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ABSTRACT 

We developed and implemented two highly optimized opti-
mistic discrete event simulation techniques based on an effi-
cient and scalable Parallel Heap data structure as a global 
event queue. The primary results are (i) the design of an op-
timistic simulation algorithm, namely SyncSim, which does 
not rely on traditional state and message saving data struc-
tures, but employs only one backup state per state variable, 
(ii) a demonstration, through implementation of SyncSim, of 
an optimistic technique which overcomes the two main mu-
tually conflicting and unbounded overheads of the existing 
optimistic simulation algorithms: SyncSim bounds the addi-
tional space requirements to just one copy per state variable 
and drastically limits the number of rollbacks encountered.  
Furthermore, SyncSim beats the highly optimized traditional 
simulator simglobal on a wide variety of large networks on 
an Origin-2000 computer. The algorithm SyncSim could 
form a basis for a good parallelizing engine attachable rela-
tively easily to an existing serial simulator.  

1 INTRODUCTION 

We designed and implemented two optimistic simulation 
algorithms for discrete event simulation. The first algo-
rithm, called simglobal, is a highly optimized traditional 
optimistic simulator (Prasad and Naqib 1995; Prasad 
2000a). The state vector is partitioned into logical proc-
esses (lps), and these lps asynchronously simulate and ad-
vance their local clocks while coordinating with other lps 
using messages. An lp receiving message before its local 
clock rolls back. To enable rollback mechanism, the simu-
lation model is modified. Each lp has an attached queue to 
save its past states and all its input messages and the output 
messages produced by executing some of the input mes-
sages (Jefferson 1985; Fujimoto 1990). Global virtual time 
(GVT), which is upper-bounded by the earliest message in 
the system, keeps track of the progress of the entire system. 
Past states and messages before GVT are periodically dis-

 

carded. The second algorithm, called SyncSim, requires 
only one backup copy of the state variable, which means 
that it gets rid of the usual data structures associated with 
state variable or logical processes including the queues for 
saving past states, and those for input and output messages. 
We adopt Parallel Heap (Prasad and Sawant 1995; Deo and 
Prasad 1992) as the global event queue in both simulation 
algorithms. By varying the node size, the Parallel Heap can 
exploit the available parallelism of a network system.  Par-
allel Heap has been demonstrated to be highly efficient not 
only theoretically but also in practice on large priority 
queues with even fine-grained parallel accesses. It has been 
effectively employed in development of theoretical algo-
rithms and practical implementations of parallel simulations 
(Prasad 1990; Prasad 1993; Prasad and Junankar 2000).  

 

 We thoroughly tested these two simulation schemes on 
both regular torus networks and on other ill-behaved net-
works on our Origin-2000, which is a shared-memory ma-
chine with 24 CPUs, 4 GB main memory, and a NUMA 
architecture with hypercube interconnect employing 
CRAY links.  
 The primary results are two-fold. (i) The design of an 
optimistic simulation algorithm, namely SyncSim, which 
does not rely on traditional state and message saving data 
structures, which we believe to be the first of its kind. (ii) 
A demonstration, through implementation of SyncSim on a 
commercial parallel computer, of an optimistic technique 
which overcomes the two main unbounded overheads of 
the existing optimistic simulation algorithms: SyncSim 
bounds the additional space requirements to just one copy 
per state variable and drastically limits the number of roll-
backs encountered, better than even simglobal.  We believe 
the latter result also to be uniquely demonstrated.  Fur-
thermore, SyncSim beats the highly optimized traditional 
simulator simglobal in actual performance on a wide vari-
ety of large networks. 

The simulator SyncSim outperforms simulator sim-
global both in speedup and rollback. We also compared the 
performance of Parallel Heap as global event queue with a 
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global heap and found that Parallel Heap is more efficient 
in simulating large network than heap. For small to me-
dium size systems which generate moderate number of 
events/messages, one can also choose among various con-
current priority queues including calendar queue (Brown 
1988), concurrent heaps (Rao and Kumar 1998), and con-
current skew heaps (Jones 1989). In addition, because of 
the special character of Parallel Heap, the first element of 
the root node is always has the earliest message/event. The 
GVT is just set to the time field of that element, so it is 
even easier to obtain GVT than pGVT and other algo-
rithms (D’Souza et al. 1994). 

