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ABSTRACT

Simulations are used extensively for studying artificial in-
telligence. However, the simulation technology in use by
and designed for the artificial intelligence community of-
ten fails to take advantage of much of the work by the
larger simulation community to produce distributed, repeat-
able, and efficient simulations. We present the new system
known asSystem for Parallel Agent Discrete Event Sim-
ulator, (SPADE$, which is a simulation environment for
the artificial intelligence communitySPADESfocuses on
the agentas a fundamental simulation component. The
thinking timeof an agent is tracked and reflected in the
results of the agents’ actions by usindgSaftware—in—-the—
Loop mechanism.SPADESsupports distributed execution
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existing work in the parallel and distributed simulation com-
munity for designing distributed, efficient, and repeatable
simulations.

This paper demonstrates the application of well-known
parallel and distributed simulation methods for time man-
agement to agent—based distributed simulation for artificial
intelligence research. In addition, we introduce the con-
cept of Software—in—the—Loopimulation, which we have
found to be particularly useful for multi—agent artificial in-
telligence research. Owoftware—in—the—Loogechnique
provides for the tracking of the computation time used by
those agents, and including that so—callieidk timein the
simulation. By taking advantage of prior work in parallel
discrete event simulation, thBPADESsystem eases the
design of a simulation by hiding many of the system details

of the agents across multiple systems, while at the same required to handle distributed simulation in an efficient and

time producing repeatable results regardless of network or
system load. We discuss the desigrs&#ADESn detail and
give experimental resultsSPADESs flexible enough for a
variety of application domains in the artificial intelligence
research community.

1 INTRODUCTION

Simulations are an accepted and widely used method for
studying artificial intelligence techniques for multi—agent
interaction. By simulating the environment and agent ac-

reproducible way.

2 RELATED WORK

The problem of creating efficient simulations has attracted
substantial attention for decades from a wide range of
sources, including the Al community, scientific computing,
computer networking, industry, and government. While
the notion of softwareagentshas been known for some
time, the agent-based or agent-oriented simulation methods
are relatively new in the simulation community. Much of

tions, a researcher can systematically tune the parameters ofthe groundwork for agent—based simulations is by Uhrma-
the environment and execute the large number of trials often cher (Uhrmacher 1996, Uhrmacher 1997, Uhrmacher and
required for machine learning. However, commonly used Schattenberg 1998, Uhrmacher and Gugler 2000, Uhrma-
simulation techniques often do not address the special con- cher, Tyschler, and Tyschler 1997, Uhrmacher and Krahmer
cerns of the artificial intelligence community. In particular, 2001). For example, thtamessystem (Uhrmacher and Gu-
previously used simulation environments do not track and gler 2000) is a Java—based simulation environment for agent
model the computation time of an agent in response to sensedmodeling, similar in concept to ol PADESsimulator.
environmental events. Existing simulation methods used in Agent—based simulation methods have existed for much
artificial intelligence research are often non-repeatable, be- longer in the artificial intelligence community. Many Al
ing sensitive to network and system loads at the time of the simulation environments are quite specific to the domain for
simulation execution. Finally, many simulators created in which they were created. THBENSIM system (Anderson
the artificial intelligence community fail to take advantage of and Evans 1995) is one exception. It attempts to provide

817



Riley and Riley

support for general agent based simulation, including a vision SPADESsupports agent-baseskecution as opposed
like model of sensation and computation time tracking of to agent-based modeling or implementation (Uhrmacher
the agents. The agents are given sensations at fixed intervals1997). In this context, agent-based execution means that
and have a fixed amount of computation to respond to each the system explicitly models the sensing, thinking, and acting
sensation. The simulation is written in LISP and requires all components (and their latencies) which are the core of any
agents to be also. A distributed version calBGENSIM agent. Figure 1 represents a typical timeline for executions
(Anderson 2000) was created which has an architecture within a cycle. Time point A represents the point at which
much like SPADES However,DGENSIM has no methods a sensation occurs in the environment. Time period AB
to handle network and machine delays and requires all agentsrepresents the elapsed time for an agent to identify and

advance in time synchronously.

