
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SYNCSIM: A SYNCHRONOUS SIMPLE OPTIMISTIC SIMULATION TECHNIQUE
BASED ON A GLOBAL PARALLEL HEAP EVENT QUEUE

Sushil K. Prasad
Zhiyong Cao

Computer Science Department

Georgia State University
Atlanta, GA 30303, U.S.A.

ABSTRACT

We developed and implemented two highly optimized opti-
mistic discrete event simulation techniques based on an effi-
cient and scalable Parallel Heap data structure as a global
event queue. The primary results are (i) the design of an op-
timistic simulation algorithm, namely SyncSim, which does
not rely on traditional state and message saving data struc-
tures, but employs only one backup state per state variable,
(ii) a demonstration, through implementation of SyncSim, of
an optimistic technique which overcomes the two main mu-
tually conflicting and unbounded overheads of the existing
optimistic simulation algorithms: SyncSim bounds the addi-
tional space requirements to just one copy per state variable
and drastically limits the number of rollbacks encountered.
Furthermore, SyncSim beats the highly optimized traditional
simulator simglobal on a wide variety of large networks on
an Origin-2000 computer. The algorithm SyncSim could
form a basis for a good parallelizing engine attachable rela-
tively easily to an existing serial simulator.

1 INTRODUCTION

We designed and implemented two optimistic simulation
algorithms for discrete event simulation. The first algo-
rithm, called simglobal, is a highly optimized traditional
optimistic simulator (Prasad and Naqib 1995; Prasad
2000a). The state vector is partitioned into logical proc-
esses (lps), and these lps asynchronously simulate and ad-
vance their local clocks while coordinating with other lps
using messages. An lp receiving message before its local
clock rolls back. To enable rollback mechanism, the simu-
lation model is modified. Each lp has an attached queue to
save its past states and all its input messages and the output
messages produced by executing some of the input mes-
sages (Jefferson 1985; Fujimoto 1990). Global virtual time
(GVT), which is upper-bounded by the earliest message in
the system, keeps track of the progress of the entire system.
Past states and messages before GVT are periodically dis-

carded. The second algorithm, called SyncSim, requires
only one backup copy of the state variable, which means
that it gets rid of the usual data structures associated with
state variable or logical processes including the queues for
saving past states, and those for input and output messages.
We adopt Parallel Heap (Prasad and Sawant 1995; Deo and
Prasad 1992) as the global event queue in both simulation
algorithms. By varying the node size, the Parallel Heap can
exploit the available parallelism of a network system. Par-
allel Heap has been demonstrated to be highly efficient not
only theoretically but also in practice on large priority
queues with even fine-grained parallel accesses. It has been
effectively employed in development of theoretical algo-
rithms and practical implementations of parallel simulations
(Prasad 1990; Prasad 1993; Prasad and Junankar 2000).

 We thoroughly tested these two simulation schemes on
both regular torus networks and on other ill-behaved net-
works on our Origin-2000, which is a shared-memory ma-
chine with 24 CPUs, 4 GB main memory, and a NUMA
architecture with hypercube interconnect employing
CRAY links.
 The primary results are two-fold. (i) The design of an
optimistic simulation algorithm, namely SyncSim, which
does not rely on traditional state and message saving data
structures, which we believe to be the first of its kind. (ii)
A demonstration, through implementation of SyncSim on a
commercial parallel computer, of an optimistic technique
which overcomes the two main unbounded overheads of
the existing optimistic simulation algorithms: SyncSim
bounds the additional space requirements to just one copy
per state variable and drastically limits the number of roll-
backs encountered, better than even simglobal. We believe
the latter result also to be uniquely demonstrated. Fur-
thermore, SyncSim beats the highly optimized traditional
simulator simglobal in actual performance on a wide vari-
ety of large networks.

The simulator SyncSim outperforms simulator sim-
global both in speedup and rollback. We also compared the
performance of Parallel Heap as global event queue with a

Prasad and Cao

global heap and found that Parallel Heap is more efficient
in simulating large network than heap. For small to me-
dium size systems which generate moderate number of
events/messages, one can also choose among various con-
current priority queues including calendar queue (Brown
1988), concurrent heaps (Rao and Kumar 1998), and con-
current skew heaps (Jones 1989). In addition, because of
the special character of Parallel Heap, the first element of
the root node is always has the earliest message/event. The
GVT is just set to the time field of that element, so it is
even easier to obtain GVT than pGVT and other algo-
rithms (D’Souza et al. 1994).

