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ABSTRACT 

The growing complexity and the safety-critical require-
ments of the embedded software in avionics systems pre-
sent many challenges to current test-based verification 
technology.  The use of formal verification methods can 
increase design assurance by exploring a larger range of 
system behaviors and fault conditions than can feasibly be 
covered by testing or simulation.  However, one of the 
most challenging tasks faced in any formal verification ac-
tivity is the construction of an adequate model for the envi-
ronment with which the analyzed system interacts.  For 
real-time systems where the timing characteristics are  
critical to correct performance this task is even more diffi-
cult.  In this paper we discuss how an event-triggered 
model of time (as found in discrete event simulations) can 
be used as the basis for the environment needed to verify 
real-time avionics software.   

1 INTRODUCTION 

Over the past decade Integrated Modular Avionics (IMA) 
architectures have gained popularity as a more cost-
effective method of fielding advanced avionics systems.  
IMA systems use a shared computing resources to simulta-
neously host functions of differing criticality, thereby re-
ducing size, weight, power and recurring costs.  This 
makes such platforms a natural location to place new func-
tionality.  It also places a special burden on the IMA oper-
ating system to keep functions of different criticality levels 
from interfering with each other. 

Currently the primary means for obtaining FAA certi-
fication for software-based systems is to develop and test 
the software in accordance with the guidelines in RTCA 
document DO-178B (1992).  These guidelines emphasize 
requirements-based testing in the verification process and 
rely on structural code coverage as a measure of testing 
adequacy.  These structural coverage requirements are not 
only expensive to achieve, but they can be ineffective in 
 
identifying certain classes of errors, especially those in-
volving timing or race conditions.   

We believe that techniques and tools being developed 
in the formal methods community, such as automated 
model checking, provide practical means for verifying the 
correct design of complex avionics systems.  Model check-
ing is a formal verification technique for finite-state con-
current systems.  Unlike testing or simulation, model 
checking explores all possible behaviors of a system in 
search of errors.   

Our experience with modeling and analyzing the 
Deos™ scheduler and the ASCB-D communication bus 
shows that formal methods can be applied to real systems 
to obtain useful verification results.  Using automated 
model checking can increase design assurance by allowing 
coverage of a larger range of execution behaviors than can 
be covered by testing or simulation.  Furthermore, model 
checking can decrease development and testing costs by 
finding design errors early in the development cycle.   

In both the projects described in this paper we have use 
the model checker SPIN, originally developed at Bell Labs 
and described in Holzmann (1997).  The systems to be veri-
fied are modeled using Promela, the input language of SPIN.  
Promela is a guarded command language supporting asyn-
chronous communication between concurrent computing 
processes.  It is well-suited for describing both software 
(such as C/C++ code modules) and finite state automata.   

In our approach, the system to be verified is modeled 
with relatively high fidelity and with as direct a correspon-
dence to the actual system as possible.  This permits the 
analysis results obtained for the model to be traced to the 
actual system.  The modeled system must also have some 
environment or “world” model with which to interact.  The 
environment must generate the system inputs and react to 
the system outputs.  Design of a suitable environment 
model turns out to be one of the most challenging tasks in 
formal verification.  The environment must be general 
enough to allow all realistic system behaviors, including 
any fault conditions that the system is intended to handle.  
However, the environment should not permit behaviors 
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that could not actually occur.  This includes causal con-
straints, physical limits, and the passage of time associated 
with events in the real world.  Failure to adequately capture 
these constraints in the environment model can result in 
many incorrect counter-examples being discovered by the 
model checker.   

SPIN itself does not model time.  The environment 
model must assume responsibility for the elapsing of time 
in the model.  This manifests itself in the way that the envi-
ronment determines when to generate particular events and 
the input values provided to the system model.   The timing 
model we have used corresponds closely to that used in 
discrete event simulations.  At any step in the execution of 
the model, one or more events are eligible to occur next.  
The model selects one of these non-deterministically and 
processes that event.  If there is any time associated with 
the occurrence of the event, the clock is advanced by that 
amount, and any newly eligible events are added as candi-
dates for the next step.   

To illustrate, we next describe two verification prob-
lems in which we have used this approach.   