The MESS system by Anderson (1995, 1997) is similar
is spirit to GENSIM It also requires all agents to be written
in LISP, but provides much more flexible tracking of agent
computation.

Some work in the Al community has been done on dis-
tributing agent based simulation but typically leaves many
of the issues in distribution management to the world de-
signer. For example, Lees, Logan, and Theodoropoulos
(2002) provide an HLA based distributed simulation, but
fail to provide the simulation creator with a world view that
is unaffected by how objects are distributed or any support
for handling synchronous, conflicting actions of the agents.

On the larger scale of agent simulation, tMACE3J
system (Gasser and Kakugawa 2002) is a highly flexible,
java-based agent simulation system. Scaling up is a main
design criteria of the system; it has been run with up

classify the event (such as the video frame capture time).
Period BC is the CPU time required for the agent to decide
what to do in response to the event, and CD is the time
it takes before the action begins to have an effect on the
world. SPADESallows arbitrary latencies for each of the
above time periods, and allows overlapped actions as shown.
However, twothink cycles are not allowed to overlap, since
a typical deployed agent only has a single CPU to use for
the thinking step. We model thiginking action by our
Software—in—-the—Loomethodology described next.

A basic premise used b§PADESIs that the amount
of time an agent takes think is non-negligible, and must
be included in the simulation model. Further, the think-
ing time for actions is not constant, varying based on the
type of sensed event, current world state, and other vari-
ables. Finally, we assume that the actual software used
in the deployed agents to think about sensation events is

to 50 processors and 5000 agents. It relies on a Sharedincluded as part of thEPADESsimulation. Given these as-

System Image system to provide distributed machines with
a consistent image of the model.

Much of the work in creating efficient distributed sim-
ulations deals with how to break down a simulation into

components such that the communication requirements be-

sumptions, we developed our nov@bftware—in—the—Loop

methodology which allows accurate modeling of the think-
ing time. Since the deployed software is included in the
simulation, the amount of CPU time used by the simulated
thinking process is identical to that used by the deployed

tween the components is low. For example, in agent based agent in the same environment (subject to a linear scale

simulation, Logan and Theodoropolous (2001) discuss how
“spheres of influence” can be used to adaptively and flex-
ible organize simulation objects and agents for efficient
distributed simulationSPADESakes a different approach.
The breakdown of components is fixed (agents and a world
model). WhatSPADESreasons about is how to allow
as many agents as possible to compute without violating
causality. Notice thaBPADESdoes allow executions out
of time order as long as they do not violate causality.

3 THE SPADESSIMULATION ENVIRONMENT

This section discusses the major features of SIRADES
simulation system. When discussing these features, we will
use the termsimulation timeor just time to refer to the
simulation time within the simulation environment. The
term wall clock timewill be used to refer to the real-time

as measured by a watch outside the simulated environment.

CPU Timewill refer to the amount of time a process has

factor to account for differing CPU speeds). We sim-
ply measure the CPU time used by the thinking process
in the simulation by using the Linuyerfctr (<http:
/Isourceforge.net/projects/perfctr/> ) fea-
ture. This feature includes a patch for the standard Linux
kernel which provides per-process counts of CPU cycles and
instructions executed by the process. After measuring the
CPU time used by the simulatélink process and applying

a linear scale factoSPADESschedules thact event at the
appropriate delayed simulation time. We point out that the
term Software—in—the—Loolpas been used previously in the
simulation literature (Choi and Kwon 1999), referring to

Time —
A

Sense

B

Act
Think
Sense

Think
Sense Act

used in the central processing unit on the computer system Figure 1: Example Timeline for the Sense-Think-Act Loop

performing the simulation.
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a method whereby some hardware portionshafdware—
in—the—loop simulations are replaced by software—based
simulations. While this is similar in spirit to our approach,
it is substantially different.

