
Proceedings of the 2003 Winter Simulation Conference 
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds. 
  
 
 

DISTRIBUTED SIMULATION WITH COTS SIMULATION PACKAGES 
 
 

Csaba Attila Boer 
 

Erasmus University of Rotterdam 
Faculty of Economics 

Dept. of Computer Science 
P.O. Box 1738 

3000 DR Rotterdam, THE NETHERLANDS 

 Alexander Verbraeck 
 

Delft University of Technology 
Faculty of Technology, Policy and Management 

System Engineering Department 
P.O. Box 5105 

2600 GA Delft, THE NETHERLANDS 
   
   

 
 
ABSTRACT 

Connecting COTS (Commercial-off-the-Self) simulation 
packages entails various difficulties. First of all, commer-
cially available simulation packages hide the access to 
some internal data that is needed to connect to other simu-
lation models in the distributed simulation study. Next, the 
data sharing between simulation models is complicated. In 
order to carry out distributed simulation studies applying 
COTS simulation packages, we have to exactly define the 
interfacing and data transfer mechanisms. In this paper we 
present a theoretical description of different solutions for 
interfacing and transferring data between various simula-
tion models. These mechanisms have been implemented 
and tested, and applied in a project in order to prove their 
practical usage. 

1 INTRODUCTION 

Large-scale complex simulation studies often involve dif-
ferent organizations; consequently these simulation studies 
can be considered as inter-organizational studies. Usually 
each organization develops its own simulation model of its 
system using a COTS simulation package that fits its activ-
ity (e.g. manufacturing, transportation, supply-chain, etc.). 
When carrying out a study that looks at joint or related ac-
tivities of more than one organization, and we would like 
to reuse the already developed models, the individual 
simulation models of their systems will also need intercon-
nections (e.g. in a supply chain simulation study a factory 
simulation model has a relation with a warehouse or dis-
tributor simulation model, namely the product and cash 
flow). In order to improve the performance of the whole 
system we would like to analyze the overall behavior of the 
inter-organizational system. To achieve this we must ana-
lyze the inter-organizational system as a whole. In this way 
the whole simulation model of a large-scale complex sys-
tem with the several involved organizations is considered 
as a collection of coupled simulation models, where each 
 
simulation model represents a system of one organization. 
This leads to a distributed simulation study. In this paper 
we aim to analyze the various possibilities of interopera-
tion between the simulation models that have been devel-
oped in different COTS simulation packages. 

The interoperability in distributed simulation involves 
at least the data transfer and the time synchronization be-
tween the simulation models. The data transfer itself en-
tails actions related to: 

• 

• 

the exchange of an occurrence (e.g. signal) or an 
event with other simulation models, 
simulated entity transfer from one simulation 
model to another. 

In the HLA (High Level Architecture) (Defense Mod-
eling and Simulation Office 1996) terminology the data 
that is transferred for the first action is called an interaction 
(that can carry a set of parameters), while the data trans-
ferred for the second action is called an object (that carries 
attributes of the entity objects). A detailed description of 
different time synchronization mechanisms can be found in 
(Fujimoto 2000).  

In this paper we would like to concentrate mainly on 
the data transfer. Before being transferred to other models, 
the data must be accessed. The way of accessing data in 
COTS simulation packages is usually restricted. In section 
2 we investigate the possible ways of accessing data in 
simulation models developed in COTS simulation pack-
ages and introduce the concepts of interface functions. Sec-
tion 3 describes the concept of the interoperability func-
tion, which together with the interface function forms a 
wrapper that makes possible to connect the COTS simula-
tion model to a distributed simulation architecture. Section 
4 focuses on the problems that might occur when we try to 
connect two COTS simulation packages, specially focus on 
the situation when the type of the entity attributes differ. 
Based on the theoretical description given in Section 2, 3 
and 4, Section 5 includes the practical usage of these con-
cepts, and finally Section 6 concludes. 
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2 INTERFACING COTS  
SIMULATION MODELS 

The concept of discrete event simulation modeling is well 
defined by the DEVS formalism (Zeigler et al., 2000). This 
is an impressive result and it provides an accepted frame-
work and theoretical foundation in the area of simulation. 
Most of the COTS discrete event simulation packages are 
based on this concept. 

