
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SIMULATION FOR TESTING SOFTWARE AGENTS – AN EXPLORATION BASED ON JAMES

Jan Himmelspach
Mathias Röhl

Adelinde M. Uhrmacher

Department of Computer Science
University of Rostock
Albert-Einstein-Str. 21

Rostock, M/V, 18059, GERMANY

c
e

e
e
s

a
d

r

-
-
p
d
rt
t-

.
-
g
r-

t
ut
r
y

ty
-
s

r-
nt
the
d
f

re.
f

c-
n
at
e-
e

lly
f
-
).
-
f

-
ing
i-
d

an
c-
d

o
d

”.
l,
d-
lly
ABSTRACT

Agents are software systems aimed at working in dynami
environments. Simulation systems can be used to provid
virtual environments for testing agents. The software to be
tested, the objective of the simulation study, and the stag
of the agent software development influences both: th
environmental models used for testing and the mechanism
that synchronize the execution of agents and simulation. A
clear distinction between model and simulation layer, and
modular design of the simulation system support the require
flexibility. Based on the simulation systemJames (a Java
based Agent Modeling Environment for Simulation) and two
agent applications we will explore, how interfaces between
virtual environments and software agents can be explicitly
specified at the modeling level and suitable mechanisms fo
synchronization might be chosen on demand.

1 INTRODUCTION

Agents are software systems that are aimed at working au
tonomously in dynamic and uncertain environments (Jen
nings et al. 1998). To construct agents means to develo
software that is able to successfully accomplish specifie
tasks in an environment which changes over time. To suppo
the development of software agents is the goal of agen
oriented software engineering (Ciancarini and Wooldridge
2001).

The variety of ingredients of multi-agent systems, e.g
concurrent objects, Artificial Intelligence methods, and so
cial structures are recognizable in approaches for specifyin
and developing agents and are responsible for their dive
sity. Extensions of UML can be found (Odell et al. 2003),
same as logic approaches which are particularly aimed a
designing rational agents and pruned for reasoning abo
changing beliefs (van der Hoek and Wooldrige 2003). Othe
approaches suggest to develop communities of agents b
defining social norms and regulations. Thereby the identi
of agents is fully specified by their social role in the commu
nity (Ryan and Schobbens 2002). All of those approache
use models, however rather different ones for rather diffe
ent purposes and for different stages of the developme
process. Whereas object-oriented approaches support
automatic transformation into implementation, logic-base
specifications are aimed at supporting the verification o
certain properties and thus a static analysis of the softwa

In contrast to static analysis, the dynamic analysis o
software requires the execution of software. Testing a
tivities support quality assurance by gathering informatio
about the software being studied. Studies indicate th
testing consumes easily 50 % of the costs of software d
velopment (Harrold 2000). This percentage might even b
higher if the software is safety critical or, as in developing
agents, the software development process has an intrinsica
experimental and explorative nature. “the development o
any agent system — however trivial — is essentially a pro
cess of experimentation” (Wooldridge and Jennings 1998
Surprisingly, only little work has been done so far on de
veloping methods for testing agents (Dam and Winikof
2003).

As agents are aimed at working in dynamic environ
ments, simulation seems a natural approach towards test
the behavior of an agent system in interaction with its env
ronment. Same as the functionality of real-time systems an
embedded systems, the functionality of agent systems c
not be evaluated based on one time point only. Its intera
tion with the environment has to be observed over a perio
of time. The usage of a virtual environment in contrast t
the real environment typically reduces costs and efforts an
allows to test system behavior in “rare event situations
Virtual environments are easier to observe and to contro
and probe effects are easier to manage. Environment mo
els are used to generate the different test cases dynamica



Himmelspach, Röhl, and Uhrmacher

s

ve
rce
98
h
se
e
g
th

ly
ate
ar
e

the
in
th
b
he

b-
79
ty
tly
va
ar
01
en
n
dy
ie

rm
ro

, a
he
are
m-
s

wn
re

s
ng
nd

e
ion
be
t
).

d
e-
n,

ate
e
r-

are
ted
ral
l’s
e
by
by
f
re

he
e

d

al.
ep-

at-
ing
In
f
.
n
ng
ctly
ame
on
e
ing
led

els

d

t’s
pre-
during simulation, including specific interaction pattern
and time constraints (Schütz 1993, p.23).