In order to provide maximum inter-operabili§PADES

makes no requirements on the agent architecture (except that

it supports the sense-think-act cycle) or the language in which
agents are written (except that they can write to and from
Unix pipes). In the same spirit as the SoccerServer (Noda,
Matsubara, Hiraki, and Frank 1998 PADESprovides an

environment where agents built with different architectures

or languages can inter-operate and interact in the simulated

world.
SPADESs a conservative parallel discrete event simula-
toras described in Misra (1986). Inconservative simulations,

events are not processed until it can be guaranteed that casua

event ordering will not be violated. In contrast, optimistic
simulations (Jefferson 1985) process events without regard
to causality, but instead support a rollback mechanism that

is invoked in case events are found to have been executed

out of order. Debates over the merits of conservative and
optimistic simulation are common and several surveys dis-
cuss the issues (Ferscha and Tripathi 1996, Fujimoto 1990).
Our choice of the conservative methodology was simply a
practical choice due to ease of implementation. However,
our design does allow some degree of out—of-order event
execution, if those events are known to be not causally
related.
An effect of the discrete event nature of our distributed

simulation environment is that agents’ interactions are not

necessarily synchronized. Any subset of the agents can have

actions take effect at a given time step. This is in contrast
to many simulations in the Al community, that require that
all agents choose an action simultaneously, with the state
of the world model updated once based on all these actions.
SPADE $hased simulations do not require the agents’ actions
to be synchronized in this manner. In particular, smaller time
guanta for simulation of the world model do not increase
the simulation’s network load. In other words, the affect
of agents’ actions are realized precisely at the correct time
in the simulation, as opposed to the artificially imposed
time—step actions of other simulators.

Finally, theSPADE Ssystem provides reproducible sim-
ulation results. Given the same set of initial conditions and
the same random seedSPADESwill produce identical
results for every simulation execution, as demonstrated in
section 4.

3.1 System Architecture

Figure 2 gives an overview of the entiBPADESsystem,
along with the components users of the system must supply

(shaded in the diagram). The dotted lines denote possi-
ble machine boundaries. The simulation engine and the
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Figure 2: Overview of the Architecture §PADES

communication server are supplied as parBADESThe
world model and the agents are created by a user to simulate
a particular environment.

The simulation engine is the heart of the discrete event
simulator. All pending events are queued here, and the
engine coordinates all network communication. A com-
rnunication server must be run on each machine on which
agents run. The communication server manages all commu-
nication with the agents (through a Unix pipe interface) as
well as tracking the CPU usage of the agents to calculate the
thinking latency. The communication server and simulation
engine communicate over a TCP/IP connection.

The world model is created by a user 8PADESto
create a simulation model of a particular environment. The
simulation engine is a library to which the world model
must link, so the simulation engine and world model ex-
ist in the same process. The world model must provide
such functionality as advancing the state of the world to a
particular time and realizing an event (changing the state
of the world in response to an event occurrinGPADES
provides a collection of C++ classes from which objects in
the world model can inherit in order to interact with the
simulation engine.

The agents communicate with the communication server
via pipes, so the agents are free to use any programming
language and any architecture as long as they can read and
write to pipes. From the agent’s perspective, the interaction
with the simulation is fairly simple:

1. Wait for a sensation to be received

2. Decide on a set of actions and send them to the

communication server

3. Send adone thinkingmessage to indicate that all

actions were sent.

One of the communication server’s primary jobs is to
track the thinking time of the agent to support Seaftware—
in—the—Loopmethodology. When sending a sensation to an
agent, the communication server begins tracking the CPU
time used by the agent. When tbene thinkingmessage
is received, the communication server calculates the total
amount of CPU time used to produce these actions. All
actions are given the same time stamp of the end of the
think phase.