The algorithm SyncSim could form a basis for a good
parallelizing engine (Prasad 1997; Prasad 2000a) due to the
simplicity of its pluggable and modular data structures and
algorithms coupled with its good performance. Fujimoto
and Tsai (1993) have demonstrated that simulators devel-
oped in a variety of languages, including SIMSCRIPT,
GPSS, GASP and MODSIM, can be translated into C lan-
guage simulators conforming to a generic model of discrete
event simulator and then parallelized. Their optimistic al-
gorithm employed the usual data structures at each logical
process, including multiple backup states to enable roll-
back to a recent past, as well as sorted queues of input and
output messages to facilitate rollbacks. However, their
scheme was too elaborate, with significant search and
maintenance overheads and complicated optimistic control
code, to the point of being not so efficient. Nicol and Hei-
delberger (1996) have demonstrated a conservative-
algorithm-based parallelization, but their scheme depends
on system characteristics such as look-ahead information.
Our strategy, SyncSim, presented here is optimistic in na-
ture, and represents improvements over the previous work
of Fujimoto and Tsai's group. Learning from their past ex-
perience, the primary foci here are simplicity and effi-
ciency. Some other related research are High-Level Archi-
tecture based joining of multiple simulators to work
together as a way of potentially exploiting some parallel-
ism, albeit through a layer of generic HLA protocols (Fer-
enci 2000, Riley 1999), and object-based general paralleli-
zation of parallel programs as pursued in (Back and
Turner 1995), among others.
 The rest of these paper is organized as follows: first,
Parallel Heap data structure is introduced which forms the
key data structure around which the two simulation algo-
rithms are designed (Section 2); second, both simglobal
and SyncSim algorithm are described (Section 3 and 4, re-
spectively); third, the implementation details are explained
and the simulation results are analyzed (Section 5); finally,
conclusions are drawn (Section 6).

2 PARALLEL HEAP

Parallel Heap is the first heap-based data structure to have
efficiently implemented a scalable parallel priority queue
on an EREW parallel random access machine (Prasad
1990; Deo and Prasad 1992). Employing p processors, a
Parallel Heap allows deletion of O(p) highest priority
items and insertion of O(p) new items, each in O(log n)
time, where n is the size of the Parallel Heap. Practically,
Parallel Heaps are shown to be highly efficient parallel
priority queues even with a large number of fine-grained
parallel accesses (Prasad and Sawant 1995), and has been
successfully employed previously for simulating fine-
grained systems such as VLSI logic circuits (Prasad and
Junankar 2000).
 Parallel Heap employs the same concept as the con-
ventional priority heap except that in Parallel Heap, each
node contains up to r items for r >= 1, and the r highest
priority items are always in the root node. It allows syn-
chronized deletions of these r or fewer items from the node
and insertion of up to 2r new items in each insert-delete
cycle. All r items of a node must have values less than or
equal to the items at its children (Parallel Heap condition).
Only the last node in the heap may have fewer than r
items. All the items in a Parallel Heap node are kept in
sorted order. The new items to be inserted are first sorted.
These new items, starting from the root node, go down to-
ward the bottom, merging with each intervening nodes and
carrying down the larger item each time. Similarly, after
deletion of k <= r items of the root, k items are brought to
the root from the bottom. The root node may not satisfy the
Parallel Heap condition any more. A delete-update process
in employed to update the Parallel Heap to make it satisfy
the Parallel Heap condition.
 Using Parallel Heap for simulation involves two steps:

•

•

Simulation phase (also referred to as think phase),
in which the deleted items are processed/simulated
possibly generating new items.
Insert-delete phase, in which the newly generated
items are inserted to the Parallel Heap and the
smallest r items are deleted for simulation in the
next cycle.

The above procedures can be implemented in a pipelined
fashion by executing a delete-update process followed by
up to two insert update processes at each level, as follows.
 PerformInsertDelete() cycle:

1. Process the update process at the odd levels of the
Parallel Heap, in parallel, and move them down
to the even levels.

2. Think/Simulate using the r deleted items. Sort the
newly created items

3. Merge the newly created items with the root node.
Delete the smallest r for the subsequent think
phase. Get substitute items from the last node, if
needed, and initiate update processes at the root
node (level 0).