2 EXAMPLE:  ASCB-D  
COMMUNICATION BUS 

ASCB-D (Avionics Standard Communications Bus, ver-
sion D) is a data bus designed for real-time, fault-tolerant 
periodic communications between avionics modules in 
Honeywell’s Primus Epic avionics suite for business, re-
gional, and commuter jet aircraft.  The particular algorithm 
we modeled (Weininger and Cofer 2000) is used to syn-
chronize the clocks of communicating modules to allow 
periodic transmission of data on the bus.   

The synchronization algorithm is sufficiently complex 
to test the limits of currently available modeling tools. The 
central performance properties which the algorithm is in-
tended to fulfill are time bounds.  It is notoriously difficult 
to verify that such bounds hold over all possible startup 
conditions. Furthermore, these bounds must be shown to 
hold in the presence of numerous hardware faults, some of 
which are difficult to simulate on actual test hardware. 

SPIN proved to be a particularly good tool for model-
ing such an algorithm; it allowed us not only to verify tim-
ing invariants over the state space of the model, but also to 
conduct random or guided simulations that shed light on 
the possible behaviors of the model. The graphical repre-
sentation of these simulations made debugging the model, 
and eliciting the causes of invariant violations, much eas-
ier. Furthermore, the Promela modeling language allowed 
us to produce an easy-to-understand model that we later 
found corresponded remarkably well to the C++ imple-
mentation code. 
2.1 Synchronization Algorithm 

The ASCB-D synchronization algorithm is run by each of 
a number of NICs (Network Interface Controllers) which 
communicate via a series of buses. These NICs are split 
into two, corresponding to the pilot and co-pilot sides of an 
aircraft. For each side there are two buses, a primary and a 
backup bus. Each NIC can listen to and transmit messages 
on both of the buses on its own side. It can also listen to, 
but not transmit on, the primary bus on the other side.  
From the viewpoint of a given NIC, other NICs on the 
same side are called onside NICs; NICs on the other side 
are xside NICs. Likewise, the buses on the NIC’s own side 
and on the other side are onside and xside buses respec-
tively. The basic structure of buses and NICs is shown in 
Figure 1. 
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Figure 1:  ASCB-D Bus Topology 

 
The operating system running on the NICs produces 

frame ticks every 12.5 msec which trigger threads to run. 
In order for periodic communication to operate, all NICs’ 
frame ticks must be synchronized within a certain toler-
ance. The purpose of the synchronization algorithm is to 
enable that synchronization to occur and to be maintained 
within certain performance bounds over a wide range of 
faulty and non-faulty system conditions. 

The synchronization algorithm works by transmitting 
special timing messages between the NICs.  At startup 
these messages are used to designate the clock of one NIC 
as a reference to which the other NICs synchronize; after 
synchronization is achieved, the messages are used to 
maintain synchronization by correcting for the NICs’ clock 
drift relative to each other.  The algorithm is required to 
achieve synchronization within 200 msec of startup. It 
must do this regardless of the order in which the NICs start 
or the time elapsed between their initial startup, and in 
spite of possible malfunctions in certain NICs or buses.  
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2.2 Algorithm and Environment Modeling 

Our plan for modeling the ASCB-D synchronization algo-
rithm in SPIN was to start with the smallest possible non-
trivial subset of the specified algorithm, and increase the 
complexity of the model in stages from there.  We decided 
to abstract away the numerical time calculations used by 
the algorithm, and to model only the ordering constraints it 
imposes. This decision was based on a strong initial aver-
sion to the idea of an explicit model of time. Since the state 
space of a model must be finite, elapsed time has to be 
measured in discrete units of some fixed granularity; no 
matter what granularity is chosen, this strategy is prone to 
errors caused by lumping two different execution orderings 
together into the same time unit. Furthermore, since time 
counters can typically take on a very large number of dif-
ferent values, use of time counters can greatly increase the 
model state space size.  

We found that our initial model with four NICs per-
mitted execution sequences not possible in the real system 
because the environment process did not have sufficient 
information to accurately restrict the ordering of the NIC 
tick events.  For example, if the NICs are numbered 0 
through 3, the environment would allow ticks and thus 
message transmissions to occur in a 3-2-1-0-0-1-2-3-3-2-1-
0-0-1-2-3 sequence, which is not possible in the real algo-
rithm.  Furthermore, the number of possible orderings is so 
large that is made the model intractable.  However, impos-
ing a fixed order on NIC ticks goes to the opposite ex-
treme, excluding many orderings which the real algorithm 
does allow.  

