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ABSTRACT 

Quantum Computing (QC) research has gained a lot of 
momentum recently due to several theoretical analyses that 
indicate that QC is significantly more efficient at solving 
certain classes of problems than classical computing.  
While experimental validation will ultimately be required, 
the primitive nature of current QC hardware leaves practi-
cal testing limited to trivial examples.  Thus, a robust simu-
lator is needed to study complex QC issues.  Most QC 
simulators model ideal operations, and thus cannot predict 
the actual time required to execute an algorithm or quantify 
the effects of errors in the calculation.  We have developed 
a novel QC simulator that models physical hardware im-
plementations.  This simulator not only allows the accurate 
simulation of quantum algorithms on various hardware im-
plementations, but also takes an important step towards 
providing a framework to determine their true performance 
and vulnerability to errors. 

1 INTRODUCTION 

As transistors get smaller, conventional computation will 
encounter fundamental limits of size, time, and energy.  It 
is anticipated that the effects of statistical thermodynamics 
and quantum mechanics will be encountered in hardware 
designed in the next decade.  Some efforts have already 
been made to reduce these effects in conventional architec-
tures.  However, Quantum Computing (QC) has significant 
advantages that other researchers are seeking to employ in 
new computational devices.  QC is an emerging technol-
ogy that could overcome conventional hardware size and 
speed limitations, but with hardware, algorithms, and pro-
gram designs completely unlike those in use today. 
 Enthusiasm for quantum computing has exploded over 
the past few years.  An important driving force behind this 
enthusiasm has been proof of the theoretical capabilities of 
quantum computers to solve problems generally believed 
to be too compute-intensive for conventional computing 
 
approaches.  These theoretical capabilities are potentially 
important to security, where a quantum computer could 
break cryptography systems in wide use today.  However, 
apart from certain problems of interest to theoretical scien-
tists, there is little understanding of benefits that quantum 
computers could offer to other problem domains.  Gaining 
such understanding will require the invention and evalua-
tion of new algorithms for those domains. 
 The objective of this work is to design and develop a 
simulator in software that can test and quantify the per-
formance of such quantum computing algorithms.  This in-
cludes simulating both the input of data and the reading of 
the output of a quantum computer.  In addition, it is neces-
sary to be able to determine the amount of time required to 
complete an operation based on the physical properties of 
the hardware (as opposed to performing idealized opera-
tions) to allow for performance studies.  Since no single 
quantum hardware implementation has been identified as 
the best, it is important to understand the trade-offs be-
tween different implementations.  The simulator must also 
be capable of simulating noise and quantum decoherence 
(state deterioration due to environmental factors), to sup-
port error robustness analysis. 
 Section 2 provides a background of related work in 
quantum computing and simulation.  Section 3 then re-
views how a quantum algorithm is executed.  Section 4 
provides an overview of the simulator, named Quantum 
eXpress (QX).  Section 5 gives some initial results from a 
quantum algorithm simulated using QX.  Finally, Section 6 
describes future research efforts. 

2 BACKGROUND AND PRIOR ART 

Quantum computing can theoretically solve certain prob-
lems much more efficiently than classical computing be-
cause of the intrinsic parallelism of quantum phenomena, 
parallelism that does not require hardware duplication.  For 
example, while a classical N-bit register can hold any one 
integer between 0 and 2N–1, an N-quantum bit (qubit) regis-
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ter can simultaneously hold all (or any given subset) of these 
2N integers in the form of a quantum superposition (combi-
nation) of states.  However, there is a catch—the result of 
the computation is also in the form of a superposition and 
any attempt to read out (measure) the result causes the su-
perposition to collapse into just one of the 2N  integer states. 

The measurement of a particular quantum state will 
not deterministically collapse to the same state.  The col-
lapse to different states is probabilistic.  Therefore, to get 
more information on the quantum state being measured, 
one must freshly prepare the superposition many times and 
perform the measurement each time.  The outcomes of 
each of these “trials” will allow one to build a detailed un-
derstanding of the likelihood of the quantum state to col-
lapse to each of the different possible states.  For many ap-
plications, the inefficiency of these repetitions outweighs 
the efficiency of the original quantum parallelism.  How-
ever, for some applications, there is a net gain, even a tre-
mendous gain, in efficiency. 
 So far, only a few problems are known for which QC 
offers a net gain in efficiency.  One class of these is the 
Abelian hidden subgroup problem (Lomonaco & Kauff-
man 2002), which can be solved by QC using exponen-
tially fewer operations than the best known classical algo-
rithm.  This class of problem includes Shor’s famous code-
breaking algorithm (Shor 1997), which is the motivation 
for much of the current funding for QC research.  See Rief-
fel & Polak (2000) and Ekert et al. (2001) for additional 
information on quantum computing. 