Often test cases are based on and sometimes e
automatically generated from software requirements, sou
code statements, and module interfaces (Peraire et al. 19
Due to their typically complex dynamic environment suc
an automatic generation of dynamic models as test ca
for agent systems is difficult to imagine. In addition to th
environment the agent is supposed to work in, the sta
of the agent development process and the objective of
simulation study will necessarily affect modeling. Typical
simulation is employed for behavioral testing, thus rather l
in the software development process. However, softw
testing should start as early as possible in the developm
cycle — “the earlier a bug is discovered the cheaper
correction” (Beizer 1995, p. 11). The different stages
developing agents require different models that embed
agent. The environment model(s) must be easily adapta
to provide the required granularity and to complement t
software agent as far as it has been developed.

As testing in general, simulation cannot show the a
sence of faults — it can only show its presence (Myers 19
and the latter only, if the models are valid. The validi
of the environmental models will be crucial, independen
whether abstract models of agents are experimentally e
uated (Wolpert and Lawson 2002), single agent modules
embedded for testing (Schattenberg and Uhrmacher 20
or entire agent systems are plugged into the virtual
vironment (Pollack 1996). Validity is a relation betwee
model, system, and the objective of the simulation stu
In accordance to regular testing, a set of simulation stud
has to be executed to test the software agent under no
circumstances, to explore boundary cases, and to conf
software agents with unexpected situations.

Thus, during the development of software agents
variety of environment models will be needed including t
model that realizes the interface towards the agent softw
The type of the agent software, the objective of the si
ulation study, and the stage of the development proce
e.g. whether single modules or entire agents with their o
thread of control and possibly with their own clock a
tested, influence the suitability of execution mechanism
The different and, during agent development, also cha
ing requirements have to be met by a flexible model a
simulator design.

2 APPLICATION SCENARIOS: MOLE AND
AUTOMINDER

The following two application scenarios shall illustrate th
necessity to offer different types of interfaces and simulat
mechanisms to the agent developer. Our exploration will
based on the simulation systemJames, a Java based Agen
Modeling Environment for Simulation (Uhrmacher 2001
n
-
).

s

e
e

e
nt

e
le

)

l-
e
),
-

.
s
al
nt

.

s,

.
-

A formalism which extendsDevs by means for reflection,
time models, and peripheral ports underliesJames. Like all
simulation systems that are based onDevs or its extensions,
James allows a hierarchical, modular model design an
clearly distinguishes between model and simulator. Via r
flection models can change their own behavior, compositio
and interaction pattern during simulation.Time modelsand
peripheral portsenable models to interact with externally
running software. Time models can be used to transl
external resource consumption into simulation time. Via th
peripheral ports a model exchanges information with exte
nally running software. Messages to be sent to the softw
are put into the peripheral output ports and messages direc
from the software to the model pass through the periphe
input ports. Peripheral ports form an extension of a mode
state from the point of view of transition, output, and tim
advance functions. The peripheral input ports are read
all of those and the peripheral output ports are charged
the transition functions. This is in contrast to the work o
(Cho et al. 2001) where events sent by external softwa
are treated similar to externalDevs -events, i.e. read by the
external transition and sent by the lambda function. T
conversion towardsDevs -messages happens outside of th
model. In James the interface between simulation an
external software is encapsulated within a model.

2.1 Testing Mole Agents with Representatives

Mole is a Java-based mobile agent system (Baumann et
1997). Locations offer certain services to the agent and r
resent the source and destination of moving agents.Mole
agents are equipped with a set of methods, e.g. for migr
ing, remote procedure calls (RPC), sending and receiv
messages, and for handling the individual life cycle.
addition, Mole agents can use the entire functionality o
Java , only constrained by the security model employed

The life of aMole agent starts in the moment a locatio
initiates the creation of an agent, which includes activati
the start method. Whereas the start method runs exa
once, several messages and calls can arrive at the s
time. This requires handling several concurrent computati
processes. InJames a Mole agent is represented as on
core model surrounded by models that represent its runn
or waiting threads. These simulation models that are cal
the representative of aMole agent form the interface towards
the externally runningMole agent.

An example appears in Figure 1. The core agent mod
areAgent1 andAgent2 . The satelliteStart forms the
representative of the running start thread ofAgent1and the
satelliteRPCgetPrice forms a representative of the threa
that has been created by calling the proceduregetPriceof
Agent2.