Although the already existing concepts give us a good 
starting point to specify the interfacing of COTS simula-
tion packages with other COTS simulation packages, we 
need to define further concepts as well. First let us intro-
duce the following notation: 

PM � , means a simulation model M is designed 
and developed in package P. 

A simulation model M at a certain time t can have a col-
lection of simulated entities tE~ , which are instances of the 

abstract simulation entities. n
itiE 0, }{tE~ == , where  

represents the ith entity instance in the model M at time t. 
tiE ,

im
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[ ]n,0∈

 is the collection of attribute values 

of entity instance  in the simulation model M at time t, 
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be the collection of all attribute values that belongs to the 
simulation model M at time t, where, , . 
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In order to achieve interoperability these attributes 

(and their entities) must be accessible outside the simula-
tion package. Therefore we define the access function that 
specifies if an attribute is accessible or not. This function is 
defined as a characteristic function. 
 Definition 2. An access function is defined as  
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This function is defined if  and l . [ nk ,0∈ [ ]km,0∈
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 Definition 3. Let { }1),(:|ˆ

, =∃∈= lkFFAaA t
l

tkt  
be the collection of all accessible attributes at time t.  

A simulation package can be fully open, partly open or 
fully closed. Let us define these concepts using the previ-
ous definitions. 
 Definition 4. A simulation package P is called fully 
open in any simulation time t if PM �∀ , tt AA ~ˆ = . 
 Definition 5. A simulation package P is called fully 
closed in any simulation time t if PM �∀ , Ø. =tÂ
 Definition 6. A simulation package P is called partly 
open in any simulation time t if PM �∀ ,  Ø, ≠tÂ

tt AA ˆ~ ≠ . 
Most of the currently available COTS simulation 

packages are partly open. They do not offer a direct access  
to the attributes, but offer interfaces through which some of 
the model attributes are accessible. These interfaces can be 
defined as a function for each simulation package. 
 Definition 7.  An interface function for accessible at-
tributes is defined as G , where tÂ: →δ δ  is a set of 
references. Based on the set of references using the G func-
tion we can access an attribute at time t.  

If we define NN ×=δ , then  G , 

, simulation time t. This function is de-

fined if , l .  

tANN ˆ: →×
l

tkalkG ,),( =
k ,0∈

∀
[ ] [ ]km,0∈n

There is a coherence between the access function and 
interface function. That is, if the attribute of an entity in-
stance is not accessible then it can not have an interface 
function. While the access function provides a possibility 
to setup the attributes accessible, the interface function 
gives the possibility to access them. 

In a simulation model we can distinguish fixed and 
moving entities. During a simulation run the fixed entities 
are bound to a certain location, while the moving entities 
can move through the model. Usually these moving entities 
(e.g. a product entity) are created and are destroyed by 
bounded entities (e.g. a manufacture or destroy entity).  
 In order to illustrate the previous concepts we take a 
simple example. To start with, we design and develop a 
model M in package P. Suppose we use three abstract enti-
ties: truck, generator and workstation. The model M at simu-
lation time t has four entity instances (E0, E1, E2 and E3): two 
fixed entities (E2 and E3) and two moving entities (E0 and 
E1). The fixed entities are the stations, in our case a genera-
tor (E2) and a workstation (E3). The moving entities are the 
trucks that after generation process move to the workstation. 
Table 1 gives the attribute values of the entities at time t.  
 Based on this information the collection of entity in-
stances are: { }ttttt EEEEE ,3,2,1,0 ,,,~ = . The attribute 
values for each entity are: 
 

}{ 2
,0

1
,0

0
,0,0 ,, tttt aaaA =  

}{ 2
,1

1
,1

0
,1,1 ,, tttt aaaA = , 

{ }0
,22 taA = ,  

{ }0
,33 taA = . 
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Table 1: Attribute Values at Simulation Time t 
Entity Instances Attribute 

0
,0 ta ( velocity of the truck) 

1
,0 ta (type of the truck) E0,t (truck) 

2
,0 ta  (info about the shipment) 

0
,1 ta ( velocity of the truck) 

1
,1 ta (type of the truck) E1,t (truck) 

2
,1 ta (info about the shipment)  