4. Process and move the update processes at the
even levels down to the odd levels.

Prasad and Cao

3 OPTIMISTIC SIMULATOR SIMGLOBAL

In Prasad and Naqib (1995), we had compared a previous
version of simglobal on a shared-memory machine with
simlocal, its counterpart with local event queues, and with
localDist, which is load-distributed version of simlocal
wherein output messages are inserted to a random local
event queue. All event queues employed were parallelized
calendar queues. Simglobal drastically reduced rollback
frequency and beat others in speedup obtained over a vari-
ety of networks. This established the utility of a global
event queue to be an effective technique to control the roll-
back frequency because (i) the various components of the
logical network being simulated move forward in simu-
lated time more or less in a synchronized fashion, and
(ii) the computational load is balanced across all proces-
sors. In the current version, a Parallel Heap is employed to
serve as the global message/event queue and contains a
copy of the earliest messages corresponding to each lp in
the logical network being simulated. Simulation proceeds
in synchronized cycles by deleting and simulating r earliest
messages at their lps. Thus, the Parallel Heap inherently
yields a dynamic time-window comprising earliest r mes-
sages in each cycle (Prasad 1990; Prasad 1993; Sokol et al.
1988; Steinman 1993).

3.1 Algorithm Simglobal

Each lp of simulator simglobal has a single channel that
contains all its messages, implemented as a time-ordered
linked-list. Each executed message is attached with nega-
tive copies of its outgoing messages and with the state of
the lp before the message is executed. A pointer is used to
keep track of the earliest message to be executed next. This
pointer gets updated whenever a message is simulated or a
new message is inserted into the channel. When a new
positive message is inserted into the channel of a destina-
tion lp, if a rollback is caused then the earliest message
pointer is moved to this new message, the local clock and
state are properly restored, and a copy of this message is
inserted into the event queue.

The actual rollback execution takes place lazily (Gafni
1988), for further optimization. When the current message
is being re-executed because of a prior rollback, the newly
produced messages are compared with the old negative
messages that were sent out. If different, both the new
positive message and the old negative messages are in-
serted into the destination lps. In the process of the inser-
tion of the old negative message, its copy of positive mes-
sage is found. If no rollback is caused, the positive
message is deleted, else it is marked void and the correct
state and local clock are restored at the destination lp. The
negative message just gets deleted after its positive mes-
sage is found. When the corresponding positive message is
deleted from the event queue for execution, it finds its
voided copy in the channel at its lp, deletes it, and sends
out the old negative message. Garbage collection of the
committed messages in the channel is performed whenever
an lp is accessed for simulation.

3.2 Implementation of Simulator
Simglobal Using Parallel Heap

The original PerformInsertDelete() function in the Parallel
Heap is modified to act as the simulation-driving program to
continue while the desired SimulationTime >= GVT. As
mentioned in Section 2, there are four steps in this function.
Steps 1, 3, and 4 are unchanged. The only additional detail is
in Step 2. The implementation of Step 2 is as follows:

2a) Divide the r deleted message elements from the
previous Step 3 among the processors in a round
robin fashion. This partition method is aimed to
reduce rollbacks.

2b) After getting their messages, each processor asyn-
chronously simulates the messages at the corre-
sponding lps. GVT, equal to the time stamp of the
earliest message deleted from GQ, is employed to
perform garbage collection of earlier messages at
these lps.

2c) After simulating each message, the newly gener-
ated messages are inserted to the destination lp’s
channel, and the earliest message of that channel
is copied to the NewItems array.

2d) Then each processor sorts its messages in their
own section. The sorted elements in each section
are merged in parallel into a sorted array.

After the above step, all new messages are in NewItems.
Then continue with the Step 3 in the Parallel Heap Per-
formInsertDelete() function. Therefore, importing the
simulation code to be combined with Parallel Heap code is
straightforward. It doesn’t require any change to the origi-
nal simulation code.

4 OPTIMISTIC SIMULATOR SYNCSIM

Both simglobal and SyncSim employ a global Parallel Heap
to control rollback frequency and repeatedly simulate the
earliest batch of r messages synchronously. The batch size r
is tuned to the level of concurrency exhibited in the simu-
lated system (currently through sample runs, but can be
adopted online). SyncSim additionally enforces a constant
state-space overhead. It opts for spatial parallelism over
temporal parallelism to avoid deeper rollbacks, which would
result from the lack of multiple past states to rollback to.

Prasad and Cao

4.1 Algorithm SyncSim

SyncSim features four key differences when compared to
simglobal:

(i) SyncSim has only one backup state per lp (yield-
ing strict upper bound on state-space usage in an
optimistic algorithm).

(ii) It does not have a sorted list of input/output mes-
sages and state queues at each lp. Instead, all mes-
sages reside in the global message queue. This en-
ables SyncSim to be a good candidate for a
parallelizing engine attachable relatively easily to
an existing serial simulator without complex data
structures at lps.

