
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

EVENT-TRIGGERED ENVIRONMENTS FOR VERIFICATION OF REAL-TIME SYSTEMS

Darren D. Cofer
Murali Rangarajan

Honeywell Laboratories

3660 Technology Dr.
Minneapolis, MN 55418, U.S.A.

ABSTRACT

The growing complexity and the safety-critical require-
ments of the embedded software in avionics systems pre-
sent many challenges to current test-based verification
technology. The use of formal verification methods can
increase design assurance by exploring a larger range of
system behaviors and fault conditions than can feasibly be
covered by testing or simulation. However, one of the
most challenging tasks faced in any formal verification ac-
tivity is the construction of an adequate model for the envi-
ronment with which the analyzed system interacts. For
real-time systems where the timing characteristics are
critical to correct performance this task is even more diffi-
cult. In this paper we discuss how an event-triggered
model of time (as found in discrete event simulations) can
be used as the basis for the environment needed to verify
real-time avionics software.

1 INTRODUCTION

Over the past decade Integrated Modular Avionics (IMA)
architectures have gained popularity as a more cost-
effective method of fielding advanced avionics systems.
IMA systems use a shared computing resources to simulta-
neously host functions of differing criticality, thereby re-
ducing size, weight, power and recurring costs. This
makes such platforms a natural location to place new func-
tionality. It also places a special burden on the IMA oper-
ating system to keep functions of different criticality levels
from interfering with each other.

Currently the primary means for obtaining FAA certi-
fication for software-based systems is to develop and test
the software in accordance with the guidelines in RTCA
document DO-178B (1992). These guidelines emphasize
requirements-based testing in the verification process and
rely on structural code coverage as a measure of testing
adequacy. These structural coverage requirements are not
only expensive to achieve, but they can be ineffective in

identifying certain classes of errors, especially those in-
volving timing or race conditions.

We believe that techniques and tools being developed
in the formal methods community, such as automated
model checking, provide practical means for verifying the
correct design of complex avionics systems. Model check-
ing is a formal verification technique for finite-state con-
current systems. Unlike testing or simulation, model
checking explores all possible behaviors of a system in
search of errors.

Our experience with modeling and analyzing the
Deos™ scheduler and the ASCB-D communication bus
shows that formal methods can be applied to real systems
to obtain useful verification results. Using automated
model checking can increase design assurance by allowing
coverage of a larger range of execution behaviors than can
be covered by testing or simulation. Furthermore, model
checking can decrease development and testing costs by
finding design errors early in the development cycle.

In both the projects described in this paper we have use
the model checker SPIN, originally developed at Bell Labs
and described in Holzmann (1997). The systems to be veri-
fied are modeled using Promela, the input language of SPIN.
Promela is a guarded command language supporting asyn-
chronous communication between concurrent computing
processes. It is well-suited for describing both software
(such as C/C++ code modules) and finite state automata.

In our approach, the system to be verified is modeled
with relatively high fidelity and with as direct a correspon-
dence to the actual system as possible. This permits the
analysis results obtained for the model to be traced to the
actual system. The modeled system must also have some
environment or “world” model with which to interact. The
environment must generate the system inputs and react to
the system outputs. Design of a suitable environment
model turns out to be one of the most challenging tasks in
formal verification. The environment must be general
enough to allow all realistic system behaviors, including
any fault conditions that the system is intended to handle.
However, the environment should not permit behaviors

Cofer and Rangarajan

that could not actually occur. This includes causal con-
straints, physical limits, and the passage of time associated
with events in the real world. Failure to adequately capture
these constraints in the environment model can result in
many incorrect counter-examples being discovered by the
model checker.

SPIN itself does not model time. The environment
model must assume responsibility for the elapsing of time
in the model. This manifests itself in the way that the envi-
ronment determines when to generate particular events and
the input values provided to the system model. The timing
model we have used corresponds closely to that used in
discrete event simulations. At any step in the execution of
the model, one or more events are eligible to occur next.
The model selects one of these non-deterministically and
processes that event. If there is any time associated with
the occurrence of the event, the clock is advanced by that
amount, and any newly eligible events are added as candi-
dates for the next step.