2.1 Quantum Simulation 

Even where QC is theoretically more efficient, it is impor-
tant to understand just how much time a quantum computa-
tion would require in practice.  Not only does each opera-
tion take time, but there is also overhead before and after 
each computation.  Especially important is the overhead 
due to quantum error correction, which protects the quan-
tum superposition from decoherence.  In the absence of de-
coherence, a state vector (i.e., a general superposition) ψ  
evolves in time during a single operation according to a 
Schrödinger equation (Griffiths 1995): 
 

 ψψ H
dt
di ==  (1) 

 
where the matrix H is known as a Hamiltonian, which is 
some linear Hermitian operator, and =  is a physical con-
stant known as Planck’s constant.  An operator (repre-
sented as a matrix) is called Hermitian if it is equal to its 
own transposed complex-conjugate.  The vector ψ , 
known as a ‘ket’, is the complex vector associated with 
state ψ.  In the presence of decoherence, and with some  
 

approximations, the evolution is described more generally 
by a “master equation” such as (Louisell 1973): 

 

 ]],[,[],[ ρρρ VVHi
dt
d −−==      (2) 

 
where square brackets denote commutators (the commuta-
tor of two operators A and B is denoted [A,B] and is de-
fined as [A,B] = AB – BA) and ρ is a density matrix, a 
natural way of representing a statistical distribution of 
states (see section 3.2 for details).  For a pure state (a com-
pletely known superposition), the density matrix has the 
form (Louisell 1973): 

 
 ψψρ =  (3) 
 
where |ψ〈  is the complex conjugate (also referred to as the 
‘bra’) of 〉ψ| .  | |ψψ 〉〈  denotes the outer product of the ket 
and bra.  A state remains pure (no decoherence) if V=0 in 
Equation 2, in which case the master equation is equivalent 
to the Schrödinger equation (Equation 1).  Otherwise, the 
master equation describes, in a statistical sense, the deco-
hering influence of the environment. 
 Most QC simulators deal only with pure states and 
thus cannot accommodate evolution according to a master 
equation.  Our simulator uses the density-matrix represen-
tation, allowing us to naturally simulate the effects of de-
coherence.  The simulator’s ability to accommodate deco-
herence does come at a price, however.  In the density-
matrix representation, a state of N qubits is represented by 
a 2Nx2N square matrix instead of a 2N-element vector.  Be-
cause our simulator uses the density-matrix representation, 
it cannot handle as many qubits as a pure-state simulator 
could.  Nevertheless, the density-matrix representation is 
the most straight-forward way to properly accommodate 
decoherence in the simulation.  See Nielsen & Chuang 
(2000) for additional information on quantum simulation. 