E2,t (create) 0
,2 ta (generator type) 

E3,t (workstation) 0
,3 ta (delay type) 

 
The collection of attributes are: 

 
}{ 0

,3
0
,2

2
,1

1
,1

0
,1

2
,0

1
,0

0
,0 ,,,,,,,~
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Suppose that models can reach only the attributes of the 
moving entities from model M. This can be described by 
specifying the access functions as: 

 
( ) ( ) ( )0,0 0,1 0, 2 1,F F F= =

( ) ( ) ( )1,0 1,1 1,2 1,F F F= = =

=  

 

( )1,0 0F =  and ( )2,0 0.F =  
 

Applying these characteristic function F we can specify the  
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As we can see  Ø and ≠tÂ tt AA ˆ~ ≠  which implies that 
the simulation package P is partly open. The accessible at-
tributes are:  

 
1
,1
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In order to achieve the accessible attributes we can define 
the interface functions  when NN ×=δ :  

 
( ) 0

0,0,0 tG a= , G a , ( ) 1
0,0,1 t= ( ) 2

0,0, 2 tG a= , 

( ) 0
1,1,0 tG a= , G a , ( ) 1

1,1,1 t= ( ) 2
1,1, 2 t=G a . 

 
The implementation of the G function can be done in 

the following way: 
 

( )( , ) ( )G k l getEntity k Attribute l=  
For example, for all the truck entities we can specify 
the following functions: 

 
( )

( )
( )

0
,

1
,

2
,

( ) ,0
( ) ,1
( ) , 2

k t

k t

k t

getTruck k Velocity G k a
getTruck k Type G k a
getTruck k InfoShipment G k a

 = =
 = = 
 = = 

 

 
By creating an entity, a unique identifier (the k num-

ber) is assigned to it. Using this k number and the interface 
functions we can easily access the attribute values of the 
entity. Other models that want to use these entities are con-
fronted with the problem to find out these unique identifi-
ers. In a distributed simulation study a distributed simula-
tion architecture can provide a mechanism (e.g. publish / 
subscribe) for informing the other models about the updat-
ing some of the relevant information (Kuhl et al., 1999).  

In order to make the COTS simulation packages suit-
able for distributed simulation the vendors should make 
them as open as possible by enlarging the collection of all 
accessible attributes set. Furthermore, for all these acces-
sible attributes a large variety of interface functions should 
be provided. 

3 INTEROPERABILITY BETWEEN COTS 
SIMULATION MODELS 

The simulation models designed and developed in COTS 
simulation packages can not achieve a direct interoperation 
with other COTS simulation models. Therefore for those 
packages that are open or partly open a so-called wrapper 
must be developed that takes care of the interoperability with 
the other model. The wrapper provides a two way interaction: 

1. Interactions towards the COTS simulation models 
using the interface functions for accessing the in-
ternal data (e.g. entity instances and their attribute 
values, simulation time, next event in the event 
calendar, etc.) 

2. Interactions with other models or wrappers of the 
models through a distributed simulation architec-
ture using the interoperability functions. 

Most of the COTS simulation packages have possibili-
ties for the modeler to define such a kind of wrapper 
around the simulation model. Figure 1 depicts an architec-
ture where two models are connected through their wrap-
pers to a distributed simulation architecture. The interop-
erability itself between the simulation models is achieved 
by applying a distributed simulation architecture, like HLA 
(Defense Modeling and Simulation Office 1996) or the 
FAMAS Backbone (FAMAS MV2 Backbone Project 
2001). The distributed simulation architecture provides the 
interoperability functions for the simulation wrappers. 
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Simulation Model1

Wrapper1

Distributed Simulation Architecture (e.g. RTI or Backbone)

Simulation Model2

Wrapper2
nGGG SSS ,.....,2,1 nGGG SSS

''' ,.....,2,1

nGGG DDD ,.....,2,1 nGGG DDD ,.....,2,1

 
Figure 1: Connection of Two COTS Simulation Models 

 
We can formalize the wrapper W as a set of interface 

function  offered by the COTS simulation 
package and a collection of interoperability functions 

]  offered by the distributed simulation architec-

ture. Since { }  is provided by the COTS simula-
tion package, therefore is simulation package dependent. In 
the same way { }  interoperability functions are 
dependent on the distributed simulation architecture. 