The algorithm SyncSim could form a basis for a good 
parallelizing engine (Prasad 1997; Prasad 2000a) due to the 
simplicity of its pluggable and modular data structures and 
algorithms coupled with its good performance. Fujimoto 
and Tsai (1993) have demonstrated that simulators devel-
oped in a variety of languages, including SIMSCRIPT, 
GPSS, GASP and MODSIM, can be translated into C lan-
guage simulators conforming to a generic model of discrete 
event simulator and then parallelized. Their optimistic al-
gorithm  employed the usual data structures at each logical 
process, including multiple backup states to enable roll-
back to a recent past, as well as sorted queues of input and 
output messages to facilitate rollbacks. However, their 
scheme was too elaborate, with significant search and 
maintenance overheads and complicated  optimistic control 
code, to the point of being not so efficient. Nicol and Hei-
delberger (1996) have demonstrated a conservative-
algorithm-based parallelization,  but their scheme depends 
on system characteristics such as look-ahead information. 
Our strategy, SyncSim, presented here is optimistic in na-
ture, and represents improvements over the previous work 
of Fujimoto and Tsai's group.  Learning from their past ex-
perience, the primary foci here are simplicity and effi-
ciency.  Some other related research are High-Level Archi-
tecture based joining of multiple simulators to work 
together as a way of potentially exploiting some parallel-
ism, albeit through a layer of generic HLA protocols (Fer-
enci 2000, Riley 1999), and object-based general paralleli-
zation of parallel programs as pursued in (Back  and 
Turner 1995), among others. 
 The rest of these paper is organized as follows: first, 
Parallel Heap data structure is introduced which forms the 
key data structure around which the two simulation algo-
rithms are designed (Section 2); second, both simglobal 
and SyncSim algorithm are described (Section 3 and 4, re-
spectively); third, the implementation details are explained 
and the simulation results are analyzed (Section 5); finally, 
conclusions are drawn (Section 6). 

2 PARALLEL HEAP 

Parallel Heap is the first heap-based data structure to have 
efficiently implemented a scalable parallel priority queue 
on an EREW parallel random access machine (Prasad 
1990; Deo and Prasad 1992). Employing p processors, a 
Parallel Heap allows deletion of O(p) highest priority 
items and insertion of O(p) new items, each in O(log n) 
time, where n is the size of the Parallel Heap.  Practically, 
Parallel Heaps are shown to be highly efficient parallel 
priority queues even with a large number of fine-grained 
parallel accesses (Prasad and Sawant 1995), and has been 
successfully employed previously for simulating fine-
grained systems such as VLSI logic circuits (Prasad and 
Junankar 2000). 
 Parallel Heap employs the same concept as the con-
ventional priority heap except that in Parallel Heap, each 
node contains up to r items for r >= 1, and the r highest 
priority items are always in the root node. It allows syn-
chronized deletions of these r or fewer items from the node 
and insertion of up to 2r new items in each insert-delete 
cycle. All r items of a node must have values less than or 
equal to the items at its children (Parallel Heap condition). 
Only the last node in the heap may have fewer than r 
items. All the items in a Parallel Heap node are kept in 
sorted order. The new items to be inserted are first sorted. 
These new items, starting from the root node, go down to-
ward the bottom, merging with each intervening nodes and 
carrying down the larger item each time. Similarly, after 
deletion of k <= r items of the root, k items are brought to 
the root from the bottom. The root node may not satisfy the 
Parallel Heap condition any more. A delete-update process 
in employed to update the Parallel Heap to make it satisfy 
the Parallel Heap condition.  
 Using Parallel Heap for simulation involves two steps: 

• 

• 

Simulation phase (also referred to as think phase), 
in which the deleted items are processed/simulated 
possibly generating new items. 
Insert-delete phase, in which the newly generated 
items are inserted to the Parallel Heap and the 
smallest r items are deleted for simulation in the 
next cycle. 

The above procedures can be implemented in a pipelined 
fashion by executing a delete-update process followed by 
up to two insert update processes at each level, as follows. 
 PerformInsertDelete( ) cycle: 

1. Process the update process at the odd levels of the 
Parallel Heap, in parallel, and move them down 
to the even levels. 

2. Think/Simulate using the r deleted items. Sort the 
newly created items 

3. Merge the newly created items with the root node. 
Delete the smallest r for the subsequent think 
phase. Get substitute items from the last node, if 
needed, and initiate update processes at the root 
node (level 0). 

