
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

DISTRIBUTED SIMULATION WITH COTS SIMULATION PACKAGES

Csaba Attila Boer

Erasmus University of Rotterdam
Faculty of Economics

Dept. of Computer Science
P.O. Box 1738

3000 DR Rotterdam, THE NETHERLANDS

 Alexander Verbraeck

Delft University of Technology
Faculty of Technology, Policy and Management

System Engineering Department
P.O. Box 5105

2600 GA Delft, THE NETHERLANDS

ABSTRACT

Connecting COTS (Commercial-off-the-Self) simulation
packages entails various difficulties. First of all, commer-
cially available simulation packages hide the access to
some internal data that is needed to connect to other simu-
lation models in the distributed simulation study. Next, the
data sharing between simulation models is complicated. In
order to carry out distributed simulation studies applying
COTS simulation packages, we have to exactly define the
interfacing and data transfer mechanisms. In this paper we
present a theoretical description of different solutions for
interfacing and transferring data between various simula-
tion models. These mechanisms have been implemented
and tested, and applied in a project in order to prove their
practical usage.

1 INTRODUCTION

Large-scale complex simulation studies often involve dif-
ferent organizations; consequently these simulation studies
can be considered as inter-organizational studies. Usually
each organization develops its own simulation model of its
system using a COTS simulation package that fits its activ-
ity (e.g. manufacturing, transportation, supply-chain, etc.).
When carrying out a study that looks at joint or related ac-
tivities of more than one organization, and we would like
to reuse the already developed models, the individual
simulation models of their systems will also need intercon-
nections (e.g. in a supply chain simulation study a factory
simulation model has a relation with a warehouse or dis-
tributor simulation model, namely the product and cash
flow). In order to improve the performance of the whole
system we would like to analyze the overall behavior of the
inter-organizational system. To achieve this we must ana-
lyze the inter-organizational system as a whole. In this way
the whole simulation model of a large-scale complex sys-
tem with the several involved organizations is considered
as a collection of coupled simulation models, where each

simulation model represents a system of one organization.
This leads to a distributed simulation study. In this paper
we aim to analyze the various possibilities of interopera-
tion between the simulation models that have been devel-
oped in different COTS simulation packages.

The interoperability in distributed simulation involves
at least the data transfer and the time synchronization be-
tween the simulation models. The data transfer itself en-
tails actions related to:

•

•

the exchange of an occurrence (e.g. signal) or an
event with other simulation models,
simulated entity transfer from one simulation
model to another.

In the HLA (High Level Architecture) (Defense Mod-
eling and Simulation Office 1996) terminology the data
that is transferred for the first action is called an interaction
(that can carry a set of parameters), while the data trans-
ferred for the second action is called an object (that carries
attributes of the entity objects). A detailed description of
different time synchronization mechanisms can be found in
(Fujimoto 2000).

In this paper we would like to concentrate mainly on
the data transfer. Before being transferred to other models,
the data must be accessed. The way of accessing data in
COTS simulation packages is usually restricted. In section
2 we investigate the possible ways of accessing data in
simulation models developed in COTS simulation pack-
ages and introduce the concepts of interface functions. Sec-
tion 3 describes the concept of the interoperability func-
tion, which together with the interface function forms a
wrapper that makes possible to connect the COTS simula-
tion model to a distributed simulation architecture. Section
4 focuses on the problems that might occur when we try to
connect two COTS simulation packages, specially focus on
the situation when the type of the entity attributes differ.
Based on the theoretical description given in Section 2, 3
and 4, Section 5 includes the practical usage of these con-
cepts, and finally Section 6 concludes.

Boer and Verbraeck

2 INTERFACING COTS
SIMULATION MODELS

The concept of discrete event simulation modeling is well
defined by the DEVS formalism (Zeigler et al., 2000). This
is an impressive result and it provides an accepted frame-
work and theoretical foundation in the area of simulation.
Most of the COTS discrete event simulation packages are
based on this concept.