During simulation, the representative reflects the agen
state and behavior. Whereas the agent core model re



Himmelspach, Röhl, and Uhrmacher

o

e

ut
d
l
t

to

te

t

t

t

l

e
n

e

s

s

es

t
te
e

e

nt
Figure 1: How Mole andJames are Intertwined

sents the central focus of control, its “satellites”, e.g. the
modelStart , provide the interfaces to the agent’s running
processes. Each of the satellites forms a representative
a running or waiting thread of aMole agent. Together
with the central agent model they form the representativ
of an entireMole agent. If the start method of theMole
agent encounters a remote procedure call, this call is p
into the peripheral input port of the satellite and the threa
is suspended. With this the call has entered the virtua
environment. In response to the input in its peripheral inpu
port the satellite will forward the remote procedure call to
the core agent model and change its state from running
waiting. At the time it receives the result of the remote
procedure call via its input port, it will change to resuming.
After the external thread has been resumed, the satelli
will change to the state running again. As shown in the
Statechart in Figure 2, the transitions between the differen
states are triggered by the flow of time, e.g.Resuming
to Running , by inputs arriving from other models, e.g.
from Waiting to Resuming , or by inputs arriving from
the externally running software via the peripheral input por
Zi , e.g. fromRunning to Waiting .

Figure 3 shows the interaction between aJames
model, i.e. a Start satellite, its Simulator , the
ComputationHandler , and theAgent . At the moment
the agent core model receives the “start up” notification, i
will create the satelliteStart . With the creation of the
Start satellite, its simulator is created which will execute
the initialize method of the model and start the externa
computation code. With this the “start up” notification has
entered theMole runtime environment.

Messages between simulation and agents are exchang
in time-stamp order. Agents do not have an own simulatio
clock. Thus, the experiment in the virtual environment,
which takes place in virtual (simulation) time, is controlled
solely by the simulation which uses a time model to translat
the resource consumption, e.g. in wall clock time, of the
externally running agent into simulation time. To keep track
of the externally running agents and to let simulation and
f

d

Figure 2: The Representative of a Thread of aMole Agent
as a Statechart

Figure 3: Interaction Between Simulation, Representative
and aMole Agent

externally running software agents proceed concurrently i
the task of theComputationHandler .

Methods inMole are not simply executed asJava
methods but reflected to make sure that the execution adher
to the security policy. Methods of theMole API which
constitute the interface betweenMole agents and their run-
time environment have only to be slightly changed to redirec
calls and messages to the simulation system. A concre
agent implementation does not require any changes to b
run in the virtual environment. Besides testing performance
issues, e.g. comparing migration and remote procedur
call, the functionality of single agents in different network
environments and agent societies, e.g. confronting the age
with cooperative or defective behavior, can be analyzed.



Himmelspach, Röhl, and Uhrmacher

-
r
m

-

nt
ns

s

y,
re
to
r

t
on

-
rve
al
en
he

ce

n-
rt

ior

is
n-

e

l
.g.
i-
ut

n-

-

d

ac-

he

ise
re-

ich
e

2.2 Autominder

Autominder is a software system to monitor the ac
tivities of elderly and to remind elderly if they forget o
confuse certain activities (Pollack et al. 2003). The syste
shall work on a mobile, autonomous robot — a nursebot.
Autominder has an own thread of control and commu
nicates with the robot through a socket.Autominder
sends text strings to the robot to be delivered to the clie
and the robot sends messages containing interpreted se
information toAutominder .

Both planning and time plays a crucial role in thi
scenario. Autominder keeps track of the activities of
the elderly and tries to remind the elderly in a timel
not annoying, and effective manner. Many activities a
scheduled for certain times of the day. The robot has
remind the elderly in time if these activities are crucial fo
the elderly’s health. Therefore,Autominder frequently
accesses wall clock time. IfAutominder is truly tested
the interaction will happen in wall clock time, such tha
each test run would require a day. A significant evaluati
of the effectiveness ofAutominder would likely take at
least a month.

In theMole experiment the agent and its currently run
ning thread are described as explicit models, which se
as interfaces. In addition they allow to inspect the intern
behavior of the agents during simulation. These repres
tatives support a kind of gray box testing. In contrast, t
intention of our experiments withAutominder is behav-
ioral testing or black box testing.

Coupling Autominder and the virtual environment,
which currently comprises four models, i.e. theRobot , the
Elderly , theCaregiver and theEnvironment (Fig-
ure 4), is done by utilizing the robot model as an interfa
to loosely couple the agent softwareAutominder and the
simulation. The virtual environment employs no represe
tative of anAutominder model and thus does not suppo
the inspection of internal behavior ofAutominder . The
objective of ongoing experiments is to test the behav
and the adaptation strategies ofAutominder with dif-
ferent types of elderly. The role of the robot model
currently only to mediate between the dynamic virtual e
vironment andAutominder : it frequently requests status
information about the environment, information from th
environment is forwarded toAutominder , and the output
of Autominder is redirected into the simulation mode
and forwarded to the elderly. In other experiments, e
when the information about the elderly is transmitted d
rectly by sensors in the flat, more detailed models abo
the soft- and hardware environment of theAutominder
system will be probably required.