4. Process and move the update processes at the 
even levels down to the odd levels. 
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3 OPTIMISTIC SIMULATOR SIMGLOBAL 

In Prasad and Naqib (1995), we had compared a previous 
version of simglobal on a shared-memory machine with 
simlocal, its counterpart with local event queues, and with 
localDist, which is load-distributed version of simlocal 
wherein output messages are inserted to a random local 
event queue.  All event queues employed were parallelized 
calendar queues.  Simglobal drastically reduced rollback 
frequency and beat others in speedup obtained over a vari-
ety of networks. This established the utility of a global 
event queue to be an effective technique to control the roll-
back frequency because (i) the various components of the 
logical network being simulated move forward in simu-
lated time more or less in a synchronized fashion, and     
(ii) the computational load is balanced across all proces-
sors. In the current version, a Parallel Heap is employed to 
serve as the global message/event queue and contains a 
copy of the earliest messages corresponding to each lp in 
the logical network being simulated. Simulation proceeds 
in synchronized cycles by deleting and simulating r earliest 
messages at their lps. Thus, the Parallel Heap inherently 
yields a dynamic time-window comprising earliest r mes-
sages in each cycle (Prasad 1990; Prasad 1993; Sokol et al. 
1988; Steinman 1993). 

3.1 Algorithm Simglobal 

Each lp of simulator simglobal has a single channel that 
contains all its messages, implemented as a time-ordered 
linked-list. Each executed message is attached with nega-
tive copies of its outgoing messages and with the state of 
the lp before the message is executed. A pointer is used to 
keep track of the earliest message to be executed next. This 
pointer gets updated whenever a message is simulated or a 
new message is inserted into the channel. When a new 
positive message is inserted into the channel of a destina-
tion lp, if a rollback is caused then the earliest message 
pointer is moved to this new message, the local clock and 
state are properly restored, and a copy of this message is 
inserted into the event queue. 

The actual rollback execution takes place lazily (Gafni 
1988), for further optimization. When the current message 
is being re-executed because of a prior rollback, the newly 
produced messages are compared with the old negative 
messages that were sent out.  If different, both the new 
positive message and the old negative messages are in-
serted into the destination lps. In the process of the inser-
tion of the old negative message, its copy of positive mes-
sage is found. If no rollback is caused, the positive 
message is deleted, else it is marked void and the correct 
state and local clock are restored at the destination lp. The 
negative message just gets deleted after its positive mes-
sage is found. When the corresponding positive message is 
deleted from the event queue for execution, it finds its 
voided copy in the channel at its lp, deletes it, and sends 
out the old negative message. Garbage collection of the 
committed messages in the channel is performed whenever 
an lp is accessed for simulation. 

3.2 Implementation of Simulator  
Simglobal Using Parallel Heap 

The original PerformInsertDelete() function in the Parallel 
Heap is modified to act as the simulation-driving program to 
continue while the desired SimulationTime >= GVT. As 
mentioned in Section 2, there are four steps in this function. 
Steps 1, 3, and 4 are unchanged. The only additional detail is 
in Step 2. The implementation of Step 2 is as follows: 

2a)  Divide the r deleted message elements from the 
previous Step 3 among the processors in a round 
robin fashion. This partition method is aimed to 
reduce rollbacks.  

2b)  After getting their messages, each processor asyn-
chronously simulates the messages at the corre-
sponding lps. GVT, equal to the time stamp of the 
earliest message deleted from GQ, is employed to 
perform garbage collection of earlier messages at 
these lps. 

2c)  After simulating each message, the newly gener-
ated messages are inserted to the destination lp’s 
channel, and the earliest message of that channel 
is copied to the NewItems array.  

2d)  Then each processor sorts its messages in their 
own section. The sorted elements in each section 
are merged in parallel into a sorted array. 

After the above step, all new messages are in NewItems. 
Then continue with the Step 3 in the Parallel Heap Per-
formInsertDelete() function. Therefore, importing the 
simulation code to be combined with Parallel Heap code is 
straightforward. It doesn’t require any change to the origi-
nal simulation code.   