(iii) It primarily exploits spatial, not temporal, concur-
rency, i.e., unless the earliest message at an lp is
garbage collected, no attempt is made to optimis-
tically simulate a later message at that lp.

(iv) Since one backup state is already being used in
SyncSim, it also uses an additional space for one
message at each lp, simplifying the algorithm
without asymptotically increasing state-space
overhead. In order to make sure that each roll-
back decision is correct, SyncSim keeps the earli-
est executed message at its lp (without its copy in
GQ) until it gets discarded, or gets bumped by an
earlier message, at which moment it goes into the
GQ. It re-executes when extracted from the GQ
next time if the earliest message has been voided
or discarded, and causes rollback before re-
execution if lp’s local clock is greater than its own
time stamp. If this space is unoccupied, it stores a
copy of the earliest unexecuted message among
all messages that have arrived at an lp, with its
original in GQ.

 Note that the 1st feature alone would force each roll-
back in SyncSim to be a deep rollback to GVT, but in itself
does not present any correctness problem. The 2nd feature,
on the other hand, would mean that SyncSim would face
rollbacks not only because of messages not arriving at an
lp in non-decreasing order of time stamps, but also because
each such rollback may face several subsequent “jitter”
rollbacks as intermediate messages may not get re-
simulated in sorted linear order of time stamps in a concur-
rent environment.
 More severely, without the 3rd and the 4th features,
there is a resulting need for rollback counters and optimis-
tically delayed garbage collection techniques to counter
two problems as briefly explained below (Prasad 2000a).
With only one backup state, it is possible that an lp had
multiple messages simulated creating a scenario of having
a backup state s' at local clock lc' and its current state s at
local clock such that lc' < GVT < lc. Thus, one or more
already executed messages before the current GVT exist
which have not been garbage collected because of the lack
of a backup state at GVT. The 3rd feature, that of throt-
tling an lp to its earliest message, eliminates this problem
because the backup state is always at GVT when the earli-
est executed message is garbage collected. Another prob-
lem that could have occurred is that without the context
available from the sorted queues of input messages as in
traditional optimistic simulations, rollback decisions could
be wrong or unnecessary. It is possible, for example, that
an already simulated message event e with time stamp t(e),
which has not been garbage collected yet and hence is still
in the global event queue, will not realize that, after e's
simulation, its lp rolled back to a time before t(e) because
an earlier message arrived, and then moved ahead of t(e)
because a second message with timestamp greater than t(e)
subsequently arrived, and that a rollback to time t(e) and
e's re-execution is now essential for correctness of the
simulation. As explained in 4th feature, such a situation
does not arise in SyncSim because an already simulated
message, when re-extracted from GQ, rolls back the lp if it
has progressed beyond its time stamp.
 Thus, the 3rd and 4th features become crucial to elimi-
nate the problems associated with garbage collection and
correctness of rollbacks introduced by the first two. Even
if an lp moves forward too far, each subsequent rollback
linearly and quickly reverts it toward its earliest message.
This enforces a rollback length of just one each time, and
simplifies garbage collection of the earliest executed mes-
sage once GVT catches up to it. As experimental results
show, the amount of loss of temporal parallelism is com-
pensated amply by the exploitation of spatial parallelism in
large systems.
 The voiding method is lazily delayed after the re-
execution of a message. The children of a message are
voided only if the output of the re-execution is different
from the previous execution. The local time of each lp is
assigned to the time of the last message it simulated. The
new global virtual time, GVT, is calculated as in sim-
global. We did not experiment with other GVT algorithms
to focus exclusively on optimistic control mechanisms.

Figure 1, 2, and 3 show the pseudo-codes for algo-
rithm SyncSim. The simulate() function of Figure 1 is
called on each message deleted from the Parallel Heap re-
placing Step 2b and 2c of simglobal algorithm. The simu-
late() function, in turn, may call execute() function of Fig-
ure 2 to simulate or re-simulate a message, and the insert()
function of Figure 3 to send output messages to the desti-
nation lps. These are all constant-time steps except for the
Parallel Heap access times, which is logarithmic (Prasad
and Sawant 1995).
 Symbols employed are as follows:

•
•
•
•
•

lp: logical process
GQ: Global Queue
t(m): time stamp of message
lc: local clock
GVT: Global Virtual Time

Prasad and Cao

Simulate (Message m at lp i)

if (m voided) /* if simulated already, rollback
 already effected by insert() */ {

- void children of m
 /* no effect if m not executed */
- discard m, and its copy at lp i if m was
 the earliest;

}
/* m not voided */
else if (lp i's earliest message m' is simulated
 before){
 if (m' voided){