2.2 Existing Simulators 

A number of quantum simulators exist that vary in com-
plexity, purpose, state representation and implementation.  
This is by no means an exhaustive list.  The study of quan-
tum simulation began when Deutsch (1985) introduced the 
notion of a Quantum Turing Machine (QTM).  Many QTM 
simulators have been implemented, including the Quantum 
Turing Machine Simulator (QTS) developed by Hertel 
(1999) using Mathematica.  The major drawback of using 
QTMs is finding an appropriate step operator T.  The step 
operator of a QTM is similar to the transition function of a 
classical TM.  Also, the runtime complexity of QTMs can 
be devastatingly large in comparison to the problem size.  
Therefore, QTMs are useful when studying quantum com-
plexity theory, but have little importance outside this area. 
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 Most quantum simulators use complex numbers to 
represent quantum states.  Other approaches have been 
used.  QDD, a C++ library developed by Greve (1999), 
uses binary states which are represented using a Binary 
Decision Diagram (BDD).  This allows QDD to model 
relatively large quantum states, although this factor limits 
QDD to representing a “digital” quantum computing model 
versus an “analog” model.  Quantum Bayesian Nets are 
another common representation of quantum states and are 
used by Quantum Fog and Qubiter (Tucci 1998).  Using 
Bayesian Nets, quantum systems can be graphically repre-
sented.  Quantum Fog is used to write quantum computer 
programs in a high level visual language and Qubiter trans-
lates this language to qubit-level instructions.  Simulators 
such as Quantum Fog and Qubiter were built to study 
quantum Bayesian Nets and explore the possible use of 
such systems in AI applications on quantum computers. 
 Quantum Computing Language, developed by Ömer 
(1998), was the first architecture-independent program-
ming language for quantum computers.  It is a quantum 
computer simulation language designed to work with any 
qubit-based quantum computer architecture.  It is useful in 
studying quantum computing theory, but cannot capture 
hardware-specific phenomena. 
 The Parallel Quantum Simulator, developed by 
Obenland and Despain (1997), was specifically designed to 
examine the effects of errors during quantum computation.  
The simulator was built to analyze the feasibility of quan-
tum computation, as well as its scalability.  It only simu-
lates Shor’s and Grover’s algorithms, and was specifically 
designed to model an Ion Trap quantum computer as pro-
posed by Cirac and Zoller (1995), making this simulator 
hardware-specific. 
 Most quantum computing simulators are designed to 
simulate a single algorithm on a single type of hardware, 
most commonly Shor’s quantum factoring algorithm and 
the algorithms needed to implement it (such as the Fourier 
Transform).  Quantum eXpress, on the other hand, can be 
used to implement any quantum algorithm running on any 
type of hardware, and can report projected algorithm exe-
cution times on a quantum computer.  Due to its flexible 
architecture and use of the density-matrix state representa-
tion, QX can easily be augmented to simulate hardware-
specific decoherence effects. 

3 QUANTUM ALGORITHM EXECUTION 

The execution of any algorithm can be divided into three 
steps: input, evaluation, and output. 

3.1 Input 

Quantum eXpress requires two primary inputs: (1) a state 
file and (2) an algorithm file.  In the state file a ‘base’ must 
be specified, indicating whether the states of the system 
represent qubits (base 2), qutrits (base 3), or more.  While 
this document will always refer to qubits (2N), it should be 
understood that QX can also handle qutrits (3N) and other 
higher base states, at the user’s discretion.  The initial state 
of the system is represented by a vector of 2N elements 
(base 2), where N is the number of distinct qubits. 
 The base and initial states of Quantum eXpress are 
specified in an eXtensible Mark-up Language (XML) file 
using the World Wide Web Consortium’s (W3C 2001) 
Mathematical Mark-up Language (MathML) specification.  
This file contains sets of vectors defining both the initial 
states and ‘states of interest’.  These states are effectively 
identical in construction, except the initial states also have 
probability values associated with them indicating the 
probability that the initial system is in that state.  States of 
interest are defined for the purpose of allowing QX to 
‘watch’ certain states.  At any time during the execution of 
an algorithm, the system can be evaluated to determine the 
probability of it being in each of these ‘watched’ states.  At 
the end of the execution of an algorithm, the probabilities 
of each of the states of interest are displayed to give an in-
dication of the final superposition of the system. 
 The other required input is a second XML file that de-
scribes the quantum algorithm to be executed.  The algo-
rithm includes what gate operations to run and on which 
qubits those operations are performed.  This file is kept 
separate from the initial state file, so that a single algorithm 
can be easily executed with various initial states. 

3.2 Evaluation 

Quantum simulators need a succinct method for describing 
quantum systems and their operations.  Since a state is rep-
resented as a vector (ket), a statistical ensemble of states is 
naturally represented as a matrix, referred to as a (probabil-
ity) density matrix.  The density matrix describes the cur-
rent state of a quantum system.  The execution of a quan-
tum algorithm can be viewed as the multiplication of a 
system’s density matrix with other matrices that represent 
quantum operations. 
 The initial states and their probabilities determine the 
initial density matrix of the system using the equation: 

 

   (4) ∑
=

〉〈=
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where p(k) is the probability of state k.  Equation 4 allows 
us to define the initial density matrix ρ of the system. 
 A typical quantum algorithm can be seen graphically 
in Figure 1.  Each of the lines in Figure 1 represent a dis-
tinct qubit, and each box represents an operation performed 
on those qubits.  Each of the operations can also be re-
ferred to as a quantum ‘gate’. 
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Figure 1: Graphical Representation of an Algorithm 