Although the already existing concepts give us a good
starting point to specify the interfacing of COTS simula-
tion packages with other COTS simulation packages, we
need to define further concepts as well. First let us intro-
duce the following notation:

PM � , means a simulation model M is designed
and developed in package P.

A simulation model M at a certain time t can have a col-
lection of simulated entities tE~ , which are instances of the

abstract simulation entities. n
itiE 0, }{tE~ == , where

represents the ith entity instance in the model M at time t.
tiE ,

im
j

j
titi aA 0,, }{ ==

tiE ,

[]n,0∈

 is the collection of attribute values

of entity instance in the simulation model M at time t,

where, i , and , 0≥n .0≥im

 Definition 1. Let

be the collection of all attribute values that belongs to the
simulation model M at time t, where, , .

[] []imjni
j
ti

n

i
tit aAA ,0,,0,

0
, }{~

∈∈
=

==∪

0≥n 0≥im
In order to achieve interoperability these attributes

(and their entities) must be accessible outside the simula-
tion package. Therefore we define the access function that
specifies if an attribute is accessible or not. This function is
defined as a characteristic function.
 Definition 2. An access function is defined as

{ }: 0F N N× →

,

,

l
k t
l
k t

if a is not access
if a is accessible

,1

]

 (,)
ible at time t

F k l
at time t

=
0,
1,

 9

This function is defined if and l . [nk ,0∈ []km,0∈

~
 Definition 3. Let { }1),(:|ˆ

, =∃∈= lkFFAaA t
l

tkt
be the collection of all accessible attributes at time t.

A simulation package can be fully open, partly open or
fully closed. Let us define these concepts using the previ-
ous definitions.
 Definition 4. A simulation package P is called fully
open in any simulation time t if PM �∀ , tt AA ~ˆ = .
 Definition 5. A simulation package P is called fully
closed in any simulation time t if PM �∀ , Ø. =tÂ
 Definition 6. A simulation package P is called partly
open in any simulation time t if PM �∀ , Ø, ≠tÂ

tt AA ˆ~ ≠ .
Most of the currently available COTS simulation

packages are partly open. They do not offer a direct access
to the attributes, but offer interfaces through which some of
the model attributes are accessible. These interfaces can be
defined as a function for each simulation package.
 Definition 7. An interface function for accessible at-
tributes is defined as G , where tÂ: →δ δ is a set of
references. Based on the set of references using the G func-
tion we can access an attribute at time t.

If we define NN ×=δ , then G ,

, simulation time t. This function is de-

fined if , l .

tANN ˆ: →×
l

tkalkG ,),(=
k ,0∈

∀
[] []km,0∈n

There is a coherence between the access function and
interface function. That is, if the attribute of an entity in-
stance is not accessible then it can not have an interface
function. While the access function provides a possibility
to setup the attributes accessible, the interface function
gives the possibility to access them.

In a simulation model we can distinguish fixed and
moving entities. During a simulation run the fixed entities
are bound to a certain location, while the moving entities
can move through the model. Usually these moving entities
(e.g. a product entity) are created and are destroyed by
bounded entities (e.g. a manufacture or destroy entity).
 In order to illustrate the previous concepts we take a
simple example. To start with, we design and develop a
model M in package P. Suppose we use three abstract enti-
ties: truck, generator and workstation. The model M at simu-
lation time t has four entity instances (E0, E1, E2 and E3): two
fixed entities (E2 and E3) and two moving entities (E0 and
E1). The fixed entities are the stations, in our case a genera-
tor (E2) and a workstation (E3). The moving entities are the
trucks that after generation process move to the workstation.
Table 1 gives the attribute values of the entities at time t.
 Based on this information the collection of entity in-
stances are: { }ttttt EEEEE ,3,2,1,0 ,,,~ = . The attribute
values for each entity are:

}{ 2
,0

1
,0

0
,0,0 ,, tttt aaaA =

}{ 2
,1

1
,1

0
,1,1 ,, tttt aaaA = ,

{ }0
,22 taA = ,

{ }0
,33 taA = .