To illustrate, we next describe two verification prob-
lems in which we have used this approach.

2 EXAMPLE: ASCB-D
COMMUNICATION BUS

ASCB-D (Avionics Standard Communications Bus, ver-
sion D) is a data bus designed for real-time, fault-tolerant
periodic communications between avionics modules in
Honeywell’s Primus Epic avionics suite for business, re-
gional, and commuter jet aircraft. The particular algorithm
we modeled (Weininger and Cofer 2000) is used to syn-
chronize the clocks of communicating modules to allow
periodic transmission of data on the bus.

The synchronization algorithm is sufficiently complex
to test the limits of currently available modeling tools. The
central performance properties which the algorithm is in-
tended to fulfill are time bounds. It is notoriously difficult
to verify that such bounds hold over all possible startup
conditions. Furthermore, these bounds must be shown to
hold in the presence of numerous hardware faults, some of
which are difficult to simulate on actual test hardware.

SPIN proved to be a particularly good tool for model-
ing such an algorithm; it allowed us not only to verify tim-
ing invariants over the state space of the model, but also to
conduct random or guided simulations that shed light on
the possible behaviors of the model. The graphical repre-
sentation of these simulations made debugging the model,
and eliciting the causes of invariant violations, much eas-
ier. Furthermore, the Promela modeling language allowed
us to produce an easy-to-understand model that we later
found corresponded remarkably well to the C++ imple-
mentation code.
2.1 Synchronization Algorithm

The ASCB-D synchronization algorithm is run by each of
a number of NICs (Network Interface Controllers) which
communicate via a series of buses. These NICs are split
into two, corresponding to the pilot and co-pilot sides of an
aircraft. For each side there are two buses, a primary and a
backup bus. Each NIC can listen to and transmit messages
on both of the buses on its own side. It can also listen to,
but not transmit on, the primary bus on the other side.
From the viewpoint of a given NIC, other NICs on the
same side are called onside NICs; NICs on the other side
are xside NICs. Likewise, the buses on the NIC’s own side
and on the other side are onside and xside buses respec-
tively. The basic structure of buses and NICs is shown in
Figure 1.

timing
NIC

timing
NIC

user
NIC

timing
NIC

timing
NIC

user
NIC

b/u primaryprimary b/u

timing master

Figure 1: ASCB-D Bus Topology

The operating system running on the NICs produces

frame ticks every 12.5 msec which trigger threads to run.
In order for periodic communication to operate, all NICs’
frame ticks must be synchronized within a certain toler-
ance. The purpose of the synchronization algorithm is to
enable that synchronization to occur and to be maintained
within certain performance bounds over a wide range of
faulty and non-faulty system conditions.

The synchronization algorithm works by transmitting
special timing messages between the NICs. At startup
these messages are used to designate the clock of one NIC
as a reference to which the other NICs synchronize; after
synchronization is achieved, the messages are used to
maintain synchronization by correcting for the NICs’ clock
drift relative to each other. The algorithm is required to
achieve synchronization within 200 msec of startup. It
must do this regardless of the order in which the NICs start
or the time elapsed between their initial startup, and in
spite of possible malfunctions in certain NICs or buses.

Cofer and Rangarajan

2.2 Algorithm and Environment Modeling

Our plan for modeling the ASCB-D synchronization algo-
rithm in SPIN was to start with the smallest possible non-
trivial subset of the specified algorithm, and increase the
complexity of the model in stages from there. We decided
to abstract away the numerical time calculations used by
the algorithm, and to model only the ordering constraints it
imposes. This decision was based on a strong initial aver-
sion to the idea of an explicit model of time. Since the state
space of a model must be finite, elapsed time has to be
measured in discrete units of some fixed granularity; no
matter what granularity is chosen, this strategy is prone to
errors caused by lumping two different execution orderings
together into the same time unit. Furthermore, since time
counters can typically take on a very large number of dif-
ferent values, use of time counters can greatly increase the
model state space size.