The problems in the four-NIC model necessitated ma-
jor changes to the basic model structure. The introduction 
of an explicit numerical time model, and the combination 
of that time-modeling capability and the message-
transmission capability in the same environment process, 
turned out to be the changes we needed to make the model 
tractable again.   

The time/environment process keeps track of the time 
remaining until the next frame tick of each NIC and the 
messages received by each NIC in the current frame, as 
well as the total time elapsed since start up.  It then sits in a 
loop executing the following algorithm: 

 
while(true) 
{ 
   pick id such that timeToNextTick[id] is 
minimal; 
   send NIC[id] the contents of its message 
buffers from the last frame; 
   wait for NIC[id] to send back the length 
of its next frame, plus the contents of the 
message it wants to send; 
   if that message is not empty, send it to 
the other NICs’ buffers; 
   for all i != id 
     timeToNextTick[i] += timeToNextTick[id]; 
   total_elapsed_time += timeToNextTick[id]; 
   set timeToNextTick[id] to the length of 
the next frame for NIC[id]; 
} 

 
A number of fundamental changes in the model follow 

immediately from the introduction of numerical time. 
These include: 

• 

• 

• 

• 

• 

The environment process neatly encapsulates all 
those parts of the system that provide input to the 
algorithm we wish to model (frame ticks, buffers, 
and buses), while the NIC process encapsulates that 
algorithm completely. The interface between the 
two is simple and localized.  This is perhaps the 
most powerful advantage of the time/environment 
model; it allows faults to be injected and compli-
cated hardware interactions to be added with no 
change required to the NIC code. 
Because the environment process now dispatches 
ticks one by one, NICs are trivially guaranteed to 
execute atomically with respect to each other. 
NICs also execute atomically with respect to the 
environment process. This simplifies the space of 
possible execution orderings dramatically; the 
only order that matters is the order in which ticks 
and message transmissions occur.  
Complicated tick orderings produced by frames of 
different lengths are now explicitly and accurately 
represented in the model.  
We can now easily test for timing-dependent sys-
tem properties. For instance, we can place an as-
sertion in the environment process, checked be-
fore each tick, that states that all NICs should be 
in sync within 200 msec of the startup time.  
Because the interface between environment and 
NIC includes all the data that must be shared be-
tween them, there is no need for global data struc-
tures. This allows SPIN’s compression techniques 
to reduce the memory requirements. 

The reduction in state space produced by eliminating im-
possible interleavings far exceeds the increase produced by 
having time counter values.  

The ASCB-D modeling effort also taught us quite a bit 
about modeling systems whose central properties are based 
on time. Modeling these systems with a purely order-based 
model introduces large numbers of execution interleavings 
which do not exist in the real system and which produce 
spurious violations of safety properties. Furthermore, per-
formance requirements for these algorithms are often ex-
pressed in terms of time, so a numerical time model is 
needed to verify them. 

3 EXAMPLE: THE DEOS SCHEDULER 

The Deos real-time operating system (Honeywell 1999) 
was developed by Honeywell for use in Primus Epic com-
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puting platforms.  Deos hosts many safety-critical aircraft 
applications, including primary flight controls, autopilot, 
and displays.   

Deos is a microkernel-based real-time operating system 
that supports flexible Integrated Modular Avionics applica-
tions by providing both space partitioning at the process 
level and time partitioning at the thread level.  Space parti-
tioning ensures that no process can modify the memory of 
another process without authorization, while time partition-
ing ensures that a thread’s access to its CPU time budget 
cannot be impaired by the actions of any other thread.   

The combination of space and time partitioning makes 
it possible for applications of different criticalities to run on 
the same platform at the same time, while ensuring that low-
criticality applications do not interfere with the operation of 
high-criticality applications.  This noninterference guarantee 
reduces system verification and maintenance costs by ena-
bling an application to be changed and re-verified without 
re-verifying all of the other applications in the system.  Deos 
itself is certified to DO-178B Level A, the highest level of 
safety-critical certification for avionics software.   

The following sections describe key aspects of the 
scheduler behavior important for our verification work 
(Cofer and Rangarajan 2002).  Then we discuss the chal-
lenges faced in developing an appropriate model of time 
for performing the verification.   