Boer and Verbraeck

Table 1: Attribute Values at Simulation Time t
Entity Instances Attribute

0
,0 ta (velocity of the truck)

1
,0 ta (type of the truck) E0,t (truck)

2
,0 ta (info about the shipment)

0
,1 ta (velocity of the truck)

1
,1 ta (type of the truck) E1,t (truck)

2
,1 ta (info about the shipment)

E2,t (create) 0
,2 ta (generator type)

E3,t (workstation) 0
,3 ta (delay type)

The collection of attributes are:

}{ 0

,3
0
,2

2
,1

1
,1

0
,1

2
,0

1
,0

0
,0 ,,,,,,,~

ttttttttt aaaaaaaaA =

Suppose that models can reach only the attributes of the
moving entities from model M. This can be described by
specifying the access functions as:

() () ()0,0 0,1 0, 2 1,F F F= =

() () ()1,0 1,1 1,2 1,F F F= = =

=

()1,0 0F = and ()2,0 0.F =

Applying these characteristic function F we can specify the

{ 2
,1

1
,1

0
,1

2
,0

1
,0

0
,0 ,,,,,ˆ

ttttttt aaaaaaA = }.

As we can see Ø and ≠tÂ tt AA ˆ~ ≠ which implies that
the simulation package P is partly open. The accessible at-
tributes are:

1
,1

0
,1

2
,0

1
,0

0
,0 ,,,, ttttt aaaaa and a . 2

,1 t

In order to achieve the accessible attributes we can define
the interface functions when NN ×=δ :

() 0

0,0,0 tG a= , G a , () 1
0,0,1 t= () 2

0,0, 2 tG a= ,

() 0
1,1,0 tG a= , G a , () 1

1,1,1 t= () 2
1,1, 2 t=G a .

The implementation of the G function can be done in

the following way:

()(,) ()G k l getEntity k Attribute l=
For example, for all the truck entities we can specify
the following functions:

()

()
()

0
,

1
,

2
,

() ,0
() ,1
() , 2

k t

k t

k t

getTruck k Velocity G k a
getTruck k Type G k a
getTruck k InfoShipment G k a

 = =
 = =
 = =

By creating an entity, a unique identifier (the k num-

ber) is assigned to it. Using this k number and the interface
functions we can easily access the attribute values of the
entity. Other models that want to use these entities are con-
fronted with the problem to find out these unique identifi-
ers. In a distributed simulation study a distributed simula-
tion architecture can provide a mechanism (e.g. publish /
subscribe) for informing the other models about the updat-
ing some of the relevant information (Kuhl et al., 1999).

In order to make the COTS simulation packages suit-
able for distributed simulation the vendors should make
them as open as possible by enlarging the collection of all
accessible attributes set. Furthermore, for all these acces-
sible attributes a large variety of interface functions should
be provided.

3 INTEROPERABILITY BETWEEN COTS
SIMULATION MODELS

The simulation models designed and developed in COTS
simulation packages can not achieve a direct interoperation
with other COTS simulation models. Therefore for those
packages that are open or partly open a so-called wrapper
must be developed that takes care of the interoperability with
the other model. The wrapper provides a two way interaction:

1. Interactions towards the COTS simulation models
using the interface functions for accessing the in-
ternal data (e.g. entity instances and their attribute
values, simulation time, next event in the event
calendar, etc.)

2. Interactions with other models or wrappers of the
models through a distributed simulation architec-
ture using the interoperability functions.

Most of the COTS simulation packages have possibili-
ties for the modeler to define such a kind of wrapper
around the simulation model. Figure 1 depicts an architec-
ture where two models are connected through their wrap-
pers to a distributed simulation architecture. The interop-
erability itself between the simulation models is achieved
by applying a distributed simulation architecture, like HLA
(Defense Modeling and Simulation Office 1996) or the
FAMAS Backbone (FAMAS MV2 Backbone Project
2001). The distributed simulation architecture provides the
interoperability functions for the simulation wrappers.