We found that our initial model with four NICs per-
mitted execution sequences not possible in the real system
because the environment process did not have sufficient
information to accurately restrict the ordering of the NIC
tick events. For example, if the NICs are numbered 0
through 3, the environment would allow ticks and thus
message transmissions to occur in a 3-2-1-0-0-1-2-3-3-2-1-
0-0-1-2-3 sequence, which is not possible in the real algo-
rithm. Furthermore, the number of possible orderings is so
large that is made the model intractable. However, impos-
ing a fixed order on NIC ticks goes to the opposite ex-
treme, excluding many orderings which the real algorithm
does allow.

The problems in the four-NIC model necessitated ma-
jor changes to the basic model structure. The introduction
of an explicit numerical time model, and the combination
of that time-modeling capability and the message-
transmission capability in the same environment process,
turned out to be the changes we needed to make the model
tractable again.

The time/environment process keeps track of the time
remaining until the next frame tick of each NIC and the
messages received by each NIC in the current frame, as
well as the total time elapsed since start up. It then sits in a
loop executing the following algorithm:

while(true)
{
 pick id such that timeToNextTick[id] is
minimal;
 send NIC[id] the contents of its message
buffers from the last frame;
 wait for NIC[id] to send back the length
of its next frame, plus the contents of the
message it wants to send;
 if that message is not empty, send it to
the other NICs’ buffers;
 for all i != id
 timeToNextTick[i] += timeToNextTick[id];
 total_elapsed_time += timeToNextTick[id];
 set timeToNextTick[id] to the length of
the next frame for NIC[id];
}

A number of fundamental changes in the model follow

immediately from the introduction of numerical time.
These include:

•

•

•

•

•

The environment process neatly encapsulates all
those parts of the system that provide input to the
algorithm we wish to model (frame ticks, buffers,
and buses), while the NIC process encapsulates that
algorithm completely. The interface between the
two is simple and localized. This is perhaps the
most powerful advantage of the time/environment
model; it allows faults to be injected and compli-
cated hardware interactions to be added with no
change required to the NIC code.
Because the environment process now dispatches
ticks one by one, NICs are trivially guaranteed to
execute atomically with respect to each other.
NICs also execute atomically with respect to the
environment process. This simplifies the space of
possible execution orderings dramatically; the
only order that matters is the order in which ticks
and message transmissions occur.
Complicated tick orderings produced by frames of
different lengths are now explicitly and accurately
represented in the model.
We can now easily test for timing-dependent sys-
tem properties. For instance, we can place an as-
sertion in the environment process, checked be-
fore each tick, that states that all NICs should be
in sync within 200 msec of the startup time.
Because the interface between environment and
NIC includes all the data that must be shared be-
tween them, there is no need for global data struc-
tures. This allows SPIN’s compression techniques
to reduce the memory requirements.

The reduction in state space produced by eliminating im-
possible interleavings far exceeds the increase produced by
having time counter values.

The ASCB-D modeling effort also taught us quite a bit
about modeling systems whose central properties are based
on time. Modeling these systems with a purely order-based
model introduces large numbers of execution interleavings
which do not exist in the real system and which produce
spurious violations of safety properties. Furthermore, per-
formance requirements for these algorithms are often ex-
pressed in terms of time, so a numerical time model is
needed to verify them.

3 EXAMPLE: THE DEOS SCHEDULER

The Deos real-time operating system (Honeywell 1999)
was developed by Honeywell for use in Primus Epic com-

Cofer and Rangarajan

puting platforms. Deos hosts many safety-critical aircraft
applications, including primary flight controls, autopilot,
and displays.

Deos is a microkernel-based real-time operating system
that supports flexible Integrated Modular Avionics applica-
tions by providing both space partitioning at the process
level and time partitioning at the thread level. Space parti-
tioning ensures that no process can modify the memory of
another process without authorization, while time partition-
ing ensures that a thread’s access to its CPU time budget
cannot be impaired by the actions of any other thread.

The combination of space and time partitioning makes
it possible for applications of different criticalities to run on
the same platform at the same time, while ensuring that low-
criticality applications do not interfere with the operation of
high-criticality applications. This noninterference guarantee
reduces system verification and maintenance costs by ena-
bling an application to be changed and re-verified without
re-verifying all of the other applications in the system. Deos
itself is certified to DO-178B Level A, the highest level of
safety-critical certification for avionics software.