- void descendant of m'; discard m';
 roll back lp i;
 - execute(m,i);}
else if (t(m') <= GVT){
 - discard m'; execute(m,i);}

 else if (t(m) < t(m'))
 /* same as t(m) < lc of lp i */{
 - rollback lp i; execute(m,i);
 - m' goes to GQ;}
 else m goes back to GQ;
}
else if (lp i's earliest message m' is not
 executed yet){
 if (m' voided){
 discard m'; execute(m,i);}
 else if (t(m) > t(m')) m goes back to GQ;

else {
- discard m'; /*copy of m' already in GQ*/
- execute(m,i);}

}
else /*lp i empty */ execute(m,i);

Figure 1: Algorithm SyncSim: How to Simulate Message m
at lp i Deleted from Global Queue

execute (message m at lp i):

1. Backup state of lp i and simulate m;
 m becomes lp's earliest;
2. if (t(m) = GVT) discard m;
3. if (m being simulated first time)

 insert() children of m at their lps;
else /* m was simulated before */

if new output messages of m are different
from its old outputs, void old ones and
insert() new output messages;

 /* lazy cancellation */

Figure 2: Algorithm SyncSim: How to Simulate or Re-
Simulate Message m at lp I

Note: In Prasad (2000a), we had experimented with a

preliminary version of SyncSim, namely Simulator Simple,
based on a parallelized calendar queue as the global event
queue, and compared it with calendar queue based version
of simglobal. Simple, despite its space constraints, was
closely behind simglobal. It became apparent that parallel
calendar queue, which has a serial bottleneck to delete the
batch of earliest message and hence is non-scalable, was
limiting Simple’s potential of exploiting spatial concur-
rency available in large systems. This has led to the devel-
opment of SyncSim and simglobal, based on highly scal-
able and efficient Parallel Heap data structure. Prasad
(2000a) describes the detailed process of how simulator

insert (message m at lp i) /* Direct cancellation
 in place; so m can not be an antimessage */

1. if (lp i empty) m becomes its earliest;
else if (lp's earliest m' voided) {
 - if (m' executed before){

 - void children of m';
 - rollback lp i; }
- m replaces m':
 {discard m'; m becomes lp's earliest;}

}
else if (t(m') <= GVT) and (m' simulated before)
 - m replaces m';
else if (t(m) < t(m')) and (m' not executed)

- m replaces m';
else if (t(m) < t(m')) and (m' executed before){
 - rollback lp i; m becomes lp i's earliest;
 m' goes into GQ;
}

2. Original copy of m goes into GQ.

/* the original has direct pointers from its
parent */

Figure 3: Algorithm SyncSim: How to Handle an Output
Message m Sent to lp i

Simple has been systematically developed, aided by ex-
perimentation on different versions of simulator simglobal;
Prasad (2000b) shows the theoretical development of a se-
ries of algorithms on which simulator Simple and SyncSim
are based on.

4.2 Implementation of SyncSim
Algorithm Using Parallel Heap

One key implementation difference between SyncSim and
simglobal is that a message, after being simulated, need to
keep track its children till it is garbage collected in order to
be able to void the child message directly in case of roll-
back. This is implemented by adding a pointer field to
every message to store the memory address of its child.
Therefore, the implementation of Parallel Heap needs to
be modified to reflect this change. In the previous imple-
mentation of Parallel Heap, the actual message is physi-
cally stored in the Parallel Heap node, each node being an
array of the message structure type. When updating the
Parallel Heap, the actual message is moved from one node
to another node or from one place in a node to another
place in the same node, which means that the memory ad-
dress of the message is changed when the Parallel Heap
updates itself. It is very difficult for a parent message to
keep track of the child messages under this Parallel Heap
implementation. So the implementation of Parallel Heap is
modified: instead of each node being an array of the mes-
sage type, now it is changed to the array of pointer of mes-
sage type. Thus, no matter how the Parallel Heap updates,
only the pointer to an actual message moves and the actual
message itself stays where it was. In this case, a parent
message can always find its child messages. However, be-
cause the Parallel Heap maintains itself according to the

Prasad and Cao

time field of the message, it becomes an overhead when
the node is only an array of pointer variable to the real
message. So the Parallel Heap node structure is further
modified: each element of the array not only contains the
point variable to the real message but also stores the time
field of the real message. In this case, it doesn’t need the
indirect memory access to get the time field in updating the
Parallel Heap.
 When each participant processor gets a message from
the DeletedItems, it does the simulation as shown in the
SyncSim algorithm. All the newly generated items, includ-
ing the original message, which cannot be simulated be-
cause an earlier message is still sitting in the node, have
not being garbage collected. These messages, and those
which are bumped from the node because an earlier mes-
sage arrived, are inserted into the NewItems. All the rest
are same as in the implementation of simglobal simulation.