Boer and Verbraeck

Simulation Model1

Wrapper1

Distributed Simulation Architecture (e.g. RTI or Backbone)

Simulation Model2

Wrapper2
nGGG SSS ,.....,2,1 nGGG SSS

''' ,.....,2,1

nGGG DDD ,.....,2,1 nGGG DDD ,.....,2,1

Figure 1: Connection of Two COTS Simulation Models

We can formalize the wrapper W as a set of interface

function offered by the COTS simulation
package and a collection of interoperability functions

] offered by the distributed simulation architec-

ture. Since { } is provided by the COTS simula-
tion package, therefore is simulation package dependent. In
the same way { } interoperability functions are
dependent on the distributed simulation architecture.

{ } [niS iG ,0∈

[n,0

[niS iG ,0∈

DiG

]

]

{ }iDiG ∈

[]n,0i∈

 Definition 8. An interoperability function is defined
as δδ →DDG : , where Dδ defines the set of refer-
ences for the distributed simulation architecture and δ de-
fines the set of references for the accessible elements in the
COTS simulation package.

In order to present the concept of the interoperability
function let us take a very simple example, when a model
transfers an entity instance to another model (e.g. a truck
instance is transferred from one model to another one, as
shown in Figure 2).

Model 1 Model 2

Figure 2: Model 1 Transfers a Truck En-
tity to Model 2

The first model registers the truck entity for other

models through the distributed simulation architecture.
The other model can subscribe for the entity object if it is
interested. After the entity instance has achieved a certain
point (when must be transferred to the second model) the
first model publishes the entity to the second one, which
means that basically sends the entity to the second model.
This phase is called updating. Then the second model
tries to discover the entity instance (tries to pick up the
sent message).

Using the attribute values of the previous example we
can define NNND ××=δ , where the first dimension
defines the action (e.g. register, subscribe, publish, etc.),
the second one the entity instance and the third one the at-

tribute. Some of the implementation of the GD function can
be done as follows:

(0, ,0) ()DG k registerTruck k Velocity=
(0, ,1) ()DG k registerTruck k Type=

(1, ,0) ()DG k subscribeTruck k Velocity=
(2, ,0) ()DG k publishTruck k Velocity=

(3, ,0) ()DG k updateTruck k InfoShipment=

4 INCONSISTENCY PROBLEMS DURING
THE INTEROPERABILITY PROCESS

As we stated before, when two simulation models interact
they might need to transfer the simulation entity from one
model to the other one. If an entity instance is created in a
model and is transferred to another one, the receiver model
must support the instantiation of the type of the transferred
entity. Figure 2 depicts two models, the first model
(sender) generates truck entities and transfers them to the
second model (receiver). Let us represent the abstract truck
entities as TruckE~ . At simulation time t the sender creates a

truck entity instance Trucki EE ~∈

TruckE

that is transferred to the
second model. Due to the fact that the truck entity is trans-
ferred to the second model, both models should provide the
possibility to instantiate the

~
abstract entity. Unfor-

tunately, this solution is not supported in most of the cases.
 If the simulation packages work with similar set of en-
tities, that means that both the sender and receiver can in-
stantiate the same type of entities (e.g. a truck entity).
However, if the set of entities are different the instantiation
is very difficult if not impossible. In some of the cases this
problem can be solved using syntactical analyzers by
checking the definitions of the entities. For example, in the
sender model th abstract entity of the transferred entity is
a truck entity

e

TruckE~ . The receiver model might miss the
truck entity, but might contain an abstract lorry entity

LorryE~ . The truck and lorry entities are basically the same
(described by the same attributes), but they are defined by
a different name.
 The aim of the syntactical analyzers is to find the syn-
tactical errors and to discover the possible matching be-
tween different types of entities (e.g. TruckE~ and LorryE~).
When the receiver model can not i stantiate any transpor-
tation type entity (e.g.

n

TruckE~ or LorryE~) then the transfer
of this kind of entities can not occur. Basically in this situa-
tion the receiver is not allowed to subscribe for any trans-
portation entity transfer.