3.1 Scheduler Operation 

The main components of a Deos-based system are illus-
trated in Figure 2.  A given software application consists of 
one or more processes.  Each process is implemented as 
one or more periodically executing threads.  All threads in 
a process share the same virtual address space in memory.  
Each hardware platform in the system has a separate in-
stance of the Deos kernel running on it.  The kernel com-
municates with its underlying hardware via its hardware 
abstraction layer (HAL) and platform abstraction layer 
(PAL) interfaces.  The HAL provides access to the CPU 
and its registers and is considered part of Deos itself.  The 
PAL provides access to other platform hardware, such as 
I/O devices, timers, and interrupt signals.  The application 
threads interact with the kernel and obtain the services it 
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Figure 2:  Deos Components and Terminology   
 

provides by means of a set of functions called the applica-
tion programming interface (API).   

Deos must ensure that every application gets its allot-
ted amount of CPU time every period. This provision is 
called time partitioning, and is accomplished by the Deos 
scheduler.  At system startup, each process is given a frac-
tion of the total available CPU computing resource, called 
the process’s CPU budget, for its use.  The process then 
allocates its CPU budget to its threads.  Deos ensures that 
each of the threads has access to its allocated CPU budget 
every period. 

The Deos scheduler enforces time partitioning using a 
Rate Monotonic Scheduling (RMS) policy. RMS assigns 
thread priorities so that shorter period (high rate) threads 
are assigned a higher priority than long period (low rate) 
threads.  Using this policy, threads run periodically at 
specified rates and they are given per-period CPU time 
budgets, which are constrained at thread creation so that 
the system cannot be overutilized.  A thread will be pre-
empted by the scheduler if it attempts to exceed its time 
budget.  Deos threads may also continue run beyond their 
deadlines if there is unutilized time available in the system 
using a feature known as slack scheduling (Binns 2001).   

In Deos, all periods are required to be harmonic.  This 
means that the length of each period is an integer multiple 
of the length of the next shorter period.  Harmonic periods 
allow Deos to achieve (near) 100% utilization of the avail-
able CPU time.   

At the start of the thread’s period the scheduler places 
it on a list of threads that are ready to execute in that pe-
riod.  When the thread is at the head of the list for its pe-
riod, the scheduler starts it by switching the current execu-
tion context to that thread.  The thread executes until one 
of three conditions occurs:   

• 

• 

• 

The thread is preempted by the scheduler because a 
higher priority thread (with a faster rate) is ready to 
run.  The thread is returned to the ready list for its 
period so that it can be resumed later in its period.   
The thread voluntarily waits for the start of its 
next period because it has completed its work for 
the current period.   
The thread uses all of its allotted time and must be 
stopped by the scheduler to preserve time parti-
tioning.  The thread will be run again in its next 
period and will receive a threadBudgetExceeded 
exception so that it can take any needed recovery 
actions.   

3.2 Scheduler and Environment Modeling 

The behavioral properties of the Deos kernel cannot be 
analyzed independently – the kernel on its own doesn’t ac- 
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tually do anything independent of its environment.  The 
environment in this case consists of: 

1. application software threads that invoke kernel 
services, and  

2. platform hardware that provides timers and inter-
rupts to the kernel.   

Models in SPIN are specified as collections of concur-
rently executing processes that communicate via message 
channels.  There are three types of processes defined in our 
model:  the Deos kernel, threads, and the platform envi-
ronment.  The processes and their interconnecting channels 
are illustrated in Figure 3 and correspond to the compo-
nents identified in Figure 2.   
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Figure 3:  Structure of Kernel and Environment Models 

   
Channels represent various synchronization mecha-

nisms depending on the processes that they connect.  Mes-
sages sent from threads to the kernel represent calls to ser-
vices in the kernel API.  Messages from the kernel to 
threads represent context switches to stop and resume 
thread execution.  Messages from the platform to the ker-
nel represent hardware interrupts, either from timers or 
physical I/O.  Messages from the kernel to the platform are 
used to read and write timer registers.  In all cases channels 
are defined to buffer zero messages, meaning that all proc-
ess interactions are rendezvous synchronizations requiring 
the sender and receiver to be ready at the same time.   

The Deos kernel process is by far the biggest and most 
complex process in the model.  It consists of a simple state 
machine that represents a portion of the user API and the 
translated kernel code itself.   