{ } [ niS iG ,0∈

[ n,0

[ niS iG ,0∈

DiG

]

]

{ }iDiG ∈

[ ]n,0i∈

 Definition 8. An interoperability function is defined 
as δδ →DDG : ,  where Dδ  defines the set of refer-
ences for the distributed simulation architecture and δ  de-
fines the set of references for the accessible elements in the 
COTS simulation package. 

In order to present the concept of the interoperability 
function let us take a very simple example, when a model 
transfers an entity instance to another model (e.g. a truck 
instance is transferred from one model to another one, as 
shown in Figure 2). 

 

Model 1 Model 2
 

Figure 2: Model 1 Transfers a Truck En-
tity to Model 2 

 
The first model registers the truck entity for other 

models through the distributed simulation architecture. 
The other model can subscribe for the entity object if it is 
interested. After the entity instance has achieved a certain 
point  (when must be transferred to the second model) the 
first model publishes the entity to the second one, which 
means that basically sends the entity to the second model. 
This phase is called updating. Then the second model 
tries to discover the entity instance (tries to pick up the 
sent message).  

Using the attribute values of the previous example we 
can define NNND ××=δ , where the first dimension 
defines the action (e.g. register, subscribe, publish, etc.), 
the second one the entity instance and the third one the at- 
 

tribute. Some of the implementation of the GD function can 
be done as follows: 
 

(0, ,0) ( )DG k registerTruck k Velocity=  
(0, ,1) ( )DG k registerTruck k Type=  

(1, ,0) ( )DG k subscribeTruck k Velocity=  
(2, ,0) ( )DG k publishTruck k Velocity=  

(3, ,0) ( )DG k updateTruck k InfoShipment=  

4 INCONSISTENCY PROBLEMS DURING  
THE INTEROPERABILITY PROCESS 

As we stated before, when two simulation models interact 
they might need to transfer the simulation entity from one 
model to the other one. If an entity instance is created in a 
model and is transferred to another one, the receiver model 
must support the instantiation of the type of the transferred 
entity. Figure 2 depicts two models, the first model 
(sender) generates truck entities and transfers them to the 
second model (receiver). Let us represent the abstract truck 
entities as TruckE~ . At simulation time t the sender creates a 

truck entity instance Trucki EE ~∈

TruckE

that is transferred to the 
second model. Due to the fact that the truck entity is trans-
ferred to the second model, both models should provide the 
possibility to instantiate the 

~
abstract entity. Unfor-

tunately, this solution is not supported in most of the cases. 
 If the simulation packages work with similar set of en-
tities, that means that both the sender and receiver can in-
stantiate the same type of entities (e.g. a truck entity). 
However, if the set of entities are different the instantiation 
is very difficult if not impossible. In some of the cases this 
problem can be solved using syntactical analyzers by 
checking the definitions of the entities. For example, in the 
sender model th  abstract entity of the transferred entity is 
a truck entity 

e

TruckE~ . The receiver model might miss the 
truck entity, but might contain an abstract lorry entity 

LorryE~ . The truck and lorry entities are basically the same 
(described by the same attributes), but they are defined by 
a different name. 
 The aim of the syntactical analyzers is to find the syn-
tactical errors and to discover the possible matching be-
tween different types of entities (e.g. TruckE~  and LorryE~ ). 
When the receiver model can not i stantiate any transpor-
tation type entity (e.g. 

n

TruckE~  or LorryE~ ) then the transfer 
of this kind of entities can not occur. Basically in this situa-
tion the receiver is not allowed to subscribe for any trans-
portation entity transfer. 
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Further, in some of the cases the abstract entity names 
are the same but they define different attribute sets (second 
row in Table 2). For example, both the first and second 
models can instantiate an truckE~  abstract entity, but in the 

second model the truckE~  does not include the definition of 
the information about its shipment. Semantic analyzers can 
be applied in order to tackle this problem. 

 
Table 2: Entity and Attributes Relations 

Set of Entity same different missing 
Set of Attributes same different missing 
Type of Attributes same different - 

 
Moreover, if the set of entities and the set of attributes 

are the same we might still be confronted with the problem 
that the type of the attributes differs (third row in Table 2). 
We would like to give an approach for solving the situation 
when the attribute types are different. 