4 OPTIMISTIC SIMULATOR SYNCSIM 

Both simglobal and SyncSim employ a global Parallel Heap 
to control rollback frequency and repeatedly simulate the 
earliest batch of r messages synchronously. The batch size r 
is tuned to the level of concurrency exhibited in the simu-
lated system (currently through sample runs, but can be 
adopted online). SyncSim additionally enforces a constant 
state-space overhead. It opts for spatial parallelism over 
temporal parallelism to avoid deeper rollbacks, which would 
result from the lack of multiple past states to rollback to.  
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4.1 Algorithm SyncSim  

SyncSim features four key differences when compared to 
simglobal:  

(i)  SyncSim has only one backup state per lp (yield-
ing strict upper bound on state-space usage in an 
optimistic algorithm). 

(ii)  It does not have a sorted list of input/output mes-
sages and state queues at each lp. Instead, all mes-
sages reside in the global message queue. This en-
ables SyncSim to be a good candidate for a 
parallelizing engine attachable relatively easily to 
an existing serial simulator without complex data 
structures at lps.  

(iii) It primarily exploits spatial, not temporal, concur-
rency, i.e., unless the earliest message at an lp is 
garbage collected, no attempt is made to optimis-
tically simulate a later message at that lp.   

(iv) Since one backup state is already being used in 
SyncSim, it also uses an additional space for one 
message at each lp, simplifying the algorithm 
without asymptotically increasing state-space 
overhead.  In order to make sure that each roll-
back decision is correct, SyncSim keeps the earli-
est executed message at its lp (without its copy in 
GQ) until it gets discarded, or gets bumped by an 
earlier message, at which moment it goes into the 
GQ. It re-executes when extracted from the GQ 
next time if the earliest message has been voided 
or discarded, and causes rollback before re-
execution if lp’s local clock is greater than its own 
time stamp. If this space is unoccupied, it stores a 
copy of the earliest unexecuted message among 
all messages that have arrived at an lp, with its 
original in GQ. 

 Note that the 1st  feature alone would force each roll-
back in SyncSim to be a deep rollback to GVT, but in itself 
does not present any correctness problem. The 2nd  feature, 
on the other hand, would mean that SyncSim would face 
rollbacks not only because of messages not arriving at an 
lp in non-decreasing order of time stamps, but also because 
each such rollback may face several subsequent “jitter” 
rollbacks as intermediate messages may not get re-
simulated in sorted linear order of time stamps in a concur-
rent environment. 
 More severely, without the 3rd and the 4th features, 
there is a resulting need for rollback counters and optimis-
tically delayed garbage collection techniques to counter 
two problems as briefly explained below (Prasad 2000a). 
With only one backup state, it is possible that an lp had 
multiple messages simulated creating a scenario of having 
a backup  state s' at local clock lc' and its current state s at 
local clock such that lc' < GVT <  lc. Thus, one or more 
already executed messages before the current GVT exist 
which have not been garbage collected because of the lack 
of a backup state at GVT.   The 3rd feature, that of throt-
tling an lp to its earliest message, eliminates this problem 
because the backup state is always at GVT when the earli-
est executed message is garbage collected. Another prob-
lem that could have occurred is that without the context 
available from the sorted queues of input messages as in 
traditional optimistic simulations, rollback decisions could 
be wrong or unnecessary. It is possible, for example, that 
an already simulated message event e with time stamp t(e), 
which has not been garbage collected yet and hence is still 
in the global event queue, will not realize that, after e's 
simulation, its lp rolled back to a time before t(e) because 
an earlier message arrived, and then  moved ahead of t(e) 
because a second message with timestamp greater than t(e) 
subsequently arrived, and that a rollback to time t(e) and 
e's re-execution is now essential for correctness of the 
simulation.  As explained in 4th feature, such a situation 
does not arise in SyncSim because an already simulated 
message, when re-extracted from GQ, rolls back the lp if it 
has progressed beyond its time stamp. 
 Thus, the 3rd  and 4th  features become crucial to elimi-
nate the problems associated with garbage collection and 
correctness of rollbacks introduced by the first two.  Even 
if an lp moves forward too far, each subsequent rollback 
linearly and quickly reverts it toward its earliest message.  
This enforces a rollback length of just one each time, and 
simplifies garbage collection of the earliest executed mes-
sage once GVT catches up to it.  As experimental results 
show, the amount of loss of temporal parallelism is com-
pensated amply by the exploitation of spatial parallelism in 
large systems.   
 The voiding method is lazily delayed after the re-
execution of a message. The children of a message are 
voided only if the output of the re-execution is different 
from the previous execution. The local time of each lp is 
assigned to the time of the last message it simulated. The 
new global virtual time, GVT, is calculated as in sim-
global. We did not experiment with other GVT algorithms 
to focus exclusively on optimistic control mechanisms.  