 
A third input into the system is a set of ‘gate’ XML files 
that define the structure of these operations.  Each gate is a 
unitary operator, which is defined by a Hamiltonian matrix 
and a time ∆t over which it is applied.  This is described by 
the following equation: 

 
        (5) =/)( tiHetU ∆−=∆
 
where U is the unitary operator and H is the Hamiltonian 
for the gate.  As the algorithm is executed, these operators 
are applied to the density matrix ρ according to the follow-
ing equation (ignoring decoherence for simplicity): 
 
 .           (6) ∓)()()()( tUttUtt ∆∆=∆+ ρρ
 
Here  is the Hermitian conjugate of U .  The gate 
XML file contains the matrix H and ∆t in MathML format.  
Each gate may act on a different number of possible qubits, 
as some apply to single qubits (ex., Not), some apply to 
two (ex., CNot {Conditional Not} and Swap), and some 
apply to more.  The exact Hamiltonian to apply and for 
how long depend on (a) the type of gate operation and (b) 
the type of hardware.  For example, a ‘Not’ gate may have 
different Hamiltonians depending on the type of hardware 
modeled. 

∓U

 The exponentiation of the matrix H in Equation 5 is 
evaluated using the Taylor Series expansion of ex: 
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Combining Equations 5 and 7, the unitary operator U may 
be written as: 
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Note that the approximation of e-iH∆t/ħ uses the Taylor Se-
ries expansion of the exponent up to the third (cubic) ele-
ment.  This could be increased to improve the numerical 
accuracy of the simulator (though it would negatively im-
pact its efficiency).  Using the cubic expansion produces 
numerical errors on the order of 10-5, which for most 
evaluations is quite sufficient.  Equations 4 through 8 illus-
trate, using the no-decoherence case for simplicity, how the 
simulator evaluates quantum algorithms. 
3.3 Output 

At the completion of the evaluation of an algorithm, we 
wish to understand the final superposition that the system 
is in.  The states of interest are measured against the final 
density matrix to determine the probability that the system 
is in each state using the following equation: 
 
 )|(|)( ρkktracekp 〉〈=      (9) 
 
where p(k) is the probability that the final superposition is 
in state k described by ket | . 〉k

4 SYSTEM ARCHITECTURE 

Quantum eXpress has been developed entirely in Java 
1.3.01 using Object-Oriented design paradigms.  It is plat-
form independent, and has been successfully executed in 
Windows and UNIX environments.  The architecture is di-
vided into four modules: (1) Gate, (2) Software Interface, 
(3) Quantum Algorithm and (4) Simulator Engine.  Figure 
2 shows these components and how they interact.  Each of 
the components, described in detail in the following sec-
tions, is responsible for a subset of QX functionality. 

4.1 Gate Module 

The Gate module, (1) in Figure 2, is responsible for read-
ing quantum gates (unitary operators) from XML files and 
for maintaining those gates for the Software Interface Uni-
tary Operator class to access.  When a gate is specified in 
an algorithm XML file, that gate’s name is passed to the 
Gate Manager class, which is responsible for maintaining 
in memory all of the available gates.  Gate Parser loads the 
content from gate XML files, interprets them, and creates 
individual Gate objects based on those file’s contents.  The 
Gate classes, initialized by Gate Parser and maintained in 
Gate Manager, store each gate’s Hamiltonian matrix and 
the time necessary to apply the Hamiltonian for it to have 
the effect of the desired unitary operator. 
 When a request for a gate is made, Gate Manager op-
erates as follows: 
 

if the requested gate is not in local memory 
read the gate from XML using Gate Parser 
store the new Gate object in local memory 

return the Gate from local memory 

 
The Gate object that is returned supplies interfaces to the 
Hamiltonian matrix in two parts: a two-dimensional array 
containing the real part of the matrix and another two-
dimensional array containing the imaginary part. 
 The Gate module is independent of the other modules.  
Gate Manager can be executed stand-alone, in which case 
it will use Gate Parser to read the structure of a gate speci-
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Figure 2: Quantum Simulator Architecture 
fied in an XML file, display the composition of the created 
Gate class, and then exit. 
 If a new gate is required (either due to implementing a 
new operator or due to modeling a different type of hard-
ware), a new gate XML file must be written.  If this file is 
written in accordance with the standards specified for Gate 
Parser, then the new gate will automatically be available to 
the rest of the simulator through the Gate Manager class.  
Thus, adding new gates to the simulator requires no code 
writing or compilation. 