5 EXPERIMENTAL
DETAILS AND RESULTS

Initially, we employed these two simulators on torus net-
works. Next, we simulated the randomly generated net-
works. On each set of networks, SyncSim outperformed
simglobal.

5.1 Simulation of Large Torus Networks

Each lp in the torus network has two output channels con-
necting to its top and right neighbor lps and two incoming
channels from its left and bottom neighbor lps. The ser-
vice time of each lp is randomly chosen from 0 to 5 with
10% of the lps’ service times are set to 0 to test the per-
formance of the simulators in ill-behaved situations (forc-
ing lots of rollbacks). The total number of lps in the torus
network was one million. The initial number of message
was one for each lp. We choose medium event grain using
an empty for-loop with 8000 iterations. Coarser grain im-
proves the performances further.
 We also varied different parameters of the Parallel
Heap as follows:

1) The total number of processors used is divided
into two parts: the number of processor used for
simulation and the number of processors used for
maintaining the Parallel Heap. If total number of
processors used is t, number of maintenance proc-
essors is t’, the number of processor to do the
simulation is s, the relationship between these
three number is: if t’ < t, s = t - t’; if t’ = t, s =
t. The best general settings are shown in Figure 4
for the networks tested: (t, s) = (1, 1), (2, 2), (4,
4), (8, 6) are the best setting between total proces-
sor used and number of participating simulation
processors.
0

1

2

3

4

5

6

7

1 2 4 8
Total processors t

Si
m

ul
at

io
n

pr
oc

es
so

rs
 s

SyncSim &
simglobal

Figure 4: Total Processors used and the Num-
ber of Participating Simulation Processors

2) The node size r is very critical to the performance

of simulator. If the node size is too small, the
simulator can’t exploit all the parallelism of the
system. If the node size is too large, the wrong
messages may be simulated too far before it is
rolled back. In the experiments, we choose r =
500, 1000, 2000, 4000, and found that r=1000 is
the optimal number for simulator SyncSim and
r=500 is the optimal number for simulator sim-
global (Figure 5). These optimal settings are used
in the subsequent plots.

0
0.5

1
1.5

2
2.5

3

500 1000 2000 4000

node size (r)

sp
ee

du
p

SyncSim
Simglobal

Figure 5: Relationship between Speedup and Parallel
Heap Node Size

 Simulator simglobal based on a local heaps for each
processor with locks for insertion and deletion is imple-
mented to compare the result. We call this simulator simlo-
cal. Figure 6 shows the speedup comparison among these
three simulators. As we can see, simulator SyncSim out
perform the rest two with speed up 4.34 using 8 proces-
sors; the simulator simglobal performs second with speed
up of 3.54 using 8 processors.

Figure 7 shows the rollback number comparison
among these three simulators.

 and Cao
Prasad

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4 8
Number of Processors

Sp
ee

du
p

SyncSim

simglobal

simlocal

Figure 6: Speedup Comparison on Torus (Think
Time: 8000)

0

100

200

300

400

500

600

1 2 4 8

Number of processor

R
ol

lb
ac

k
N

um
be

rs SyncSim
simglobal
simlocal

Figure 7: Rollback Comparison on Torus Network
(Per Million Messages)

To our surprise, at the beginning, we found that when the
number of processors used reached 8, the rollback number
of simglobal version was higher than that of simlocal. Usu-
ally the rollback number should be less with global queue
than that with local queue. In order to verify our result, we
implemented another version of simglobal based on a sin-
gle global heap with locks. As we expected, simglobal suc-
cessfully reduced the rollback number (Figure 8). The rea-
son the rollback number of simglobal exceeds that of
simlocal when the processor number is 8 can be explained
as follows: because in simglobal, processors don’t syn-

0
50

100
150
200
250
300
350

1 2 4 8

Number of processors

N
um

be
r o

f r
ol

lb
ac

ks

simlocal

simglobal heap
version

Figure 8: Rollback Number Comparison between sim-
local and simglobal Heap Version

chronize with each other before they finish simulating the
numbers of messages assigned to them in each cycle, with
more processors participating in the simulation, it is possi-
ble that the simulation goes wrong much further than in the
simlocal which synchronize each processor after each mes-
sage per processor get simulated.