The agents have one special action whiBRADES
understands: equest time notifyThe agent’s only oppor-
tunity to act is upon the receipt of a sensation. Therefore if
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an agent wants to send an action at a particular time (such event list management. The performance graphs given later
as a stop turning command for a robot), it can request a show clearly the overall execution time is dominated by the
time notify. On the receipt of the time notify, the agent agents’ CPU requirements for processing sensation events.
can returns actions as for any other sensation. In order to It is well understood that any conservative parallel dis-
give maximum flexibility to the agent§PADESdoes not crete event simulator requires a non—2eakaheadgroperty
enforce a minimum time in the future that time notifies can in order to achieve good parallel performance (Ferscha and
be requested. However, all actions, whether resulting from Tripathi 1996). Simply stated, thlmokaheadvalue is a

a regular sensation or a time notify, are still constrained by lower bound on the simulation time difference between the

the action latency. generation of an event on any procesgomnd the real-
ization of that event on some other processor Larger
3.2 Discrete Event Simulator lookahead values are known to give rise to better parallel

performance. We now discuss the the lookahead algorithm
This section describes the simulation algorithm used by of SPADES We will first cover a simple version which
SPADESThis algorithm is a modification of a basic discrete covers some of the fundamental ideas and then describe the
event simulator. SPADESalgorithm in full.

In order to insure that all events will be executed in An explanation of the events that occur in the normal
causal order, the simulation environment must determine think-sense-act cycle of the agents must first be given. The
whether or not it is possible to receive a future event with nature of this cycle illustrated in Figure 3. First, an event
a timestamp less than the next pending event. This so—is put into the queue to create a sensation. Typically,
called time—managemerftinction of parallel simulators is the realization of this event reads the state of the world
well studied, and there are a number of approaches that canand converts this to some set of information to be sent to
be used (Chandy and Misra 1981, Bryant 1977, Mattern the agent. This set is encapsulated in a sense event and
1993, Chandy and Misra 1979, Chandy and Sherman 1989, put into the event queueSPADESrequires that the time
Lubachevsky 1989, Steinmann 1991, Nicol 1993, Riley, between the create sense event and the sense event is at
Fujimoto, and Ammar 2000). Much of the complexity of least some minimum sense latency, which is specified by
these approaches is due to the fact that typically a distributed the world model. When the sense event is realized, this
simulation will manage private event lists for each processin set of information will be sent to the agent to begin the
the distributed environment. In other words, each process thinking process. Notice that the realization of a sense event
manages its own event list, and schedules events to anddoes not require the reading of any of the current world
from this list independently from other processes (within the state since the set of information is fixed at the time of the
constraints imposed by the time management algorithms). realization of the create sense event. Upon the receipt of
For ease of implementation, we chose another well-known the sensation, the communication server begins timing the
approach known as@entralized event listin this approach, agent’s computation. When all of the agent’s actions have
a single composite event list is managed byasterprocess, been received by the communication server, the computation
which is responsible for scheduling events and managing the time taken by the agent to produce those actions is converted
event list for all other processors. Any process that needs to to simulation time. All the actions and the think latency
schedule a future event must notify the master process (the are sent to the simulation engine (shown as “Act Sent” in
manager of the central event list) to get the event scheduled. Figure 3). Upon receipt, the simulation engine adds the
This master process has complete knowledge at all times action latency (determined by querying the world model)
of pending events, and can independently determine which and puts an act event in the pending events queue. Similar
pending events can be safely processed. A drawback of to the minimum sense latency, there is a minimum action
the central event list approach is that each process mustlatency whichSPADESequires between the sending time of
notify the central scheduler that it has finished processing an action and the act event time. The realization of that act
a prior event and is ready to process more events. The event is what actually causes that agent’s actions to affect
design of the agents using the sense—think—act paradigmthe world. Note that the “Act Sent” time is circled because
mitigates this drawback, since all agents produce an action unlike the others that represent events in the queue, “Act
in response to sensed events, which serves as notificationSent” is just a message from the communication server to
to the scheduler that the processing has completed. An the engine and not an event in the event queue.
obvious major drawback of this approach is efficiency and Note that a single agent can have multiple sense-think-
scalability, since a single process coordinates activities for act cycles in progress at once, as illustrated in Figure 1. For
all agents. This single coordination point could become a example, once an agent has sent its actions (the “Act Sent”
bottleneck and slow down the entire simulation. For our point in Figure 3), it can receive its next sensation even
purposes, the total number of agents is reasonably small, andthough the time which the actions actually affect the world
we haven't observed significant overhead in the centralized (the “Act Event” point in Figure 3) has not yet occurred.
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Figure 3: Events in Sense-Think-Act Cycle of an Agent

The only overlagsPADESorbids is the overlapping of two
think phases.