The kernel code that we are modeling consists of C++ 
classes and methods taken directly from the current Deos 
software.  These structures have been translated into Pro-
mela by a very straightforward (though manual) procedure 
ensuring that the model remains in very close agreement 
with the actual software.  

In the real system, the threads or the platform interface 
software would directly invoke functions in the kernel API, 
trapping to the desired service.  Since we have modeled 
these interactions as Promela messages some mechanism is 
required to invoke the functions in the translated kernel code 
at the appropriate time.  The top level state machine in the 
kernel model serves this purpose.  It first calls all the initiali-
zation code in the kernel and then loops in an event handling 
structure.  When it receives messages from the threads or the 
platform interface corresponding to function calls, it invokes 
the appropriate kernel function in response.   

The kernel can respond to three types of interrupts 
from the platform environment:     

1. System tick (tickintrpt).  This is a periodic signal 
generated by the platform hardware that is used by 
the kernel to identify the start of all periods.  Each 
period must be a multiple of the system tick rate.  
On receipt of a system tick, the handleSystemTick-
Interrupt() method is invoked in the kernel.   

2. Timer (timerintrpt).  This is the time-out signal 
from the thread timer.  It indicates that a thread 
has reached the end of its budgeted time.  On re-
ceipt of a timer interrupt the handleTimer-
Interrupt() method is invoked in the kernel.   

3. Platform interrupt (platformintrpt).  This is a user 
interrupt that may be generated by an I/O device 
in the system.  If the interrupt is not masked, the 
raisePlatformInterrupt() method is invoked in the 
kernel.     

The kernel can invoke the following services in the 
platform interface, again modeled as Promela messages:   

1. Start timer (start).  This sends a desired starting 
value computed by the kernel to the timer.  

2. Read timer (getTimeRemaining).  This reads the 
current value in the thread timer.  The timer value 
is returned as a field in the TimeRemaining mes-
sage sent in reply by the platform process.   

The kernel handles the following requests from the 
threads, each of which is analogous to a function in the 
kernel API:   

1. Create thread (create).  This indicates that a new 
thread is to be created by invoking the create-
Thread() method in the kernel.  The parameters 
associated with the thread to be created are sup-
plied by reference to a template in the Deos regis-
try.  The desired thread template number is speci-
fied in the message and passed in as an argument 
to the API function.   

2. Delete thread (delete).  This indicates that a thread 
wishes to be deleted from the system by invoking 
the deleteThread() method in the kernel.   

3. Wait for next period (finishedforperiod).  This 
indicates that the calling thread has completed its 
work for this period and wishes to be suspended 
until the start of its next period.  On receipt, the 
waitUntilNextPeriod() method is invoked in the 
kernel.   

4. Wait for next interrupt (waitforintrpt).  This mes-
sage has been added to support the analysis of in-
terrupt service routine (ISR) threads.  Similar to 
“wait for next period,” this indicates that the caller 
has completed its work and wishes to be sus-
pended until the arrival of its next triggering inter-
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rupt event.  On receipt, the waitUntilNext-
Interrupt() method is invoked in the kernel.   

The kernel can send the following two messages to the 
threads to perform a context switch:   

1. Stop thread (stop).  This signals the thread to sus-
pend execution and wait to be resumed by the ker-
nel.  This may occur because the scheduler needs to 
run a higher priority thread or because the thread 
exceeded its time budget for the current period. 

2. Resume thread (resume).  This signals the thread 
to continue execution from the point at which it 
was previously suspended.   

In reality, these are not actual requests sent to the 
threads.  Via the HAL, the kernel triggers a context switch 
causing execution to transfer from one thread to another.   

Most of the interesting time partitioning issues are as-
sociated with the scheduling interactions between threads.  
Therefore, our model has a single process consisting of its 
main thread and several dynamically created user threads.  
The threads in our model do not have to do any actual 
work.  They provide part of the execution environment 
needed to analyze the Deos kernel and so they only need to 
exercise the kernel API in appropriate ways.   

3.3 Event-Triggering vs. Time-Triggering 

The main choice to be made in the platform environment 
model is whether the next event to occur will be a system 
tick or a timer interrupt.  This can be accomplished in sev-
eral ways.   