Boer and Verbraeck

Further, in some of the cases the abstract entity names
are the same but they define different attribute sets (second
row in Table 2). For example, both the first and second
models can instantiate an truckE~ abstract entity, but in the

second model the truckE~ does not include the definition of
the information about its shipment. Semantic analyzers can
be applied in order to tackle this problem.

Table 2: Entity and Attributes Relations

Set of Entity same different missing
Set of Attributes same different missing
Type of Attributes same different -

Moreover, if the set of entities and the set of attributes

are the same we might still be confronted with the problem
that the type of the attributes differs (third row in Table 2).
We would like to give an approach for solving the situation
when the attribute types are different.

The architecture of Figure 3 depicts two simulation
models that are connected to each other through a distrib-
uted simulation architecture. The first simulation model
transfers an entity to the second simulation model. The
second model is able to instantiate the same abstract entity
but some of the attribute types of the instantiated trans-
ferred entity differ. Therefore the wrapper of the second
model creates a temporal entity instance table and maps the
original attributes of the transferred entity with those that
the second model supports. Let us take a simple example in
order to show this mechanism. The example is depicted in
Figure 4, namely the transfer of a truck entity from the first
model (M1) to the second model (M2) and then back to the
first model (M1). Suppose that model 11 PM � (simula-
tion model M1 is designed and developed in package P1),

22 PM � . Simulation package P1 supports all the at-
tribute types, such as string, real, integer, etc. (e.g. eM-
Plant), but P2 supports only the type real (e.g. Arena).
Both the P1 and P2 package can instantiate the truck en-
tity. The set of the attributes of the truck entity are the
same (velocity, type, shipment), and some of them differ
only in their types.

Simulation Model1

Wrapper1

Distributed Simulation Architecture (e.g. RTI or Backbone)

���
��� 	� nGGG SSS ,.....,2,1

��� ���� �
nGGG DDD ,.....,2,1

Simulation Model2

���
��� 	� nGGG SSS
''' ,.....,2,1Mapping

attribute types

Attibute Attr.
Value

Mapping
Attr. Value

Wrapper2

Temporal Entity Instance

��� ���� �
nGGG DDD ,.....,2,1

Figure 3: Architecture for Attribute Type Inconsistency.
Model 1
(in sim. package1)

Model 2
(in sim. package2)

Figure 4: Circular Entity Transfer

Suppose that the truck entity is created in the first

simulation model with the attribute values Velocity =80,
Type = ‘carrier’ and Info Shipment = empty (Figure 5). At
a certain point in time the entity leaves the first model and
is transferred to the second simulation model. The second
model is limited compared to the first one in the sense that
it can only interoperate with numbers. In spite of this limi-
tation we are able to represent also the type and info ship-
ment using numbers. The wrapper of the receiver model
creates a temporal entity instance table, where it maps the
original attribute values with numbers (e.g. for the second
model the “carrier” as an attribute value for the truck entity
means number 1 and if the truck is “empty” for the info
shipment attribute means 0).

After the truck entity is instantiated in the second
model, it will go through some modifications, in the sense
that the shipment attribute of the truck is changed. The
truck is not empty anymore, it will carry a container. This
action updates the information about the truck shipment in
the entity instance table. For the second model if the truck
is filled with a container then the value of shipment is up-
dated from 0 to 12. After some time the filled truck is
transferred back to the first simulation model. In this case
the wrapper uses again the temporal entity instance table to
convert the numbers to their original types. Figure 5 gives
a clear picture of this mechanism.