Figure 1, 2, and 3 show the pseudo-codes for algo-
rithm SyncSim.  The simulate() function of Figure 1 is 
called on each message deleted from the Parallel Heap re-
placing Step 2b and 2c of simglobal algorithm.  The simu-
late() function, in turn, may call execute() function of Fig-
ure 2 to simulate or re-simulate a message, and the insert() 
function of Figure 3 to send output messages to the desti-
nation lps.  These are all constant-time steps except for the 
Parallel Heap access times, which is logarithmic (Prasad 
and Sawant 1995). 
 Symbols employed are as follows:   

• 
• 
• 
• 
• 

lp: logical process 
GQ: Global Queue  
t(m): time stamp of message   
lc: local clock  
GVT: Global Virtual Time 
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Simulate (Message m at lp i) 
 
if (m voided) /* if simulated already, rollback  
    already effected by insert() */ { 

- void children of m  
 /* no effect if m not executed */ 
- discard m, and its copy at lp i if m was  
  the earliest; 

} 
/* m not voided */  
else if (lp i's earliest message m' is simulated  
    before){ 
 if (m' voided){ 

- void descendant of m'; discard m';  
      roll back lp i;  
 - execute(m,i);} 
else if (t(m') <= GVT){ 
 - discard m'; execute(m,i);} 

 else if (t(m) < t(m'))  
   /* same as t(m) < lc of lp i */{ 
  - rollback lp i; execute(m,i);  
  - m' goes to GQ;} 
 else  m goes back to GQ; 
} 
else if (lp i's earliest message m' is not  
    executed yet){ 
 if (m' voided){ 
  discard m'; execute(m,i);} 
 else if (t(m) > t(m')) m goes back to GQ; 

else { 
- discard m'; /*copy of m' already in GQ*/  
- execute(m,i);} 

} 
else /*lp i empty */  execute(m,i); 

Figure 1: Algorithm SyncSim: How to Simulate Message m 
at lp i  Deleted from Global Queue 
 
execute (message m at lp i):  
 
1.  Backup state of lp i and simulate m;  
 m becomes lp's earliest; 
2.  if (t(m) = GVT) discard m; 
3.  if (m being simulated first time) 

 insert() children of m at their lps;  
else /* m was simulated before */  

if new output messages of m are different 
from its old outputs, void old ones and 
insert() new output messages;  

   /* lazy cancellation */ 

Figure 2: Algorithm SyncSim: How to Simulate or Re-
Simulate Message m at lp I 

 
Note: In Prasad (2000a), we had experimented with a 

preliminary version of SyncSim, namely Simulator Simple, 
based on a parallelized calendar queue as the global event 
queue, and compared it with calendar queue based version 
of simglobal. Simple, despite its space constraints, was 
closely behind simglobal. It became apparent that parallel 
calendar queue, which has a serial bottleneck to delete  the  
batch of earliest message and hence is non-scalable, was 
limiting Simple’s potential of exploiting spatial concur-
rency available in large systems.  This has led to the devel-
opment of SyncSim and simglobal, based on highly scal-
able and efficient Parallel Heap data structure. Prasad 
(2000a) describes the detailed process of how simulator 
 

insert (message m at lp i) /* Direct cancellation  
   in place; so m can not be an antimessage */ 
 
1. if (lp i empty) m becomes its earliest; 
else if (lp's earliest m' voided) {  
 - if (m' executed before){ 

 - void children of m';  
 - rollback lp i; } 
- m replaces m':  
 {discard m'; m becomes lp's earliest;} 

} 
else if (t(m') <= GVT) and (m' simulated before) 
 - m replaces m';  
else if (t(m) < t(m')) and (m' not executed)   

- m replaces m';   
else if (t(m) < t(m')) and (m' executed before){ 
 - rollback lp i; m becomes lp i's earliest;  
   m' goes into GQ; 
} 
 
2. Original copy of m goes into GQ.  

/* the original has direct pointers from its 
parent */ 

Figure 3: Algorithm SyncSim: How to Handle an Output 
Message m Sent to lp i 

 
Simple has been systematically developed, aided by ex-
perimentation on different versions of simulator simglobal; 
Prasad (2000b) shows the theoretical development of a se-
ries of algorithms on which simulator Simple and SyncSim 
are based on.  