The original version of this part of the environment 
was developed by NASA Ames (Penix 2000) and evolved 
with a great deal of experimentation. A set of flags re-
cording the occurrence of various events and clock vari-
ables representing the value loaded in the timer, the time 
used by a thread, the time elapsed since the last tick, and 
the time remaining on the thread timer are all used to de-
termine what event can occur next and what time should be 
reported in response to a request for remaining time.  This 
version seems to work quite well but it is very complicated 
and difficult to modify without introducing errors.   

Another approach documented in Pasareanu (2000) 
uses progressive refinements to develop a correct model of 
the environment.  In this work a universal environment 
which can generate all possible behaviors without any con-
straints was used as the starting point.  When the kernel 
was verified in conjunction with this environment counter-
examples were produced that were the result of illegal be-
haviors in the environment.  The counterexamples were 
analyzed and eliminated by adding constraining expres-
sions in linear-time temporal logic (LTL) that capture the 
illegal behaviors of the environment.  This process would 
be repeated until a genuine counterexample (or completely 
correct behavior) was achieved.   
Based on lessons learned from both of these ap-
proaches, we developed a simplified timer environment 
that accurately captures all of the desired behaviors in the 
system but is easier to understand and maintain.  

An automaton illustrating the time-related activities of 
the environment is shown in Figure 4.  The variable 
tick_time represents the time until the next system tick 
event while remaining_time represents the time until the 
thread timer expires.  If tick_time is less than remain-
ing_time, the next event that can happen is a system tick, 
but if remaining_time is less than tick_time the thread 
time-out event must occur next.  If they are equal either 
event may be chosen to occur non-deterministically.   

 

RUN

runTimer /start /
load timer

elapseKernelTime /
advance time by CTXin

STOP

getTimeRemaining /

[tick_time ≤ remaining_time] / tick,
advance time to next tick (+ LCS)

[tick_time > remaining_time] / timer,
advance time to timer expiration (+ LCS)

getTimeRemaining /
advance time an arbitrary amount
before next tick or timeout
(corresponds to “finishedForPeriod”)

NOTE:
The platform interrupt can
be generated at any time
but is only received if it is
unmasked in the scheduler

start / load timer
[unmasked] / platform int

[unmasked] / platform int

 
Figure 4:  Timer Automaton in Environment Model   
 
On the occurrence of a system tick, time is advanced 

to the point of the tick event by decrementing remaining-
_time by the value of tick_time and reloading tick_time 
with the length of the tick period.  On the expiration of the 
thread timer, time is advanced to the point of the time-out 
event by decrementing tick_time by the value of remain-
ing_time and setting remaining_time to zero.   

When either of these events occurs the kernel will re-
quest the value of remaining_time by sending a getTime-
Remaining message.  The environment responds with the 
timeRemaining message (which because of the channel 
synchronization constraint can only be generated if the 
kernel is waiting for it).  In both the tick and time-out case, 
this value has already been updated thus causing the ap-
propriate amount of time to appear to have elapsed, and no 
further action is needed.   

In the case where a thread has finished for period prior 
to its timer expiring, some additional calculation is re-
quired to cause time to elapse in a reasonable way.  Note 
that in the timer automaton if no tick or timer event has oc-
curred then the getTimeRemaining message causes both 
remaining_time and tick_time to be decremented by a se-
lected amount.  This amount must be chosen such that the 
finished for period event will appear to occur before the 
next system tick or time-out event.   
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The selection of the amount of time that elapses on a 
finished for period event (the amount of time actually con-
sumed by the thread) is important in determining what be-
haviors can be realized in the model.  In the original timer 
environment this value was permitted to be either zero, half 
of the time remaining on the thread timer, or all of the time 
remaining.  This is an approximation of the real behavior 
possible for a thread but was felt to be a reasonable simpli-
fication to keep the state space manageable.   

However, there is a problem with this approach, as il-
lustrated in Figure 5.  If the time until the next system tick 
is less than half the time remaining on the thread timer then 
the only option actually available in the model (such that 
elapsed is less that the time of the next tick) is to have the 
thread consume zero time.  This does not seem to permit a 
wide enough range of possibilities for executions in the 
system.  To ensure that there are always three options 
available in the new timer environment, we compute 
min(tick_time, remaining_time) and allow the selection of 
zero, half, or all of this value for the elapsed time.   