The following sections describe key aspects of the
scheduler behavior important for our verification work
(Cofer and Rangarajan 2002). Then we discuss the chal-
lenges faced in developing an appropriate model of time
for performing the verification.

3.1 Scheduler Operation

The main components of a Deos-based system are illus-
trated in Figure 2. A given software application consists of
one or more processes. Each process is implemented as
one or more periodically executing threads. All threads in
a process share the same virtual address space in memory.
Each hardware platform in the system has a separate in-
stance of the Deos kernel running on it. The kernel com-
municates with its underlying hardware via its hardware
abstraction layer (HAL) and platform abstraction layer
(PAL) interfaces. The HAL provides access to the CPU
and its registers and is considered part of Deos itself. The
PAL provides access to other platform hardware, such as
I/O devices, timers, and interrupt signals. The application
threads interact with the kernel and obtain the services it

Process 1 Process 2 Process 3

API

Kernel

PALHAL

CPU Platform Hardware

Platform
Registry

Thread Thread Thread Thread Thread ThreadApplication

Deos (white)

Hardware

Figure 2: Deos Components and Terminology

provides by means of a set of functions called the applica-
tion programming interface (API).

Deos must ensure that every application gets its allot-
ted amount of CPU time every period. This provision is
called time partitioning, and is accomplished by the Deos
scheduler. At system startup, each process is given a frac-
tion of the total available CPU computing resource, called
the process’s CPU budget, for its use. The process then
allocates its CPU budget to its threads. Deos ensures that
each of the threads has access to its allocated CPU budget
every period.

The Deos scheduler enforces time partitioning using a
Rate Monotonic Scheduling (RMS) policy. RMS assigns
thread priorities so that shorter period (high rate) threads
are assigned a higher priority than long period (low rate)
threads. Using this policy, threads run periodically at
specified rates and they are given per-period CPU time
budgets, which are constrained at thread creation so that
the system cannot be overutilized. A thread will be pre-
empted by the scheduler if it attempts to exceed its time
budget. Deos threads may also continue run beyond their
deadlines if there is unutilized time available in the system
using a feature known as slack scheduling (Binns 2001).

In Deos, all periods are required to be harmonic. This
means that the length of each period is an integer multiple
of the length of the next shorter period. Harmonic periods
allow Deos to achieve (near) 100% utilization of the avail-
able CPU time.

At the start of the thread’s period the scheduler places
it on a list of threads that are ready to execute in that pe-
riod. When the thread is at the head of the list for its pe-
riod, the scheduler starts it by switching the current execu-
tion context to that thread. The thread executes until one
of three conditions occurs:

•

•

•

The thread is preempted by the scheduler because a
higher priority thread (with a faster rate) is ready to
run. The thread is returned to the ready list for its
period so that it can be resumed later in its period.
The thread voluntarily waits for the start of its
next period because it has completed its work for
the current period.
The thread uses all of its allotted time and must be
stopped by the scheduler to preserve time parti-
tioning. The thread will be run again in its next
period and will receive a threadBudgetExceeded
exception so that it can take any needed recovery
actions.

3.2 Scheduler and Environment Modeling

The behavioral properties of the Deos kernel cannot be
analyzed independently – the kernel on its own doesn’t ac-

Cofer and Rangarajan

tually do anything independent of its environment. The
environment in this case consists of:

1. application software threads that invoke kernel
services, and

2. platform hardware that provides timers and inter-
rupts to the kernel.

Models in SPIN are specified as collections of concur-
rently executing processes that communicate via message
channels. There are three types of processes defined in our
model: the Deos kernel, threads, and the platform envi-
ronment. The processes and their interconnecting channels
are illustrated in Figure 3 and correspond to the compo-
nents identified in Figure 2.