5.2 Simulation of Random Networks

Encouraged by the performance of simulator SyncSim and
simglobal on regular network, we further tested the per-
formance of these two simulators on static randomly gen-
erated network. In static randomly generated network, the
two output channels and the two incoming channels of
each lp are randomly generated. The total number of lps is
100K. Other initial settings were same as in torus network
simulation. Figure 9 and 10 show the speedup comparison
and rollback comparison between simulator SyncSim and
simglobal on static random networks, respectively.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8
Number of Processors

Sp
ee

du
p

simglobal

SyncSim

Figure 9: Speedup Comparison on Random Networks

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 4 8

Number of Processors

N
um

be
r o

f r
ol

lb
ac

ks

simglobal
SyncSim

Figure 10: Rollback Comparison on Random Net-
works (Messages Simulated: 55000)

We find that the performance of simulator SyncSim and
simglobal are very consistent on static random networks
with those on torus networks, except that the rollback

Prasad and Cao

numbers of both simulators SyncSim and simglobal is
much higher than that on torus network.
 In order to verify the utility of the Parallel Heap struc-
ture on large networks, we also implemented the simulator
SyncSim and simulator simglobal using a single heap with
locks for insertion and deletion as a global event queue on
the same torus network used before. The speed up result is
shown in Figure 11.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4 8

Number of processors

Sp
ee

du
p

SyncSim on parallel
heap
simglobal on parallel
heap
simglobal on heap

SyncSim on heap

Figure 11: Comparison of Speedup between
Simulator SyncSim and simglobal on Different
Event Queue Data Structures.

The performance of both simulator SyncSim and simglobal
decreased when the processor number reached 8 because
there are so many locking and unlocking activities associ-
ated with the single heap. Therefore, the heap itself has be-
come the bottleneck of the performance. We also find that
the performance of simulator simglobal is better than that
of SyncSim using single heap as a global queue. This can
be explained as follows: SyncSim is more global queue
bound as it lacks the supporting data structures at its lps. It
tolerates the additional accesses by exploiting the spatial
parallelism of large systems. Slow access to global queue
adversely affects these advantages. On the other hand, sim-
global improves with more frequent synchronizations af-
forded in the serial access heaps (after each s messages in
heaps as opposed to after r >> s messages in Parallel
Heaps, where s is the number of processors simulating.).

6 CONCLUSIONS

We presented the design and implementation of an opti-
mistic simulation algorithm, namely SyncSim, which does
not rely on traditional state and message saving data struc-
tures, which we believe to be the first of its kind. Also, we
demonstrated that this algorithm overcomes the two main
unbounded overheads of the existing optimistic simulation
algorithms. Algorithm SyncSim bounds the additional
space requirements to just one copy per state variable and
drastically limits the number of rollbacks encountered, bet-
ter than even simglobal. We believe the latter result also to
be demonstrated for the first time. Furthermore, SyncSim
beats the highly optimized traditional simulator simglobal
in actual performance on a wide variety of networks.

The performance of an optimistic parallel simulation
algorithm depends on the data structure it uses. With the
efficient parallel data structure, parallel heap, simulator
SyncSim, is a very good candidate for parallelizing engine,
attachable to an existing simulation code of a large net-
work simulation.

REFERENCES

Back, A and S. J. Turner. 1995. Using Optimistic Execu-
tion Techniques as a Parallelisation Tool for General
Purpose Computing. In International Conference on
High Performance Computing and Networking
(HPCN Europe '95), Milan, Springer, 21-26.

Brown. R. 1988. Calendar Queue: A fast O(1) priority
queue implementation for the simulation event set
problem. Comm. ACM, 31: 1200-1227.

Deo, N. and S. K. Prasad. 1992. Parallel Heap: An optimal
parallel priority queue. J. Super-computing, 6:87-98.

D’Souza, L.M., X. Fan and P.A.Wilsey. 1994. pGVT: An
algorithm for accurate GVT estimation. In Procs. 8th
Workshop on Par. and Dist. Sim. (PADS). 101-108.

Gafni, A. 1988. A rollback mechanism for optimistic dis-
tributed simulation systems. Procs, SCS Multiconf.
Dist. Sim., Vol.19, No.3, 61-67.

Ferenci, S. L., K.S. Perumalla, and R.M. Fujimoto. 2000.
An Approach for Federating Parallel Simulators. In
Pocs. PADS'00, 63-70.

Fujimoto, R. M. 1990. Parallel discrete event simulation.
Comm. ACM. 33: 31-53.

Jefferson, D.R. 1985. Virtual Time. ACM Trans. Prog.
Lang. Systems, 7: 405-425.