In Figure 5 the robot asks the environment for se
sory information to forward it to theAutominder soft-
ware. After some time the robot will receive the re
or

-

Figure 4: CouplingAutominder to a Virtual Test Envi-
ronment

Figure 5: The Interaction Between Simulation an
Autominder

sponse ofAutominder and will forward it to the el-
derly. During interaction ofJames with Mole the
ComputationHandler was responsible for managing
the synchronization between simulation and agents
cording to the employed time model. AsMole agents
and their methods are invoked by the simulator t
ComputationHandler keeps track of all externally run-
ning sources and, during their execution, forces the otherw
unpaced simulation to advance in synchrony with the
source consumption. In the scenario withAutominder the
interaction between simulation andAutominder occurs
directly and events are processed in receive order, wh
obviates the need for a controlling and monitoring unit lik
the ComputationHandler .



Himmelspach, Röhl, and Uhrmacher

by
g

o
o

f
f
es

d
d
-
he
e
or
t,

d
or

.
s

.
d

t
n
s
.

n

on
nt
th
s
n
a
.

ly
e

t-

g
).

of
ed
ts

ed
s
,

es
s
e

ll
is
ck

nd
n

-
nt
3 INTERACTION BETWEEN SIMULATOR AND
AGENTS

The interface between agents and simulator is described
models. They serve as interfaces towards externally runnin
software. Peripheral ports and time models are utilized t
specify the interaction. Executing the model according t
this specification and the given initial situation is the task
of a simulator. During the design of agents a variety o
models will be employed. Similarly, the different stages o
designing agents have different requirements when it com
to executing the simulation experiment. Therefore,James
contains a variety of simulators which can be distinguishe
depending on whether the simulation itself shall be execute
in a distributed or non distributed environment, the simu
lation shall proceed paced or non-paced, and whether t
simulation shall process events in receive order or in tim
stamp order. Even though the choice of a certain simulat
should not have an effect on the results of the experimen
it has a definite effect on the efficiency of the simulation
as well as on the set-up of the testing, e.g. whether an
how the software to be tested has to be instrumented f
this purpose.

Simulation and agents are executed in wall clock time
However, wall clock time forms not necessarily the basi
of interaction between both. In simulation we distinguish
between physical time, simulation time and wall clock time
Whereas simulation time and physical time are connecte
by a semantic relation, e.g. one tick in simulation time
refers to one minute in physical time, wall clock time is no
necessarily related to either of both. During the executio
of the simulation the wall clock time advances, more or les
independently of and even alternating, with simulation time
Only in paced simulation the simulation time advances i
synchrony with wall clock time (Fujimoto 2000).

Figure 6 shows how simulation time and wall clock
time advances given a discrete event simulator. The versi
a) shows an unpaced version in which a discrete eve
simulation runs as fast as possible, b) and c) are bo
paced. In paced simulation, independently whether it i
scaled (c) or not scaled (b), the relation between simulatio
and wall clock time has to be carefully observed to avoid
situation where the simulator lags wall clock time (see c)

3.1 Unpaced Simulation

One unpacedJames simulator realizes a distributed simu-
lation system which executes simulation events concurrent
that occur at the same simulation time. Thus, within th
simulation the concurrency is rather limited. However, the
simulator has been developed to support an efficient tes
ing of a few deliberative agents by splitting simulation and
externally running agents into different threads and lettin
them proceed concurrently (Uhrmacher and Gugler 2000
Figure 6: Advancing Simulation Time and Wall Clock Time

Each time the simulator wishes to advance to the time
next event, first all externally running processes are ask
whether it is safe to proceed (Figure 7). To process even
in time-stamped order, the event from the agent is label
with a simulation time which determines when the result
of the agents shall return into the simulation. Therefore
a time model is employed, which transforms the resourc
that the agent consumed into simulation time. It define
the relation of resource consumption and simulation tim
locally for each model.

t = tStart + T imeModel(ConsumedResources)

Often the already consumed resources refer to wa
clock time and in this case the processing of events
scheduled to occur depending on the advance of wall clo
time.

t = tStart + T imeModel(twcnow − twcstart )

Figure 7: The Interaction Between External Processes a
an Unpaced, Conservative Simulator Combined with a
Exchange of Messages in Time-Stamp Order