Thread
Thread
Thread PlatformKernel

API

Kernel classes
and methods

API calls

context
switch

interrupts

read/write
timer

invoke kernel methods

Automata to
drive kernel

Translated
kernel code

Figure 3: Structure of Kernel and Environment Models

Channels represent various synchronization mecha-

nisms depending on the processes that they connect. Mes-
sages sent from threads to the kernel represent calls to ser-
vices in the kernel API. Messages from the kernel to
threads represent context switches to stop and resume
thread execution. Messages from the platform to the ker-
nel represent hardware interrupts, either from timers or
physical I/O. Messages from the kernel to the platform are
used to read and write timer registers. In all cases channels
are defined to buffer zero messages, meaning that all proc-
ess interactions are rendezvous synchronizations requiring
the sender and receiver to be ready at the same time.

The Deos kernel process is by far the biggest and most
complex process in the model. It consists of a simple state
machine that represents a portion of the user API and the
translated kernel code itself.

The kernel code that we are modeling consists of C++
classes and methods taken directly from the current Deos
software. These structures have been translated into Pro-
mela by a very straightforward (though manual) procedure
ensuring that the model remains in very close agreement
with the actual software.

In the real system, the threads or the platform interface
software would directly invoke functions in the kernel API,
trapping to the desired service. Since we have modeled
these interactions as Promela messages some mechanism is
required to invoke the functions in the translated kernel code
at the appropriate time. The top level state machine in the
kernel model serves this purpose. It first calls all the initiali-
zation code in the kernel and then loops in an event handling
structure. When it receives messages from the threads or the
platform interface corresponding to function calls, it invokes
the appropriate kernel function in response.

The kernel can respond to three types of interrupts
from the platform environment:

1. System tick (tickintrpt). This is a periodic signal
generated by the platform hardware that is used by
the kernel to identify the start of all periods. Each
period must be a multiple of the system tick rate.
On receipt of a system tick, the handleSystemTick-
Interrupt() method is invoked in the kernel.

2. Timer (timerintrpt). This is the time-out signal
from the thread timer. It indicates that a thread
has reached the end of its budgeted time. On re-
ceipt of a timer interrupt the handleTimer-
Interrupt() method is invoked in the kernel.

3. Platform interrupt (platformintrpt). This is a user
interrupt that may be generated by an I/O device
in the system. If the interrupt is not masked, the
raisePlatformInterrupt() method is invoked in the
kernel.

The kernel can invoke the following services in the
platform interface, again modeled as Promela messages:

1. Start timer (start). This sends a desired starting
value computed by the kernel to the timer.

2. Read timer (getTimeRemaining). This reads the
current value in the thread timer. The timer value
is returned as a field in the TimeRemaining mes-
sage sent in reply by the platform process.

The kernel handles the following requests from the
threads, each of which is analogous to a function in the
kernel API:

1. Create thread (create). This indicates that a new
thread is to be created by invoking the create-
Thread() method in the kernel. The parameters
associated with the thread to be created are sup-
plied by reference to a template in the Deos regis-
try. The desired thread template number is speci-
fied in the message and passed in as an argument
to the API function.

2. Delete thread (delete). This indicates that a thread
wishes to be deleted from the system by invoking
the deleteThread() method in the kernel.

3. Wait for next period (finishedforperiod). This
indicates that the calling thread has completed its
work for this period and wishes to be suspended
until the start of its next period. On receipt, the
waitUntilNextPeriod() method is invoked in the
kernel.

4. Wait for next interrupt (waitforintrpt). This mes-
sage has been added to support the analysis of in-
terrupt service routine (ISR) threads. Similar to
“wait for next period,” this indicates that the caller
has completed its work and wishes to be sus-
pended until the arrival of its next triggering inter-

Cofer and Rangarajan

rupt event. On receipt, the waitUntilNext-
Interrupt() method is invoked in the kernel.

The kernel can send the following two messages to the
threads to perform a context switch:

1. Stop thread (stop). This signals the thread to sus-
pend execution and wait to be resumed by the ker-
nel. This may occur because the scheduler needs to
run a higher priority thread or because the thread
exceeded its time budget for the current period.

2. Resume thread (resume). This signals the thread
to continue execution from the point at which it
was previously suspended.

In reality, these are not actual requests sent to the
threads. Via the HAL, the kernel triggers a context switch
causing execution to transfer from one thread to another.