Figure 6 shows a time line for the new timer options.  
In case 1A tick_time is less than remaining_time so on a 
finished for period event the thread can consume zero time, 
 

timer for thread
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all

time used by thread = y, where
(y ∈ {0, timer/2, timer}) ∧ (y ≤ timer) ∧ (y ≤ tick)
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Figure 5:  Original Timer Options for Elapsed Time 
When Thread Completes for Period 
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Figure 6:  New Timer Options for Elapsed Time 
tick_time/2, or tick_time.  Alternatively, the tick event may 
occur next and the thread will be preempted by a higher 
priority thread, as in case 1B.  After that thread completes 
execution, the lower priority thread may be resumed by the 
kernel.  It can either run until its time expires as in case 
2A, or finish for period, consuming either zero, remaining-
_time/2, or remaining_time, as in case 2B.   

3.4 Modeling Scheduler Overhead 

Time expended by the kernel performing scheduling or 
other services on behalf of executing threads is known as 
overhead.  Overhead in the kernel arises from a number of 
sources, some of which are significant as far as their im-
pact on correctness of timing properties while others are 
not.  The terms which we are currently modeling as non-
zero are CTXin (context switch in, the time for the CPU to 
switch to a new thread) and LCS (longest critical section, 
the time that a tick or timer interrupt might be delayed due 
to disabled interrupts).  The time to handle a system tick is 
another significant source of kernel overhead.  However, 
its only impact is to reduce to overall system utilization 
and it is currently set to zero.   

The platform automaton includes mechanisms that 
cause time to elapse at points in its execution correspond-
ing to the actual consumption of overhead in the kernel.  
Where these times are variable (such as the delay due to a 
critical section) we have allowed the time consumed to 
vary (zero/half/all of the maximum).   

3.5 Analysis Results 

The time partitioning property requires that each thread has 
access to its CPU budget each period, regardless of the ac-
tions of other threads in the system.  The simplest way to 
verify this property is via an assertion embedded in the 
scheduler model that is checked each time a tick interrupt 
is processed.  The assertion states that for each period 
completing at the current tick, every thread in the period 
must either voluntarily complete for period or be termi-
nated due to exhausting its time budget.   

Another important set of properties to be verified is 
associated with preconditions of functions in the kernel.  
As part of the Deos development process, each function 
definition must specify any preconditions for the correct 
use of the function.  Where possible, these preconditions 
have been translated into assertions to be checked by SPIN.   

We have augmented our regular verification tech-
niques to include a check for livelock or “non-progress cy-
cles”.  Checking for non-progress cycles involves placing 
progress labels in strategic locations in the model.  If the 
model includes a cycle that does not contain a progress la-
bel, it signifies the presence of a livelock.  In our model of 
Deos the particular livelock case in which we are interested 
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is any cycle that does not contain a system tick event, indi-
cating that time is not elapsing as expected. 

Our analysis results for the Deos scheduler can be 
summarized as follows: 

We have been able to verify the main time parti-
tioning assertion and a number of internal func-
tion preconditions for many different system con-
figurations, including interrupt threads and slack 
scheduling.  Our overall assurance that this com-
plex system has been designed and implemented 
correctly is increased as a result.   
We identified several instances where precondi-
tions were inconsistent with the intended operation 
of the scheduler.  These have been corrected and 
will improve the quality of code reviews performed 
in future verification and certification activities.   
We identified a number of modeling errors that 
enabled us to refine the model to reflect realistic 
system behaviors, resulting in increased confi-
dence in our analysis results.   
We detected several unexpected system behav-
iors, improving our understanding of the operation 
of the system.  This will be helpful as we maintain 
and upgrade the system in the future. 

4 NEXT STEPS 

Our work on modeling and verifying the Deos scheduler is 
ongoing.  We are continuing to add features to the model to 
increase its fidelity.  As the model has increased in size, we 
have begun work in several new directions to extend our 
results.    

Model checking suffers from one of the same 
limitation as simulation in that it requires a spe-
cific system configuration must be modeled.  We 
have started work on an more abstract model of 
the scheduler that permits an arbitrary number of 
threads and periods to be specified.  We are using 
the PVS automated theorem proving system for 
this work.   
In our model of time in the environment model, we 
currently limit thread completion times to zero, half, 
or all of the available time.  We are working on a 
proof that this time abstraction is indeed correct and 
does not exclude any real system behaviors.   
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