For some of the COTS simulation packages the
 interface functions are restricted to return only

a certain type (e.g. integer) but on the other hand inside the
simulation model more then a single type can be handled.
For example Arena (Kelton et al., 2001) can easily expose
integer numbers (through the EVENT block) but inside the
package we can use other types as well. When connecting
to other packages, and using temporal entity instance tables
we can overcome this restriction.

{ } [niS iG ,0∈]

Boer and Verbraeck

Simulation Model1

Wrapper1

Distributed Simulation Architecture (e.g. RTI or Backbone)

Attr.
Value

Mapping
Attr. Value

Temporal Entity T1 Instance Table

Send(MsgTy pe (Create Truck T1),
 Attr(Velocity :80,Ty pe:carrier, Inf .Ship:empty)

Create Truck T1
 Velocity : 80
 Ty pe: carrier
 Inf . Ship: empty

Attribute

Velocity
Ty pe

Inf .Ship.

80
carrier

empty

80
EntID T1 32

1
0

Create Truck T1
 Velocity : 80
 Ty pe: 1 (carrier)
 Inf . Ship: 0 (empty)

Simulation Model2

Wrapper2

Create Truck T1
 Velocity : 80
 Ty pe: carrier
 Inf . Ship: container

Send(MsgTy pe (Create Truck T1),
 Attr(Velocity :80,Ty pe:carrier, Inf .Ship:container)

Update Truck 32 (T1)
 Inf . Ship to 12 (container)

in Temporal Entity T1
Instance Table

Wrapper3

Simulation Model3

Figure 5: Entity Transfer with Inconsistent Attribute Types

5 IMPLEMENTATION

In this section we would like to present a simple implemen-
tation of the previously discussed concepts. For this reason
we describe how to connect two simple simulation models,
which are developed in different simulation packages,
namely in Arena (Kelton et al., 2001) and in eM-Plant (eM-
Plant official website 2003). These two COTS simulation
packages are based on different concepts: while Arena is a
process oriented simulation package, the eM-Plant is an ob-
ject oriented simulation package. Both packages are partly
open and they do not offer a direct access to the internal
data, but they offer possibilities to interface them.

5.1 The Simulation Models

The simulation models that we use as examples are very sim-
ple as we concentrate fully on the interoperability aspects.

Figure 6 depicts the Arena model, which creates an in-
stance of a truck entity. This movable entity instance goes
through two stations, then arrives to a point when is trans-
ferred to the eM-Plant model.

Figure 6: The Arena Model
In eM-Plant model (Figure 7) the truck entity is then
created, this follows a certain route, picks up a container
and finally is transferred back to the Arena model.

Figure 7: The eM-Plant Model

5.2 The Distributed Simulation Architecture

In order to achieve the interoperability between the simula-
tion models we need a distributed simulation architecture
that provides the run control of the overall system, the data

Boer and Verbraeck

sharing, the time synchronization, etc. The currently exist-
ing standard for the distributed simulation architecture is
the HLA (Defense Modeling and Simulation Office 1996).
The HLA uses an Object Model Template (OMT), that
provides a common method for recording information and
establishes the format of key models. Furthermore the
HLA provides an HLA Interface Specification, which de-
fines Run-Time Infrastructure (RTI) services and identifies
“callback” functions that each simulation model must pro-
vide. All the facilities needed for the interoperation are in-
cluded in RTI.

Another possibility is to use a lightweight interopera-
bility framework such as the FAMAS architecture
(FAMAS, 2001). The FAMAS Simulation Backbone Ar-
chitecture is represented by technical and functional com-
ponents. Whereas the functional components represent the
simulation models themselves, the technical components
provide common tasks used by the functional components.
There are five well-defined subsystems, namely the Run
Control Subsystem, the Backbone Time Manager Subsys-
tem, the Logging Subsystem and the Visualization Subsys-
tem (Boer et al. 2002).
 Due to its simplicity and the demand of minimal func-
tionalities for this example we have chosen the FAMAS
Backbone as a distributed simulation architecture.