4.2 Software Interface Module 

The Software Interface module, (2) in Figure 2, defines 
common interfaces to be used by all classes that define the 
structure for Density Matrices, Kets, and Unitary Operators 
in QX.  It also provides stub methods for executing unitary 
operations on a system (Equation 6) and for measuring the 
probabilities of certain states in the system (Equation 9).  
The software interface is dependent only upon the Gate 
module.  This dependency is tied through the Unitary Op-
erator interface.  The gates define the structures of the uni-
tary operators that act on the density matrix, so the Soft-
ware Interface module is responsible for converting gates 
to usable unitary operators (Equation 8). 
 Unlike the other modules, the Software Interface mod-
ule defines an interface and not a specific class implemen-
tation.  Since the majority of the simulator’s computational 
effort is expended in this portion of the code (primarily 
through large matrix-vector and matrix-matrix multiplica-
tions), it is valuable to be able to try out multiple versions 
of these classes to attempt to construct more efficient im-
plementations without impacting the rest of the code.  
Therefore, the primary module, the Simulator Engine, is 
only aware of the interface of the Software Interface mod-
ule.  The class name of the specific Software Interface in-
stance to be used by the simulator is specified in the state 
XML configuration file and the class is loaded dynamically 
using Java’s reflection (runtime class loading) API. 
 We have implemented pure Java instances of the 
Software Interface components.  In the future we can easily 
implement other instances, such as classes that connect to 
third party applications like Matlab or Mathematica.  These 
tools, which are better optimized than Java for performing 
large matrix multiplications, could be used to improve the 
performance of the simulator without having to impact the 
other modules. 
 The current pure Java implementation of the Software 
Interface components required the creation of a number of 
common mathematical data objects, including complex 
numbers, vectors, and matrices, as well as a wide array of 
methods to manipulate those objects. 

4.2.1 Complex Numbers 

Due to the heavy use of complex numbers in the simulator 
(every matrix and vector element is a complex number), it 
was decided not to create a complex number class to repre-
sent these objects.  Instead, arrays of two Java ‘double’ 
values are used (one value for the real part, one for the 
imaginary), as there is significantly less overhead for Java 
to create an object of a known type.  A custom, static 
Complex class was developed to simplify the manipulation 
of these objects by providing a set of methods for adding, 
subtracting, and multiplying complex numbers, as well as 
other required methods, but this class is not instantiated 
and thus does not add overhead to the ubiquitous complex 
number manipulation. 
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4.2.2 Vectors 

Vectors are required to represent the initial states (kets) of 
the system to produce the initial density matrix, and to rep-
resent the states of interest of the system.  A custom Vector 
class was developed to store and manipulate vectors, in-
cluding taking inner and outer products between vectors, 
and multiplying vectors with matrices and scalars. 

4.2.3 Matrices 

Matrices are required to represent the density matrix as 
well as unitary operators.  A custom Matrix class has been 
developed to store and manipulate matrices, including add-
ing and multiplying with other matrices and vectors. 
 Matrix multiplication can take a significant amount of 
time.  The Strassen Algorithm described by Cormen et al. 
(1989) replaces expensive multiplication operations that 
occur during matrix multiplication with less-expensive ad-
dition and subtraction operations.  Therefore, the Strassen 
Algorithm with Winograd’s Variant was implemented in 
QX to improve the speed of matrix multiplication over the 
standard row-column multiplication algorithm.  Because of 
the structure of Strassen’s Algorithm, it is only really ef-
fective for matrices with dimensions greater than 64x64.  
Also, a performance improvement may not be experienced 
on all systems, as the algorithm requires more memory 
than the standard multiplication procedure and so systems 
with limited or shared memory resources may not experi-
ence any performance improvement. 