Most of the interesting time partitioning issues are as-
sociated with the scheduling interactions between threads.
Therefore, our model has a single process consisting of its
main thread and several dynamically created user threads.
The threads in our model do not have to do any actual
work. They provide part of the execution environment
needed to analyze the Deos kernel and so they only need to
exercise the kernel API in appropriate ways.

3.3 Event-Triggering vs. Time-Triggering

The main choice to be made in the platform environment
model is whether the next event to occur will be a system
tick or a timer interrupt. This can be accomplished in sev-
eral ways.

The original version of this part of the environment
was developed by NASA Ames (Penix 2000) and evolved
with a great deal of experimentation. A set of flags re-
cording the occurrence of various events and clock vari-
ables representing the value loaded in the timer, the time
used by a thread, the time elapsed since the last tick, and
the time remaining on the thread timer are all used to de-
termine what event can occur next and what time should be
reported in response to a request for remaining time. This
version seems to work quite well but it is very complicated
and difficult to modify without introducing errors.

Another approach documented in Pasareanu (2000)
uses progressive refinements to develop a correct model of
the environment. In this work a universal environment
which can generate all possible behaviors without any con-
straints was used as the starting point. When the kernel
was verified in conjunction with this environment counter-
examples were produced that were the result of illegal be-
haviors in the environment. The counterexamples were
analyzed and eliminated by adding constraining expres-
sions in linear-time temporal logic (LTL) that capture the
illegal behaviors of the environment. This process would
be repeated until a genuine counterexample (or completely
correct behavior) was achieved.
Based on lessons learned from both of these ap-
proaches, we developed a simplified timer environment
that accurately captures all of the desired behaviors in the
system but is easier to understand and maintain.

An automaton illustrating the time-related activities of
the environment is shown in Figure 4. The variable
tick_time represents the time until the next system tick
event while remaining_time represents the time until the
thread timer expires. If tick_time is less than remain-
ing_time, the next event that can happen is a system tick,
but if remaining_time is less than tick_time the thread
time-out event must occur next. If they are equal either
event may be chosen to occur non-deterministically.

RUN

runTimer /start /
load timer

elapseKernelTime /
advance time by CTXin

STOP

getTimeRemaining /

[tick_time ≤ remaining_time] / tick,
advance time to next tick (+ LCS)

[tick_time > remaining_time] / timer,
advance time to timer expiration (+ LCS)

getTimeRemaining /
advance time an arbitrary amount
before next tick or timeout
(corresponds to “finishedForPeriod”)

NOTE:
The platform interrupt can
be generated at any time
but is only received if it is
unmasked in the scheduler

start / load timer
[unmasked] / platform int

[unmasked] / platform int

Figure 4: Timer Automaton in Environment Model

On the occurrence of a system tick, time is advanced

to the point of the tick event by decrementing remaining-
_time by the value of tick_time and reloading tick_time
with the length of the tick period. On the expiration of the
thread timer, time is advanced to the point of the time-out
event by decrementing tick_time by the value of remain-
ing_time and setting remaining_time to zero.

When either of these events occurs the kernel will re-
quest the value of remaining_time by sending a getTime-
Remaining message. The environment responds with the
timeRemaining message (which because of the channel
synchronization constraint can only be generated if the
kernel is waiting for it). In both the tick and time-out case,
this value has already been updated thus causing the ap-
propriate amount of time to appear to have elapsed, and no
further action is needed.

In the case where a thread has finished for period prior
to its timer expiring, some additional calculation is re-
quired to cause time to elapse in a reasonable way. Note
that in the timer automaton if no tick or timer event has oc-
curred then the getTimeRemaining message causes both
remaining_time and tick_time to be decremented by a se-
lected amount. This amount must be chosen such that the
finished for period event will appear to occur before the
next system tick or time-out event.

Cofer and Rangarajan

The selection of the amount of time that elapses on a
finished for period event (the amount of time actually con-
sumed by the thread) is important in determining what be-
haviors can be realized in the model. In the original timer
environment this value was permitted to be either zero, half
of the time remaining on the thread timer, or all of the time
remaining. This is an approximation of the real behavior
possible for a thread but was felt to be a reasonable simpli-
fication to keep the state space manageable.