Note also that all actions have an effect at a discrete
time. Therefore there is no explicit support BPADES
for supporting the modeling of the interaction of parallel
actions. For example, the actions of two simulated robots
may be to start driving forward. It is the world model’s job

Table 2: Code for Parallel Agent Discrete Event Simulator
for Strict Timestamp Order

repeat forever
wait for messages
next = pending_events .head
min_agent_time = calculateMinAgentTime()
while (next.time < min_agent_time )
advanceWorldTimen(ext.time )
pending_events .removefext )
realizeEvent rfext )
next = pending_events .head
min_agent_time = calculateMinAgentTime

to recognize when these actions interact (such as in a colli- be recalculated after each event realization. However, this

sion) and respond appropriately. Similarly, communication

algorithm could be modified to be incremental so that the

among agents is handled as any other action. The world entire agent set does not have to be scanned each time.

model is responsible for providing whatever restrictions on
communication desired.

Based on the calculation of the minimum agent time,
we can now describe a simple version of the parallel agent

The sensation and action latencies provide a lookahead discrete event simulator, which is shown in Table 2. The

value for that agents and allows the agents to think in
parallel. When a sense event is realized for agent 1, it

value min_agent_time is used to determine whether
any further events can appear before the time of the next

cannot cause any event to be enqueued before the currentevent in the queue.

time plus the minimum action latency. Therefore it is safe

While this algorithm produces correct results (all events

(at least when only considering agent 1) to realize all events are realized in time stamp order) and achieves some paral-

up till that time without violating event ordering.
The quantity we call the “minimum agent time” deter-

lelism, it does not achieve the maximum amount of possible
parallelism. Figure 4 illustrates an example with two agents.

mines the maximum safe time over all agents. The minimum When the sense event for agent 1 is realized, the minimum
agent time is the earliest time which an agent can cause anagent time becomes A. This allows the create sense event
event which affects other agents or the world to be put into for agent 2 to be realized and the sense event for agent 2
the queue. This is similar to the Lower Bound on Times- to be enqueued. However, the sense event for agent 2 will
tamp (LBTS) concept used in the simulation literature. The not be realized until the response from agent 1 is received.
calculation of the minimum agent time is shown in Table 1. However, as discussed above, the effect of the realization
The agent status is either “thinking,” which means that a of a sense event does not depend on the current state of the
sensation has been sent to the agent and a reply has noworld. If agent 2 is currently waiting, there is no reason
yet been received, or “waiting,” which means that the agent not to realize the sense event and allow both agents to be
is waiting to hear from the simulation engine. Besides thinking simultaneously.

initialization, the agent status will always be thinking or

waiting. The current time of an agent is the time of the |

min_action_latency I
last communication with the agent (sensation sent or action

I
N

received). The receipt of a message from a communication >< >< >< - ><
server cannot cause the minimum agent time to decrease.
However, the realization of an event gan cause an increase Credte Sense  Sense Creale Sense Sense

' Agent 1 Agent 1 Agent 2 Agent 2

or a decrease. Therefore, the minimum agent time must
Figure 4: An Example lllustrating Possible Parallelism that
Table 1: Code to Determine the Minimum Time that an the Simple Parallel Agent Algorithm Fails to Exploit

Agent Can Affect the Simulation

However, this allows the realization of events out of
order; agent 1 can send an event which has a time less the
time of the sense event for agent 2. Certain kinds of out of
order realizations are acceptable (as the example illustrates).
In particular, we need to verify that out of order events are
not causally related. The key insight is that sensations
received by agents are casually independent of sensations

calculateMinAgentTime()
Vi € set_of_all_agents
if (agent ;.status = Waitingagent_time
elseagent_time ; = agent ;.currenttime
+ min_action_latency
return min agent_time

i =00
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received by other agents. In order to state our correctness Table 3: Code for Maintaining the Per-Agent Fixed Agent
guarantees, we will define a new sub-class of events “fixed Event Queues
agent events” which have the following properties:
checkForReadyEvents( Agent
1. They do not depend on the current state of the y (Agent)