4.3 Quantum Algorithm Module 

The Quantum Algorithm module, (3) in Figure 2, is di-
vided into two components—Algorithm Parser and Quan-
tum Algorithm.  Together, these classes are responsible for 
reading in an algorithm XML file and storing the defined 
algorithm.  The gates to execute are defined in this file, 
along with their order and the qubits they operate on, 
which altogether make up the algorithm.  Algorithm Parser 
is responsible for parsing the XML file and then creating 
an instance of the Quantum Algorithm class, which is used 
to store the information found in the algorithm. 
 By specifying another algorithm filename in place of a 
gate name in an algorithm file, that algorithm will be exe-
cuted as a sub process of the primary algorithm.  In this way, 
separate algorithm files can be written to implement certain 
functions, which then can be flexibly incorporated into larger 
algorithms.  For example, if algorithm A operates on N qubits 
and algorithm B operates on M (M≥N), algorithm B can in-
voke A and cause it to operate on any combination N of the 
M qubits in algorithm B.  Thus, any algorithm of the same 
qubit size or smaller can be invoked as a sub process of any 
another algorithm.  Figure 3 shows the algorithm that exe-
cutes a quantum Fourier Transform on three qubits.  The dark 
rectangles represent various one- and two-qubit transforma-
tions (Hadamards and Conditional-Conditional-Phase Shifts), 
and the light rectangle represents another algorithm invoked 
within this Fourier Transform algorithm.  The included algo-
rithm (Swap-3) reverses the order of three qubits.  As shown 
in the file menu in Figure 3, both gates and algorithms can be 
inserted into an algorithm. 
 The Quantum Algorithm module is independent of the 
other modules.  Algorithm Parser can be run stand-alone, 
in which case it will read in a quantum algorithm specified 
via an XML file, display that algorithm, and then exit. 

If a new quantum algorithm is to be implemented, a 
new algorithm XML file must be written.  If this algorithm 
XML file is written in accordance with the standards speci-
fied for Algorithm Parser, then the new algorithm will 
automatically be available for the simulator to execute.  
Thus, testing new algorithms in the simulator requires no 
code writing or compilation. 

4.4 Simulator Engine Module 

The Simulator Engine module’s role, (4) in Figure 2, is to 
piece the other modules together.  It is the main class that 
is executed, and is responsible for loading the XML con-
figuration files and passing their contents to the appropriate 
classes for initialization.  Once all of the initialization is 
complete, the engine executes the quantum algorithm. 
Figure 3: Three Qubit Fourier Transform Algorithm 
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 The simulator engine is dependent upon all of the 
other modules in Quantum eXpress.  It takes as input ar-
guments the state and algorithm XML files, and then calls 
the Software Interface module to initialize the states of the 
system and the Quantum Algorithm module to initialize the 
algorithm.  The engine operates by performing the follow-
ing initialization procedure: 
 

If missing a required input parameter 
     (algorithm or state file) 
Exit 

Attempt to open each file 
If either file is not valid 
Exit 

Use the state file to initialize the software 
interface 
Use the algorithm file to initialize the 
quantum algorithm 

 
After the initialization process is completed properly, the 
Simulator Engine module executes the algorithm utilizing 
the Gate module to load the gates identified in the algo-
rithm.  The following procedure is followed to execute the 
quantum algorithm: 

 
Generate the initial density matrix from the 
initial states and their probabilities 
Display the density matrix 
1: While there are steps remaining in the 
quantum algorithm 
If the present step is a gate 
Read the required Gate specified in the 
algorithm from the Gate Manager 
Initialize a Unitary Operator for the Gate 
Apply the Unitary Operator to the density 
matrix 
Sum the amount of time spent on the algo-
rithm so far plus the amount of time spent 
performing the current operation 

Else If the present step is an algorithm 
Open and initialize the specified algo-
rithm file 
GOTO 1 and iterate over the steps in the 
new algorithm file 

Display the final density matrix 
Display the final amount of time required to 
perform the entire algorithm 
Evaluate and display the final probabilities 
of all of the states of interest 

4.5 Graphical User Interface 

Also written purely in Java, a Graphical User Interface 
(GUI) was created to facilitate the development and testing 
of quantum algorithms.  The QX GUI can be used to write 
both state and algorithm configuration files, and run the 
engine.  It contains four basic components.  The first is an 
editor panel, a screen capture of which can be seen in Fig-
ure 4, used to build state configurations.  Here users can 
create a set of initial states, a set of interest states and can 
specify a base and the number of qubits to use.  The next 
component allows users to build gate configurations by 
 