The architecture of Figure 3 depicts two simulation 
models that are connected to each other through a distrib-
uted simulation architecture. The first simulation model 
transfers an entity to the second simulation model. The 
second model is able to instantiate the same abstract entity 
but some of the attribute types of the instantiated trans-
ferred entity differ. Therefore the wrapper of the second 
model creates a temporal entity instance table and maps the 
original attributes of the transferred entity with those that 
the second model supports. Let us take a simple example in 
order to show this mechanism. The example is depicted in 
Figure 4, namely the transfer of a truck entity from the first 
model (M1) to the second model (M2) and then back to the 
first model (M1). Suppose that model 11 PM � (simula-
tion model M1 is designed and developed in package P1), 

22 PM � . Simulation package P1 supports all the at-
tribute types, such as string, real, integer, etc. (e.g. eM-
Plant), but P2 supports only the type real (e.g. Arena). 
Both the P1 and P2 package can instantiate the truck en-
tity. The set of the attributes of the truck entity are the 
same (velocity, type, shipment), and some of them differ 
only in their types. 
 

 

Simulation Model1

Wrapper1

Distributed Simulation Architecture (e.g. RTI or Backbone)

��� 
��� 	� nGGG SSS ,.....,2,1

��� ���� �
nGGG DDD ,.....,2,1

Simulation Model2

��� 
��� 	� nGGG SSS
''' ,.....,2,1Mapping

attribute types

Attibute Attr.
Value

Mapping
Attr. Value

Wrapper2

Temporal Entity Instance

��� ���� �
nGGG DDD ,.....,2,1

 
Figure 3: Architecture for Attribute Type Inconsistency. 
Model 1
(in sim. package1)

Model 2
(in sim. package2)

  
Figure 4: Circular Entity Transfer 

 
Suppose that the truck entity is created in the first 

simulation model with the attribute values Velocity =80, 
Type = ‘carrier’ and Info Shipment = empty (Figure 5). At 
a certain point in time the entity leaves the first model and 
is transferred to the second simulation model. The second 
model is limited compared to the first one in the sense that 
it can only interoperate with numbers. In spite of this limi-
tation we are able to represent also the type and info ship-
ment using numbers. The wrapper of the receiver model 
creates a temporal entity instance table, where it maps the 
original attribute values with numbers (e.g. for the second 
model the “carrier” as an attribute value for the truck entity 
means number 1 and if the truck is “empty” for the info 
shipment attribute means 0). 

After the truck entity is instantiated in the second 
model, it will go through some modifications, in the sense 
that the shipment attribute of the truck is changed. The 
truck is not empty anymore, it will carry a container. This 
action updates the information about the truck shipment in 
the entity instance table. For the second model if the truck 
is filled with a container then the value of shipment is up-
dated from 0 to 12. After some time the filled truck is 
transferred back to the first simulation model. In this case 
the wrapper uses again the temporal entity instance table to 
convert the numbers to their original types. Figure 5 gives 
a clear picture of  this mechanism. 

For some of the COTS simulation packages the 
 interface functions are restricted to return only 

a certain type (e.g. integer) but on the other hand inside the 
simulation model more then a single type can be handled. 
For example Arena (Kelton et al., 2001) can easily expose 
integer numbers (through the EVENT block) but inside the 
package we can use other types as well. When connecting 
to other packages, and using temporal entity instance tables 
we can overcome this restriction. 

{ } [ niS iG ,0∈ ]
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Simulation Model1

Wrapper1

Distributed Simulation Architecture (e.g. RTI or Backbone)

Attr.
Value

Mapping
Attr. Value

Temporal Entity  T1 Instance Table

Send(MsgTy pe (Create Truck T1),
                                Attr(Velocity :80,Ty pe:carrier, Inf .Ship:empty )

Create Truck T1
 Velocity : 80
 Ty pe: carrier
  Inf . Ship: empty

Attribute

Velocity
Ty pe

Inf .Ship.