4.2 Implementation of SyncSim  
Algorithm Using Parallel Heap 

One key implementation difference between SyncSim and 
simglobal is that a message, after being simulated, need to  
keep track its children till it is garbage collected in order to 
be able to void the child message directly in case of roll-
back. This is implemented by adding a pointer field to 
every message to store the memory address of its child. 
Therefore, the implementation of Parallel Heap needs to 
be modified to reflect this change. In the previous imple-
mentation of Parallel Heap, the actual message is physi-
cally stored in the Parallel Heap node, each node being an 
array of the message structure type. When updating the 
Parallel Heap, the actual message is moved from one node 
to another node or from one place in a node to another 
place in the same node, which means that the memory ad-
dress of the message is changed when the Parallel Heap 
updates itself. It is very difficult for a parent message to 
keep track of the child messages under this Parallel Heap 
implementation. So the implementation of Parallel Heap is 
modified: instead of each node being an array of the mes-
sage type, now it is changed to the array of pointer of mes-
sage type. Thus, no matter how the Parallel Heap updates, 
only the pointer to an actual message moves and the actual 
message itself stays where it was. In this case, a parent 
message can always find its child messages. However, be-
cause the Parallel Heap maintains itself according to the 
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time field of the message, it becomes an overhead when 
the node is only an array of pointer variable to the real 
message. So the Parallel Heap node structure is further 
modified: each element of the array not only contains the 
point variable to the real message but also stores the time 
field of the real message. In this case, it doesn’t need the 
indirect memory access to get the time field in updating the 
Parallel Heap.  
 When each participant processor gets a message from 
the DeletedItems, it does the simulation as shown in the 
SyncSim algorithm. All the newly generated items, includ-
ing the original message, which cannot be simulated be-
cause an earlier message is still sitting in the node, have 
not being garbage collected. These messages, and those 
which are bumped from the node because an earlier mes-
sage arrived, are inserted into the NewItems. All the rest 
are same as in the implementation of simglobal simulation. 

5 EXPERIMENTAL  
DETAILS AND RESULTS 

Initially, we employed these two simulators on torus net-
works. Next, we simulated the randomly generated net-
works.  On each set of networks, SyncSim outperformed 
simglobal. 

5.1 Simulation of  Large Torus Networks 

Each lp in the torus network has two output channels con-
necting to its top and right neighbor lps and two incoming 
channels from its left and bottom neighbor lps.  The ser-
vice time of each lp is randomly chosen from 0 to 5 with 
10% of the lps’ service times are set to 0 to test the per-
formance of the simulators in ill-behaved situations (forc-
ing lots of rollbacks). The total number of lps in the torus 
network was one million. The initial number of message 
was one for each lp. We choose medium event grain using 
an empty for-loop with 8000 iterations. Coarser grain im-
proves the performances further. 
 We also varied different parameters of the Parallel 
Heap as follows: 

1) The total number of processors used is divided 
into two parts: the number of processor used for 
simulation and the number of processors used for 
maintaining the Parallel Heap. If total number of 
processors used is t, number of maintenance proc-
essors is t’, the number of processor to do the 
simulation is s, the relationship between these 
three number is: if t’ < t, s  =  t - t’;  if t’ =  t, s = 
t.  The best general settings are shown in Figure 4 
for the networks tested: (t, s) = (1, 1), (2, 2), (4, 
4), (8, 6) are the best setting between total proces-
sor used and number of participating simulation 
processors. 
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2)  The node size r is very critical to the performance 

of simulator. If the node size is too small, the 
simulator can’t exploit all the parallelism of the 
system. If the node size is too large, the wrong 
messages may be simulated too far  before it is 
rolled back. In the experiments, we choose r = 
500, 1000, 2000, 4000, and found that r=1000 is 
the optimal number for simulator SyncSim and 
r=500 is the optimal number for simulator sim-
global  (Figure 5). These optimal settings are used 
in the subsequent plots.  
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Figure 5: Relationship between Speedup and Parallel 
Heap Node Size 

 
 Simulator simglobal based on a local heaps for each 
processor with locks for insertion and deletion is imple-
mented to compare the result. We call this simulator simlo-
cal. Figure 6 shows the speedup comparison among these 
three simulators. As we can see, simulator SyncSim out 
perform the rest two with speed up 4.34 using 8 proces-
sors; the simulator simglobal performs second  with  speed 
up of 3.54 using 8 processors.  