world while (true)
2. They affect only a single agent, possibly by sending i (rae%jglg.status = thinking)
a message to the agent. it .
3. Sense events and time notify events are both fixed ! (raegtjl:arr;t,.pendmg_agent_events.empty()

agent events.
4. Fixed agent events are the only events which can
cause the agent to start a thinking cycle, but they

next = agenj.pending_agent_events.pop()
realizeEventtext )

do not necessarily start a thinking cycle. enqueueAgentEvenrtEvent)
The correctness guarantees tBRADESprovides are: a =e.agent
1. All events which are not fixed agent events are agen}.pending_agent_events.insejt(
realized in time order. checkForReadyEventsy
2. The set of fixed agent events for a particular agent — -
are realized in time order. doneThinking¢: Agent, :time)
In order to achieve this, several new concepts are in- agenj.currenttime =t
troduced. The first is the notion of the “minimum sensation checkForReadyEvents(

time.” Thisis the earliesttime thatewsensation (i.e. fixed
agent eventpther than a time notifgan be generated and
enqueued. The current implementatiorS®#ADESequires but are put in the agent queue instead. The second loop
that the world model provide a minimum time between the (the “foreach” loop) scans ahead in the event queue and
create sense event and the sense event (see Figure 3), senoves all fixed agent events less that the minimum sensation
the minimum sensation time is the current simulation time  time into the agent queues. Note that in both cases, moving

plus that time. events to the agent queue can cause the events to be realized
The time notifies are privileged events. They are handled (see Table 3).

specially because they affect no agent other than the one

requesting the time notificatiorBPADESalso allows time 4 EMPIRICAL VALIDATION

notifies to be requested an arbitrarily small time in the future,

before even the minimum sensation time. This means that |n order to test the efficiency of the simulation and to

while an agent is thinking, the simulation engine cannotsend understand the effects of the various parameters on the
any more fixed agent events to that agent without possibly performance of the system, we implemented a simple world
causing a violation of correctness condition 2. However, if model and agents and ran a series of experiments. We
an agent is waiting (i.e. not thinking), then the first fixed tracked the wall clock time required to finish a simulation
agent event in the pending event queue can be sent as longas a measure of the efficiency.
as its time is before the minimum sensation time.
To insure proper event ordering, one queue of fixed 4.1 Sample World and Agents
agent events per agent is maintained. All fixed agent events
enter this queue before being sent to the agent, and an eventrhe simulated world is a two dimensional rectangle where
is put into the agent's queue only when the event's time is opposite sides are connected (i.e. “wrap-around”). Each
less than the minimum sensation time. agent is a “ball” in this world. Each sensation the agent
There are several primary functions dealing with the receives contains the positions of all agents in the simulation,
agent queue. First, enqueueAgentEvent puts a fixed agentand the only action of each agent is to request a particular
event into the queue. The doneThinking function is called velocity vector. The dynamics and movement properties are
when an agent finishes its think cycle. Both functions reasonable if not exactly correct for small omni-directional
call a third function checkForReadyEvents. Pseudo-code robots moving on carpet, except that collisions are not

for these functions is shown in Table 3. Note that in  modeled. The world model advanced in 1ms increments.

checkForReadyEvents, the realization of an event can cause We created two kinds of agents. The “wanderer” moves

the agent status to change from waiting to thinking. ~ randomly around the world. The “chaser” chases one of the
Using these functions, we describe in Table 4 the main randomly moving agents by setting its requested velocity

loop that SPADESuses. This is a modification of the  directly towards the current observed location of that agent.
algorithm given in Table 2. The two key changes are that

in the first while loop, fixed agent events are not realized,
822
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Table 4: Code for Efficient Parallel Agent Discrete Event
Simulator as Used bgPADES

repeat forever
wait for messages
next = pending_events .head
min_agent_time = calculateMinAgentTime()
while (next.time < min_agent_time )
advanceWorldTimenext.time )
pending_events .removefext )
if (next is a fixed agent event)
enqueueAgentEveméxt )
else
realizeEvent rfext )
next = pending_events .head
min_agent_time = calculateMinAgentTime(
min_sense_time = current_time
+ min_sense_latency
foreache (pending_events ) /* in time order */
if (e.time > min_sense_time )
break
if (e is a fixed agent event)
pending_events .remove¢)
enqueueAgentEveri(