80
carrier

empty

80
EntID T1 32

1
0

Create Truck T1
 Velocity : 80
 Ty pe: 1 (carrier)
  Inf . Ship: 0 (empty )

Simulation Model2

Wrapper2

Create Truck T1
 Velocity : 80
 Ty pe: carrier
  Inf . Ship: container

Send(MsgTy pe (Create Truck T1),
                                Attr(Velocity :80,Ty pe:carrier, Inf .Ship:container)

Update Truck 32 (T1)
  Inf . Ship to 12 (container)

in Temporal Entity  T1
Instance Table

Wrapper3

Simulation Model3

 
Figure 5: Entity Transfer with Inconsistent Attribute Types 
 
 

5 IMPLEMENTATION 

In this section we would like to present a simple implemen-
tation of the previously discussed concepts. For this reason 
we describe how to connect two simple simulation models, 
which are developed in different simulation packages, 
namely in Arena (Kelton et al., 2001) and in eM-Plant (eM-
Plant official website 2003). These two COTS simulation 
packages are based on different concepts: while Arena is a 
process oriented simulation package, the eM-Plant is an ob-
ject oriented simulation package. Both packages are partly 
open and they do not offer a direct access to the internal 
data, but they offer possibilities to interface them. 

5.1 The Simulation Models 

The simulation models that we use as examples are very sim-
ple as we concentrate fully on the interoperability aspects. 

Figure 6 depicts the Arena model, which creates an in-
stance of a truck entity. This movable entity instance goes 
through two stations, then arrives to a point when is trans-
ferred to the eM-Plant model. 

 

 
Figure 6: The Arena Model 
In eM-Plant model (Figure 7) the truck entity is then 
created, this follows a certain route, picks up a container 
and finally is transferred back to the Arena model. 

 

 
Figure 7: The eM-Plant Model 

5.2 The Distributed Simulation Architecture 

In order to achieve the interoperability between the simula-
tion models we need a distributed simulation architecture 
that provides the run control of the overall system, the data 
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sharing, the time synchronization, etc. The currently exist-
ing standard for the distributed simulation architecture is 
the HLA (Defense Modeling and Simulation Office 1996). 
The HLA uses an  Object Model Template (OMT), that 
provides a common method for recording information and 
establishes the format of key models. Furthermore the 
HLA provides an HLA Interface Specification, which de-
fines Run-Time Infrastructure (RTI) services and identifies 
“callback” functions that each simulation model must pro-
vide. All the facilities needed for the interoperation are in-
cluded in RTI. 

Another possibility is to use a lightweight interopera-
bility framework such as the FAMAS architecture 
(FAMAS, 2001). The FAMAS Simulation Backbone Ar-
chitecture is represented by technical and functional com-
ponents. Whereas the functional components represent the 
simulation models themselves, the technical components 
provide common tasks used by the functional components. 
There are five well-defined subsystems, namely the Run 
Control Subsystem, the Backbone Time Manager Subsys-
tem, the Logging Subsystem and the Visualization Subsys-
tem (Boer et al. 2002). 
 Due to its simplicity and the demand of minimal func-
tionalities for this example we have chosen the FAMAS 
Backbone as a distributed simulation architecture. 

5.3 The Wrappers 

The Arena and eM-Plant are partly open COTS simulation 
packages. There is no direct access to the internal data. 
Theoretically the wrapper consists of two sets of functions: 
a set of interface functions { }  offered by the 
COTS simulation package and a collection of interopera-
bility functions { }  offered by the distributed 
simulation architecture (Figure 1). 

[ niS iG ,0∈

]

]

[ niDiG ,0∈

Due to the fact that Arena and eM-Plant both support 
added functionality through DLLs (Dynamic Link Library) 
and their interface functions can be implemented in a DLL, 
the wrapper is regarded and implemented as a DLL. Unfor-
tunately, we can not consider a common DLL because 
Arena and eM-Plant implement the interface functions in a 
completely different way. However, there are similarities 
in the DLLs because they use the same interoperation func-
tions for each COTS simulation package (if they use the 
same distributed simulation architecture). 

Compared to the standalone COTS simulation models 
the distributed COTS simulation models need some addi-
tions in their modeling design. The Arena model (Figure 6) 
can be run as a standalone simulation model, but in order 
to run it in a distributed way we need an additional model-
ing part (Figure 8). 