Figure 7 shows the rollback number comparison 
among these three simulators.  
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Figure 7: Rollback Comparison on Torus Network 
(Per Million Messages)  

 
To our surprise, at the beginning, we found that when the 
number of processors used reached 8, the rollback number 
of simglobal version was higher than that of simlocal. Usu-
ally the rollback number should be less with global queue 
than that with local queue. In order to verify our result, we 
implemented another version of simglobal based on a sin-
gle global heap with locks. As we expected, simglobal suc-
cessfully reduced the rollback number (Figure 8).  The rea-
son the rollback number of simglobal exceeds that of 
simlocal when the processor number is 8 can be explained 
as follows: because in simglobal, processors don’t syn- 
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Figure 8: Rollback Number Comparison between sim-
local and simglobal Heap Version 

 

chronize with each other before they finish simulating the 
numbers of messages assigned to them in each cycle, with 
more processors participating in the simulation, it is possi-
ble that the simulation goes wrong much further than in the 
simlocal which synchronize each processor after each mes-
sage per processor  get simulated. 

5.2 Simulation of  Random Networks  

Encouraged by the performance of simulator SyncSim and 
simglobal on regular network, we further tested the per-
formance of these two simulators on static randomly gen-
erated network. In static randomly generated network, the 
two output channels and the two incoming channels of 
each lp are randomly generated. The total number of lps is  
100K. Other initial settings were same as in torus network 
simulation. Figure 9 and 10 show the speedup comparison 
and rollback comparison between simulator SyncSim and 
simglobal on static random networks, respectively.  
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Figure 9: Speedup Comparison on Random Networks 
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Figure 10: Rollback Comparison on Random Net-
works (Messages Simulated: 55000) 

 
We find that the performance of simulator SyncSim and 
simglobal are very consistent on static random networks 
with those on torus networks, except that the rollback 
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numbers of both simulators SyncSim and simglobal is 
much higher than that on torus network. 
 In order to verify the utility of the Parallel Heap struc-
ture on large networks, we also implemented the simulator 
SyncSim and simulator simglobal using a single heap with 
locks for insertion and deletion as a global event queue on 
the same torus network used before. The speed up result is 
shown in Figure 11.  
 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4 8

Number of processors

Sp
ee

du
p

SyncSim on parallel
heap
simglobal on parallel
heap
simglobal on heap

SyncSim on heap

 
Figure 11: Comparison of Speedup between 
Simulator SyncSim and simglobal on Different 
Event Queue Data Structures. 

 
The performance of both simulator SyncSim and simglobal 
decreased when the processor number reached 8 because 
there are so many locking and unlocking activities associ-
ated with the single heap. Therefore, the heap itself has be-
come the bottleneck of the performance. We also find that 
the performance of simulator simglobal is better than that 
of SyncSim using single heap as a global queue. This can 
be explained as follows: SyncSim  is more global queue 
bound as it lacks the supporting data structures at its lps.  It 
tolerates the additional accesses by exploiting the spatial 
parallelism of large systems.  Slow access to global queue 
adversely affects these advantages. On the other hand, sim-
global improves with more frequent synchronizations af-
forded in the serial access heaps (after each s messages in 
heaps as opposed to after r >> s messages in Parallel 
Heaps, where s is the number of processors simulating.).  

6 CONCLUSIONS 

We presented the design and implementation of an opti-
mistic simulation algorithm, namely SyncSim, which does 
not rely on traditional state and message saving data struc-
tures, which we believe to be the first of its kind. Also, we 
demonstrated that this algorithm overcomes the two main 
unbounded overheads of the existing optimistic simulation 
algorithms. Algorithm SyncSim bounds the additional 
space requirements to just one copy per state variable and 
drastically limits the number of rollbacks encountered, bet-
ter than even simglobal.  We believe the latter result also to 
be demonstrated for the first time.  Furthermore, SyncSim 
beats the highly optimized traditional simulator simglobal 
in actual performance on a wide variety of networks. 

The performance of an optimistic parallel simulation 
algorithm depends on the data structure it uses. With the 
efficient parallel data structure, parallel heap, simulator 
SyncSim, is a very good candidate for parallelizing engine, 
attachable to an existing simulation code of a large net-
work simulation. 
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