4.2 Experimental Setup

All experiments were run on thBerrari Linux cluster at
Georgia Tech. The cluster consists of sixteen identical
Linux boxes, each with 2 Pentium Ill CPU’s running at
850Mhz. The operating system is RedHat Linux version
7.3. Each system has 2GB of main memory, and all systems
are connected via a private Gigabit Ethernet network and a
Foundry Biglron router.

For these experiments, we varied three parameters of

the simulation environment:

e The number of machines, varying from 1 to 13
(hardware problems prevented using all 16 ma-
chines).

* The number of agents, varying from 2 to 26.

e Computation requirements of the agents. To simu-
late agents that do more or less processing, we put
in simple delay loops. We used 3 simple condi-
tions of fast, medium, and slow agents. Fast agents
simply parse the sensations and compute their new
desired velocity with a some simple vector calcu-
lations. The medium and slow agents add a simple
loop that counts to 500,000 and 5,000,000 respec-
tively. Onan 850MHz Pentium Il1, this translates to
approximately 1.0ms and 9.0ms average response
time. Only the fast and slow performance graphs
are shown, due to space considerations.
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Every experimental condition was run five times and the
median of those five times is reported. Each simulation was
run for 90 seconds of simulationtime. In all experiments, the
agents received sensations every 95-105 milliseconds (actual
value chosen uniformly randomly after each sensation). The
sensation latency was chosen uniformly randomly between
30 and 40 milliseconds for each sensation and action.

The processes were distributed to the machines as fol-
lows: The same machine always runs the simulation engine
and world model process. Then, all machines (including
the machine running the simulation engine) run a commu-
nication server, with the agents as equally distributed as
possible to all communication servers.

4.3 Results

Figure 5 shows speedup compared to running the simulation
on a single machine. The performance charts show some
interesting of interesting results.
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Figure 5: Speedup Results with the Sample World Model
and Agents (note that the y-axes have different scales)

Moving from a single processor to two processors never
slows down the simulation, and in most cases achieves
speedups between 1.3 and 1.75.

As expected, there is significant diminishing return as

the number of machines increases, due to the additional

inter—processor overhead required as more processors are

added to the simulation.
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The detrimental affect of the communication overhead is with the same random seeds given to both the world model
quite pronounced in thiastagents case (Figure 5(a)). While and the agents. For each combination, we ran trials using
we always get non—zero speedup in the 2—processor case (infrom 1 to 8 machines. Two trials were run while no other
the range of 1.3 to 1.75), the communication overhead for significant processes were run on the machine, and two were
additional processors begins to dominate the simulation’s run with no control over extra processes and artificial load
performance, with little further speedup beyond 5 processors. added to half of the machines. The artificial load consisted
For larger processing time (Figure 5(b)), the communication of five processes running in infinite loops.
overhead becomes less significant, with continued speedup In all cases, the results of the simulation in terms of the
improvement up to 13 processors in some cases. The affectpositions, the sensations, and the actions of all the agents
of proper load balancing is obvious. Observe the speedup are exactly identical. It should be noted that the order of
chart in Figure 5(b). Notice the large jump in speedup in event realization is not identical, &”ADESallows certain
the 14 agents case (marked with the hollow boxes) when out of order executions which do not violate causality.
the number of processors increases from 6 to 7. With 14 Further note that perfect reproducibility can also be
agents distributed on 6 processors, 4 of the processors areachieved without theperfctr based timer. SPADESalso
assigned 2 agents, and 2 of the processors have 3 agentssupports the the recording of thinking times from one run
Since the overall progression of time in the simulation is to be replayed during a subsequent run.
bounded by the slowest running processor, the performance
is bounded by the processors with 3 agents each. When ACKNOWLEDGMENTS
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