The additional part communicates through the wrapper 
with the distributed simulation architecture (in this case the 
FAMAS backbone). It is responsible to connect to the Run 
 

 
Figure 8: Arena Backbone 

 
Control subsystem, to send and to peek for messages using 
a certain time resolution. This is necessary for time syn-
chronization and data transfer. Peeking for messages is 
done because the single-threaded Arena simulation engine 
crashes when data is ‘pushed’ into Arena using a separate 
thread in the DLL. Sending messages is done as follows. 
When an entity reaches an EVENT block this triggers the 
cevent function in the DLL. The cevent is a kind of inter-
face between the model and the outside world. Due to the 
fact that through cevent we can communicate only with 
integers we need a mapping table for the shared data. A 
piece of implementation of the interface function cevent 
is depicted here: 

 
extern “C” void cdecl cevent (SMINT l, SMINT n) 
{ 
 AFX_MANAGE_STATE(AfxGetStaticModuleState()); 
 switch (n) 
  { 
 case 1:  //eventAdvance 
  { 
   SMREAL currentTime = gettnw(); 
   theApp.ArenaAdvance(currentTime); 
   break; 
  } 
 case 2:  //gotoEMPlant 
  { 
   //send create entity to eMPlant 
  theApp.pFamasMessageHandler-> 
  sendFamasMessage(…); 
  } 
 case 3:  //eventPeek: 
  { 
  MessageType* pMessage =  
   theApp.PeekFamasMessage(); 
  if (pMessage!=NULL) 
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  { 
   if ((pMessage->sender ==  
    “eMPlantModel”) &&  
     (pMessage->type== “NEWTRUCK”)) 
   { 
   … //process the message (create 
     //truck) 
   } 
  } 
} 

 
The eM-Plant model needs an extension as well in the 
modeling design if it would like it to participate in distrib-
uted simulation. We can run the model (Figure 7) as a 
standalone simulation model, but in order to make it dis-
tributed we need the additional model component depicted 
in Figure 9.  

 

 
Figure 9: eM-Plant Backbone Module 

 
Connecting eM-Plant models to the backbone is more 
flexible than connecting Arena models because from eM-
Plant environment we can trigger any DLL functions di-
rectly (there is no need for something like the EVENT 
module) at any time. Furthermore, in contrast with Arena 
eM-Plant can transfer not only integers but also other types 
(e.g. string). The following DLL function can be directly 
called from the eM-Plant environment. 

 
//sending a message from eM-Plant 
extern “C” __declspec(dllexport) void Send-
FamasMessage(UF_Value *ret, UF_Value *arg) 
{ 
… 
theApp.pFamasMessageHandler-> 
  SendFamasMessage(parameters); 
theApp.pFamasMessageHandler->checkMessages(); 
… 
} 
 

Both the Arena and eM-Plant use the general interoperabil-
ity functions { } ] , such as PeekMessage, Send-
Message, checkMessage, nextEvent, etc., which are dis-
tributed simulation architecture dependent.  

[ niDiG ,0∈

6 DISCUSSION AND CONCLUSIONS 

Coupling two very simple COTS simulation models in a 
distributed way does not make sense because the problem 
they solve can be designed and developed in a couple of 
minutes in one COTS simulation package. Distributed 
simulation plays an important role in the case of complex 
simulation models, where for example different organiza-
tions are involved that on the one hand try to hide their 
business logic from the other parties, but, on the other 
hand, their system are dependent on each other. The differ-
ent organizations are responsible for designing and devel-
oping their simulation models and offering the interfaces 
(for data transfer) for other parties. 

Coupling standalone COTS simulation models without 
any modification is impossible due to the basic design of 
the model and package limitations. If a standalone simula-
tion model wants to participate in a distributed simulation 
study slight modifications (dependent on the complexity of 
the model and the distributed simulation architecture) are 
needed. Furthermore various consistency checking are 
needed with other simulation models (e.g. syntactic, se-
mantic, pragmatic analyzes). The modeler is also responsi-
ble on developing the wrappers (e.g. as DLLs) for the 
simulation models. If the interoperability functions offered 
by the distributed simulation architectures are transparent 
and flexible that will help a lot for the modeler.  In the 
same way the interface functions offered by the COTS 
simulation models must be as transparent and flexible as 
possible. 
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