5.3 The Wrappers

The Arena and eM-Plant are partly open COTS simulation
packages. There is no direct access to the internal data.
Theoretically the wrapper consists of two sets of functions:
a set of interface functions { } offered by the
COTS simulation package and a collection of interopera-
bility functions { } offered by the distributed
simulation architecture (Figure 1).

[niS iG ,0∈

]

]

[niDiG ,0∈

Due to the fact that Arena and eM-Plant both support
added functionality through DLLs (Dynamic Link Library)
and their interface functions can be implemented in a DLL,
the wrapper is regarded and implemented as a DLL. Unfor-
tunately, we can not consider a common DLL because
Arena and eM-Plant implement the interface functions in a
completely different way. However, there are similarities
in the DLLs because they use the same interoperation func-
tions for each COTS simulation package (if they use the
same distributed simulation architecture).

Compared to the standalone COTS simulation models
the distributed COTS simulation models need some addi-
tions in their modeling design. The Arena model (Figure 6)
can be run as a standalone simulation model, but in order
to run it in a distributed way we need an additional model-
ing part (Figure 8).

The additional part communicates through the wrapper
with the distributed simulation architecture (in this case the
FAMAS backbone). It is responsible to connect to the Run

Figure 8: Arena Backbone

Control subsystem, to send and to peek for messages using
a certain time resolution. This is necessary for time syn-
chronization and data transfer. Peeking for messages is
done because the single-threaded Arena simulation engine
crashes when data is ‘pushed’ into Arena using a separate
thread in the DLL. Sending messages is done as follows.
When an entity reaches an EVENT block this triggers the
cevent function in the DLL. The cevent is a kind of inter-
face between the model and the outside world. Due to the
fact that through cevent we can communicate only with
integers we need a mapping table for the shared data. A
piece of implementation of the interface function cevent
is depicted here:

extern “C” void cdecl cevent (SMINT l, SMINT n)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 switch (n)
 {
 case 1: //eventAdvance
 {
 SMREAL currentTime = gettnw();
 theApp.ArenaAdvance(currentTime);
 break;
 }
 case 2: //gotoEMPlant
 {
 //send create entity to eMPlant
 theApp.pFamasMessageHandler->
 sendFamasMessage(…);
 }
 case 3: //eventPeek:
 {
 MessageType* pMessage =
 theApp.PeekFamasMessage();
 if (pMessage!=NULL)

Boer and Verbraeck

 {
 if ((pMessage->sender ==
 “eMPlantModel”) &&
 (pMessage->type== “NEWTRUCK”))
 {
 … //process the message (create
 //truck)
 }
 }
}

The eM-Plant model needs an extension as well in the
modeling design if it would like it to participate in distrib-
uted simulation. We can run the model (Figure 7) as a
standalone simulation model, but in order to make it dis-
tributed we need the additional model component depicted
in Figure 9.

Figure 9: eM-Plant Backbone Module

Connecting eM-Plant models to the backbone is more
flexible than connecting Arena models because from eM-
Plant environment we can trigger any DLL functions di-
rectly (there is no need for something like the EVENT
module) at any time. Furthermore, in contrast with Arena
eM-Plant can transfer not only integers but also other types
(e.g. string). The following DLL function can be directly
called from the eM-Plant environment.

//sending a message from eM-Plant
extern “C” __declspec(dllexport) void Send-
FamasMessage(UF_Value *ret, UF_Value *arg)
{
…
theApp.pFamasMessageHandler->
 SendFamasMessage(parameters);
theApp.pFamasMessageHandler->checkMessages();
…
}

Both the Arena and eM-Plant use the general interoperabil-
ity functions { }] , such as PeekMessage, Send-
Message, checkMessage, nextEvent, etc., which are dis-
tributed simulation architecture dependent.