Jones, D. W. 1989. Concurrent operations on priority
queues. Comm. ACM, 32, No. 1, 132-137.

Nicol, D. and P. Heidelberger. 1996. Parallel execution for
serial simulators. ACM Trans. Modeling and Sim., vol
6, No. 3, 210-242.

Prasad, S. K. 1990. Efficient parallel algorithms and data
structures for discrete event simulation. Ph.D. Disser-
tation, Computer Science Dept., Univ. of Central Flor-
ida, Orlando.

Prasad, S. K. 1993. Efficient and scalable PRAM algo-
rithms for discrete event simulation of bounded degree
networks. J. Parallel and Distributed Computing, 18:
524-530.

Prasad, S. K. and B. Naqib. 1995. Effectiveness of Global
Event Queues in Rollback Reduction and Dynamic
Load Balancing in Optimistic Discrete Event Simula-
tion. In Procs. 9th Workshop on Parallel and Distrib-
uted Simulation, Lake Placid, NY, 187-190.

Prasad and Cao

Prasad, S. K. and S. Sawant. 1995. Parallel Heap: A practi-

cal parallel priority queue for fine-to- medium-
grained applications on small multiprocessors. In
Proc. 17th IEEE Symp. Parallel and Distributed Proc-
essing, San ANTONIO, Texas, 328-335.

Prasad, S. K. 1997. A Framework for Automatic Paralleli-
zation of Existing Discrete Event Simulators. In Procs.
IEEE Conference on Networking and Distributed
Computing, Kharagpur, India, Dec 5-7.

Prasad. S. K. 2000a. Practical Global-Event-Queue-based
Optimistic Simulation Algorithms with One Backup
State Vector and Low Rollback Overheads. In Procs.
The First International Conference on Parallel and
Distributed Computing, Applications and
Technologies (PDCAT'2000), May 22-24, Hong Kong,
Chapter 5.

Prasad. S. K. 2000b. Space-Efficient Algorithms based
on Global Event Queues for Parallelization of Existing
Discrete Event Simulators. In Procs. The First
International Conference on Parallel and Distributed
Computing, Applications and Technologies
(PDCAT'2000), May 22-24, Hong Kong, Chapter 20.

Prasad, S. K. and N. Junankar. 2000. Parallelizing a Se-
quential Logic Simulator using an Optimistic
Framework based on a Global Parallel Heap Event
Queue: An Experience and Performance Report. In
Procs. 14th Workshop on Parallel and Distributed
Simulation, Bologna, Italy, 111-118.

Rao, V.N., and Kumar, V. 1998. Concurrent access of pri-
ority queues, IEEE Trans. Comput., Vol. 37, No. 12,
1657-1665.

Riley, G. F., Fujimoto, R. M., and Ammar, M. H. 1999. A
Generic Framework for Parallelization of Network
Simulations, In Procs MASCOTS'99, 128-135.

Sokol, L., D. Briscoe and A. Weiland. 1988. MTW: a
strategy for scheduling discrete simulation events for
concurrent execution. In Procs. Distributed Sim.
Conf., 34-42.

Steinman, J. S. 1993. Breathing time warp. In Procs. 7th
Workshop on Par. and Dist. Sim. (PADS), San Diego,
CA, 109-118.

Tsai, J.J. and R. M. Fujimoto. 1993. Automatic Paralleliza-
tion of Discrete Event Simulation Programs, In Procs.
Winter Simulation Conference, 697-705.

AUTHOR BIOGRAPHIES

SUSHIL K. PRASAD is an Associate Professor of Com-
puter Science and Director of Yamacraw-GSU Embedded
Software Program at Georgia State University. He has a
B.Tech. from Indian Institute of Technology, Kharagpur,
an M.S. from Washington State University and a Ph.D.
from University of Central Florida, all in Computer Sci-
ence. Prasad has participated in collaborative external
grants and contracts with funding of about $3M. Prasad has
carried out theoretical as well as experimental research in
parallel and distributed computing and simulation, with 48
publications, and has made 3 utility patent applications and
over a dozen provisional patent applications. His home-
page is at <www.cs.gsu.edu/~cscskp>.

ZHIYONG CAO completed his M.S. in Computer Sci-
ence from Georgia State University in 2002. Currently, he
is employed in software industry in Atlanta.

http://www.cs.gsu.edu/~cscskp
http://www.cs.gsu.edu/~cscskp

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 872
	02: 873
	03: 874
	04: 875
	05: 876
	06: 877
	07: 878
	08: 879
	09: 880