However, there is a problem with this approach, as il-
lustrated in Figure 5. If the time until the next system tick
is less than half the time remaining on the thread timer then
the only option actually available in the model (such that
elapsed is less that the time of the next tick) is to have the
thread consume zero time. This does not seem to permit a
wide enough range of possibilities for executions in the
system. To ensure that there are always three options
available in the new timer environment, we compute
min(tick_time, remaining_time) and allow the selection of
zero, half, or all of this value for the elapsed time.

Figure 6 shows a time line for the new timer options.
In case 1A tick_time is less than remaining_time so on a
finished for period event the thread can consume zero time,

timer for thread

thread completes for period
zero
half

all

time used by thread = y, where
(y ∈ {0, timer/2, timer}) ∧ (y ≤ timer) ∧ (y ≤ tick)

start stop

tick tick tick tick

Figure 5: Original Timer Options for Elapsed Time
When Thread Completes for Period

thread completes for period
zero
half

all

preempted at tick

timer restarted and thread
runs to completion

higher priority
thread

timer restarted and thread
completes for period

available = min(tick,timer)

available = min(tick,timer)

1A

1B

2A

2B

Figure 6: New Timer Options for Elapsed Time
tick_time/2, or tick_time. Alternatively, the tick event may
occur next and the thread will be preempted by a higher
priority thread, as in case 1B. After that thread completes
execution, the lower priority thread may be resumed by the
kernel. It can either run until its time expires as in case
2A, or finish for period, consuming either zero, remaining-
_time/2, or remaining_time, as in case 2B.

3.4 Modeling Scheduler Overhead

Time expended by the kernel performing scheduling or
other services on behalf of executing threads is known as
overhead. Overhead in the kernel arises from a number of
sources, some of which are significant as far as their im-
pact on correctness of timing properties while others are
not. The terms which we are currently modeling as non-
zero are CTXin (context switch in, the time for the CPU to
switch to a new thread) and LCS (longest critical section,
the time that a tick or timer interrupt might be delayed due
to disabled interrupts). The time to handle a system tick is
another significant source of kernel overhead. However,
its only impact is to reduce to overall system utilization
and it is currently set to zero.

The platform automaton includes mechanisms that
cause time to elapse at points in its execution correspond-
ing to the actual consumption of overhead in the kernel.
Where these times are variable (such as the delay due to a
critical section) we have allowed the time consumed to
vary (zero/half/all of the maximum).

3.5 Analysis Results

The time partitioning property requires that each thread has
access to its CPU budget each period, regardless of the ac-
tions of other threads in the system. The simplest way to
verify this property is via an assertion embedded in the
scheduler model that is checked each time a tick interrupt
is processed. The assertion states that for each period
completing at the current tick, every thread in the period
must either voluntarily complete for period or be termi-
nated due to exhausting its time budget.

Another important set of properties to be verified is
associated with preconditions of functions in the kernel.
As part of the Deos development process, each function
definition must specify any preconditions for the correct
use of the function. Where possible, these preconditions
have been translated into assertions to be checked by SPIN.

We have augmented our regular verification tech-
niques to include a check for livelock or “non-progress cy-
cles”. Checking for non-progress cycles involves placing
progress labels in strategic locations in the model. If the
model includes a cycle that does not contain a progress la-
bel, it signifies the presence of a livelock. In our model of
Deos the particular livelock case in which we are interested

Cofer and Rangarajan

•

•

•

•

•

•

is any cycle that does not contain a system tick event, indi-
cating that time is not elapsing as expected.

Our analysis results for the Deos scheduler can be
summarized as follows:

We have been able to verify the main time parti-
tioning assertion and a number of internal func-
tion preconditions for many different system con-
figurations, including interrupt threads and slack
scheduling. Our overall assurance that this com-
plex system has been designed and implemented
correctly is increased as a result.
We identified several instances where precondi-
tions were inconsistent with the intended operation
of the scheduler. These have been corrected and
will improve the quality of code reviews performed
in future verification and certification activities.
We identified a number of modeling errors that
enabled us to refine the model to reflect realistic
system behaviors, resulting in increased confi-
dence in our analysis results.
We detected several unexpected system behav-
iors, improving our understanding of the operation
of the system. This will be helpful as we maintain
and upgrade the system in the future.