 
Figure 4: GUI State Editor Panel 

 
specifying Hamiltonian matrices and operating times.  The 
third component, shown in Figure 3, allows users to build 
an algorithm by inserting gates and other algorithms into a 
quantum algorithm.  The last component allows for the 
execution of a quantum algorithm, where the user can 
specify both a state and algorithm configuration. 
 The QX GUI can directly invoke a local instance of 
the simulator engine or it can connect to a remote server 
via the Simple Object Access Protocol (SOAP) to execute 
the simulator engine on a shared server.  Figure 5 displays 
these two alternatives.  Invocation of the engine is config-
ured via an XML properties file read by the GUI at initiali-
zation.  After executing the algorithm, the simulator engine 
returns a result set containing the final density matrix, the 
time required to perform the entire quantum algorithm, and 
the final probabilities of all of the states of interest.  These 
results are then displayed to the user through the GUI. 
 

Local Server

GUI

Simulator
Engine

Simulator
Engine

Remote Server

Internet
(SOAP)

or

 
Figure 5: Alternatives for GUI 
Connecting to Engine 

5 SIMULATOR EXPERIMENTS 

We have run several experiments with no decoherence to 
confirm that the simulator functions properly under ideal 
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quantum circumstances.  These tests included simulations 
of the quantum Fourier Transform (a subroutine in Shor’s 
code-breaking algorithm) on both 3 and 7 qubits (the 3 
qubit algorithm can be seen in Figure 3).  One of the more 
interesting and complicated algorithms we have imple-
mented is a generalization of the Fourier Transform, simu-
lating a Nuclear Magnetic Resonance (NMR) device (Niel-
sen & Chuang 2000).  This algorithm involved 333 gate 
operations (from 5 distinct gates) acting on 7 qubits.  In the 
simulator, this algorithm was logically subdivided into 4 
separate algorithm files and one driver file, resulting in a 
total of 5 XML files used. 

In this example, the input was the pure signal shown in 
Figure 6 with a significant amount of noise added.  The 
signal and noise, which together formed the experiment’s 
input, can be seen in Figure 7. 
 

 
Figure 6: Pure Signal 

 

 
Figure 7: Signal with Noise as Input 

 
To verify the output of the simulator, we first imple-

mented the algorithm in Matlab using ideal unitary opera-
tors.  The Matlab results can be seen in Figure 8.  In Quan-
tum eXpress we used the Hamiltonians and operation times 
to approximate the unitary operators.  The QX output can 
be seen in Figure 9.  Clearly, Figures 8 and 9 are nearly 
identical, indicating the extremely low numerical error 
produced by the simulator.  This and other examples were 
implemented to validate QX’s execution, and all indicate 
that the simulator is extremely accurate in its modeling of 
quantum computing algorithms under ideal circumstances. 
 

 
Figure 8: Matlab Output 

 

 
Figure 9: Simulator Output 

 
 This work prepares us to extend Quantum eXpress to 
incorporate the effects of quantum decoherence in algo-
rithms, allowing us to explore the effects of decoherence 
that are harder to anticipate in quantitative detail. 

6 CONCLUSIONS AND FUTURE WORK 

Quantum eXpress is a novel simulator that incorporates 
elements of Object-Oriented software design with princi-
ples from quantum computing.  Some of its key features 
are allowing (a) the quantum system to be described via a 
density matrix representation and (b) quantum operations 
to be described by physical Hamiltonians.  These capabili-
ties allow the execution times of quantum algorithms to be 
accurately determined.  They also allow the study of the 
impact of errors and decoherence on the algorithms.  Quan-
tum eXpress already has the capability to insert errors into 
a quantum algorithm operation, simulating imperfections 
in the hardware implementation and gate application dura-
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tion.  We will soon be extending QX to effectively simu-
late quantum decoherence within this framework. 
 QX has a flexible architecture that can be configured 
entirely through XML files.  This enables researchers to 
explore new algorithms and gate architectures in-silico be-
fore they can be physically realized, without having to 
write any code.  To our knowledge, no other quantum 
simulator has these capabilities.  In the future, we will ex-
plore porting Quantum eXpress to a reconfigurable com-
puting architecture.  This might dramatically decrease 
simulation run-times and allow for the possibility of proc-
essing algorithms in excess of 15 qubits.  Future releases of 
QX will also include visualization capabilities.  This will 
allow for intuitive analysis of quantum information and 
easy interpretation of algorithm execution results. 

We are also in the process of making Quantum eX-
press freely available to the public.  For information on 
gaining access to the simulator, please contact the authors. 
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