldest and most well known proximity sensors is so-
nar.  Sonar operates by transmitting a pulse wave out into 
the environment.  As the wave collides with objects it is 
reflected back to the transmitter. Based on the received 
signal the transmitter can estimate the distance to the for-
eign object.  Every entity in Unreal has a vector represent-
ing its location as a triple: X-coordinate, Y-coordinate, and 
Z-coordinate. The Trace function will trace a line through 
the environment and return a reference to the first object 
the line collides with be it a wall, another entity, or some 
other obstruction.  The location data returned can be ma-
nipulated in much the same way sonar data is.  Sonar can 
be simulated by restricting the distance and accuracy of 
Trace data provided to the robot controller. 
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5.2 Laser Based Sensors 

Laser based sensors use lasers to scan an object and assimi-
late the data gathered into a three dimensional image.  An 
example of a laser based sensor that is becoming popular is 
laser radar (LADAR).  LADAR provides detailed ranging 
data which is sometimes enhanced to produce near photo-
graphic quality imagery.  LADAR is much better adapted 
to automatic target recognition (ATR) than intensity based 
imaging because the location and shapes of objects are rep-
resented unambiguously.  LADAR based ATR can be 
simulated using the Trace function in much the same way 
as sonar.  In this case, however, entity types for classes 
having ATR templates can be returned from a confusion 
matrix to simulate inaccuracies in sensing and recognition.  
LADAR imagery can be simulated for human viewing by 
applying a grayscale filter to visible imagery.  While the 
resulting images resemble LADAR imagery they do not 
preserve its other characteristics. 

5.3 Thermal Sensors 

Thermal sensors measure temperature differences in the 
environment and convert that information into a present-
able format.  Forward looking infrared (FLIR) is a widely 
used form of thermal sensing that generates images show-
ing thermal differences.  However, FLIR is problematic to 
simulate as it requires input from many variables, not all of 
which are present in our simulation.  These variables in-
clude solar radiation, weather, internal heat, and the ther-
modynamics of physical materials all of which must be 
considered in order to accurately predict temperature.  For 
robot use, FLIR is less capable than LADAR because it 
provides even less unambiguous detail than visual imagery.  
For robots using FLIR to locate and move toward sources 
of heat which may signal potential victims, this functional-
ity can easily be simulated using the Trace function with 
suitable degradations for distance and noise.  Displaying 
FLIR or fused imagery incorporating FLIR is more diffi-
cult and might require retexturing the entire arena to reflect 
the scene as viewed through FLIR. 
 Sensors have not yet been added to our USAR simula-
tion because of the wide variation in their characteristics.  
We expect several sonar units to be installed on the robots 
being built for use in a safeguarded (robot self protection) 
operation mode and will add them  to the simulation when 
they are selected. 

6 PRELIMINARY USES 

Portions of the USAR simulation have already been used 
in a series of teleoperation experiments involving camera 
control (Hughes et al. 2003) and gravity referenced attitude 
displays (Lewis et al. 2003).  The full USAR simulation 
was publicly demonstrated at the First Robocup American 
Open held at Carnegie Mellon University April 30- May 4, 
2003.  In conjunction with regularly scheduled exhibitions 
by USAR teams in the Orange Arena, attendees were al-
lowed to search for victims in the simulation using the 
same interface that controlled the “corky” team’s robots.  
The simulation is currently being used to evaluate pro-
posed changes to this interface. 

7 DISCUSSION 

Until recently accurate interactive virtual environment 
simulations were expensive, time consuming, and difficult 
to construct.  The USAR simulation described in the paper, 
by contrast was built in less than three months and already 
meets the requirements we had laid out for it.  While sev-
eral specialized graphics packages, 3D Studio Max and 
NuGraf were used to speed development, the lion’s share 
of work was done using tools provided with a fifty dollar 
video game on a conventional personal computer. 
 The simulation architecture described in section 2.1.3 
is well suited for the USAR robotics community because it 
allows researchers to test the aspects of   physical or algo-
rithmic design in which they are interested without requir-
ing other supporting implementation.  The simulation is 
already being used for human factors research in teleopera-
tion  and perceptual search where it is particularly power-
ful due to the excellence and control over graphics pro-
vided by a game engine.  As development proceeds we 
hope to provide user friendly tools to allow researchers to 
assemble new designs and program the needed behaviors 
with less effort.  For other uses (teleoperation, perceptual 
search, autonomous and team behaviors) the simulation is 
already extremely easy to set up and use. 
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