[niDiG ,0∈

6 DISCUSSION AND CONCLUSIONS

Coupling two very simple COTS simulation models in a
distributed way does not make sense because the problem
they solve can be designed and developed in a couple of
minutes in one COTS simulation package. Distributed
simulation plays an important role in the case of complex
simulation models, where for example different organiza-
tions are involved that on the one hand try to hide their
business logic from the other parties, but, on the other
hand, their system are dependent on each other. The differ-
ent organizations are responsible for designing and devel-
oping their simulation models and offering the interfaces
(for data transfer) for other parties.

Coupling standalone COTS simulation models without
any modification is impossible due to the basic design of
the model and package limitations. If a standalone simula-
tion model wants to participate in a distributed simulation
study slight modifications (dependent on the complexity of
the model and the distributed simulation architecture) are
needed. Furthermore various consistency checking are
needed with other simulation models (e.g. syntactic, se-
mantic, pragmatic analyzes). The modeler is also responsi-
ble on developing the wrappers (e.g. as DLLs) for the
simulation models. If the interoperability functions offered
by the distributed simulation architectures are transparent
and flexible that will help a lot for the modeler. In the
same way the interface functions offered by the COTS
simulation models must be as transparent and flexible as
possible.

REFERENCES

Boer, C. A., A. Verbraeck, and H.P.M. Veeke. 2002. Dis-
tributed Simulation of Complex Systems: Application
in Container Handling. Proceedings of SISO European
Simulation Interoperability Workshop, Harrow, Mid-
dlesex, UK, June 24-27.

Defense Modeling and Simulation Office. 1996. HLA
specification.

Kelton, W. D., R. P. Sadowski, and D. A. Sadowski. 2001.
Simulation with Arena, McGraw-Hill.

Kuhl, F., R. Weatherly, and J. Dahmann 1999. Creating
Computer Simulation Systems. An Introduction to the
High Level Architecture, Prentice Hall.

eM-Plant official website. Technomatics Technology Ltd.
<www.emplant.de/simulation.html> [ac-
cessed March 28, 2003]

FAMAS MV2 Backbone Project. 2001. Research Program
FAMAS Maasvlakte II Project 0.2 - Simulation Back-

http://www.emplant.de/simulation.html
http://www.emplant.de/simulation.html

Boer and Verbraeck

bone., Delft, The Netherlands. Available online via
<www.famas.tudelft.nl> [accessed March 30,
2003].

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems. John Wiley & Sons,Inc., New York.

Law, A. M. and W. D. Kelton, 2000. Simulation Modeling
and Analysis, McGraw-Hill.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory of
Modeling and Simulation. Academic Press, San Diego.

AUTHOR BIOGRAPHIES

CSABA ATTILA BOER is a Ph.D. student at the De-
partment of Computer Science of the Faculty of Economics
at Erasmus University Rotterdam, The Netherlands. He re-
ceived his M.Sc. degree in Computer Science at the Babes
Bolyai University, Cluj Napoca, Romania. Since April
2001 he has been involved in FAMAS MV2 Simulation
Backbone project. His research focuses on Multi-Level
Distributed Simulation of Complex System. His email ad-
dress is <acboer@few.eur.nl>.

ALEXANDER VERBRAECK is an Associate Professor
in the Systems Engineering Group of the Faculty of Tech-
nology, Policy and Management of Delft University of
Technology, and part-time research professor in supply
chain management at the R.H. Smith School of Business of
the University of Maryland. He is a specialist in discrete
event simulation both real-time analysis and control of
complex transportation systems and for modeling business
systems. His current research focus is on the development
of generic libraries of distributed object oriented simula-
tion building blocks and the development of Java-based
simulation languages for Web-services . His email address
is <a.verbraeck@tbm.tudelft.nl>.

mailto:acboer@few.eur.nl
mailto:a.verbraeck@tbm.tudelft.nl
http://www.famas.tudelft.nl
mailto:acboer@few.eur.nl
mailto:a.verbraeck@tbm.tudelft.nl

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 829
	02: 830
	03: 831
	04: 832
	05: 833
	06: 834
	07: 835
	08: 836
	09: 837