4 NEXT STEPS

Our work on modeling and verifying the Deos scheduler is
ongoing. We are continuing to add features to the model to
increase its fidelity. As the model has increased in size, we
have begun work in several new directions to extend our
results.

Model checking suffers from one of the same
limitation as simulation in that it requires a spe-
cific system configuration must be modeled. We
have started work on an more abstract model of
the scheduler that permits an arbitrary number of
threads and periods to be specified. We are using
the PVS automated theorem proving system for
this work.
In our model of time in the environment model, we
currently limit thread completion times to zero, half,
or all of the available time. We are working on a
proof that this time abstraction is indeed correct and
does not exclude any real system behaviors.

ACKNOWLEDGMENTS

This work was funded in part by NASA under cooperative
agreement NCC-1-399.

REFERENCES

Binns, Pam. 2001. A robust high-performance time parti-
tioning algorithm: the Digital Engine Operating Sys-
tem (Deos) approach. In Proceedings of the 20th Digi-
tal Avionics System, Daytona Beach, FL.

Cofer, Darren and Murali Rangarajan. 2002. Formal Mod-
eling and Analysis of Advanced Scheduling Features
in an Avionics RTOS. In Proceedings EMSOFT ‘02:
Second International Workshop on Embedded Soft-
ware, ed. Alberto Sangiovanni-Vincentelli and Joseph
Sifakis. Springer-Verlag.

Holzmann, G. 1997. The model checker SPIN. IEEE Trans-
actions on Software Engineering 23 (5), 279–295.

Honeywell. 1999. Design Description Document for the
Digital Engine Operating System. Honeywell specifi-
cation no. PS7022409.

Pasareanu, Corina S. 2000. Deos Kernel: Environment
Modeling using LTL Assumptions. NASA Ames
Technical Report NASA-ARC-IC-2000-196.

Penix, J., W. Visser, E. Engstrom, A. Larson, and N. Wein-
inger. 2000. Verification of Time Partitioning in the
Deos Scheduler Kernel. In Proceedings of the 22nd
International Conference on Software Engineering,
Limerick, Ireland.

RTCA. 1992. DO-178B: Software Considerations in Air-
borne Systems and Equipment Certification. RTCA,
Inc., Washington, DC.

Weininger, Nicholas, and Darren Cofer. 2000. Modeling
the ASCB-D Synchronization Algorithm with SPIN: A
Case Study. In Proceedings of the 7th SPIN Workshop,
LNCS 1885, Springer-Verlag.

AUTHOR BIOGRAPHIES

DARREN D. COFER is a Senior Principal Scientist at
Honeywell Laboratories in Minneapolis, MN. He received
Ph.D. and M.S. degrees in Electrical and Computer Engi-
neering from the University of Texas at Austin, and a B.S.
in Electrical Engineering from Rice University. His re-
search interests include analysis methods and tools for
verifying correctness of avionics systems, discrete-event
and hybrid control system design, and embedded systems
design for safety-critical applications. His e-mail address
is <darren.cofer@honeywell.com>.

MURALI RANGARAJAN is a Research Scientist at
Honeywell Laboratories. He received his Ph.D. in Com-
puter Science and Engineering from the University of Cin-
cinnati a B.E. in Computer Science and Engineering from
the University of Madras, India. His principal area of ex-
pertise is in applying formal verification techniques for
analysis of complex systems with emphasis on automation.
His background includes work with automated application
of theorem proving techniques for hierarchical analysis of
hardware systems and application of model checking tech-
niques for analysis of software systems. His e-mail ad-
dress is <murali.rangarajan@honeywell.com>.

mailto:darren.cofer@honeywell.com
mailto:murali.rangarajan@honeywell.com
mailto:darren.cofer@honeywell.com
mailto:murali.rangarajan@honeywell.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 915
	02: 916
	03: 917
	04: 918
	05: 919
	06: 920
	07: 921
	08: 922