As long as the consumed simulation time of the ex
ternally running agent is less than the time of next eve



Himmelspach, Röhl, and Uhrmacher

n
ha
d a
he
e.
es
ll

ive
ny
If
n

the
e
to
se
as
to

n-
e

ed
ts
as

e
en

e
x-
ss
u-
nt
na
be
ll
er
ng

-
ire
k

is
s

ch
d
ll
el
l

w
r

e

g
t
f

d

l

,
e
l
n

t
g
al
er.
in the simulator, the simulator will wait. An optimistic
simulator could continue and roll back if agents deliver a
event in the simulator’s past. However, any message t
the simulator sends to the agent software has to be treate
an I/O operation and thus may not be rolled back. Not t
entire simulation proceeds in synchrony to wall clock tim
The time models are defined locally and during episod
in which no external agent is running, the simulation wi
execute as fast as possible.

If the simulator processed events from agents in rece
order, the simulator would only check whether there are a
inputs from the agents before advancing simulation time.
messages had arrived, it would process the received eve
at the time of the last calculated event as the event from
agents occurred somewhere in between the last and the n
scheduled event. The combination of an unpaced simula
and the processing of agent events in receive order is u
for competitive rather than analytical purposes. An as fast
possible discrete event simulation jumps from one event
the other thereby neglecting the simulation time that lies i
between. The same consumption of wall clock time by th
agent would result in quite different reaction times measur
in the virtual environment during a simulation run. If agen
are competing with each other in a virtual environment,
it is the case inRoboCup (Kitano et al. 1999), it is only
important that the time pressure for each agent is the sam
whether the time pressure varies throughout one experim
is of less importance.

Another criterion which influences the set-up of th
experiment is whether the simulator is controlling the e
ecution or whether simulator and agent run more or le
independently. As shown in Figure 7, the unpaced sim
lator invokes the agent, respectively modules of the age
and keeps track of all external processes: when exter
processes have been started, which processes have
finished, and at which simulation time the completion sha
be scheduled (Uhrmacher and Krahmer 2001). The ext
nal processes can represent entire agent systems, or si
threads of agents like thestart andgetPrice thread in
the Mole scenario. To let agent and simulation run inde
pendently and exchange events in time-stamp order requ
to equip the agent software with an own simulation cloc
and to provide means to advance the simulation time.

3.2 Paced Simulation

In paced simulation, each advance in simulation time
paced to occur in synchrony with a scaling factor time
an equivalent advance in wall clock time. Therefore, ea
simulator has to block until its local virtual time has reache
the required wall clock time. To relate simulation and wa
clock time a simple time model is used. This time mod
globally relates wall clock time and simulation time for al
logical processes.
t
s

ts

xt
r
d

;
t

,
l
en

-
le

s

t = tstart + Scale ∗ (twcnow − twcstart )

A scaled paced simulator allows to let the simulation,
e.g., run twice or half as fast as wall clock time. Within the
limits that are determined by the wall clock time required
to execute events, paced simulations can be scaled to allo
a faster or a slower progression of time. The scaling facto
can be changed during simulation, to skip in a fast mode
through less interesting episodes and to zoom in to explor
interesting episodes in detail. Thereforetstart , twcstart refer
not necessarily to the starting point of the simulation but
to the starting point of pacing simulation with a specific
scaling factor. To speed up simulation should be done
within the boundary of resources needed for processin
events, even though a lack of slack time during the fas
cycles will possibly be compensated during the episodes o
slower processing.

The paced simulator (Figure 8) has been develope
by adapting the distributed real-time simulator introduced
by Zeigler and Cho forDevs models. First the simulator
waits for the wall clock to elapse or an external or periphera
event to arrive. In addition, the simulator waits for a small
period of time, which is defined by the user to let further
events arrive (Cho 2001). Every time an event takes place
the peripheral ports are charged with the event sent by th
agent. Generally, the arrival of an event from an externa
process is associated with an internal or confluent transitio
in the model. With both transitions the production of an
output is associated. The state is updated, which also migh
include charging the peripheral output port and thus sendin
messages to the agent software. Simulators and extern
software exchange messages in an asynchronous mann

while simulation not yet finished
t = tstart + Scale ∗ (twcnow − twcstart )
blockUntil (t ≥ tnext )∨
externalEventF romModel ∨ peripheralEventF romAgent

WaitToCheckForFurtherEvents()
charge zi
if t = tnext ∨ peripheralEventF romAgent then

send (λ(s, zi )) to parent
if externalEventF romModel then
(s, zo) = δcon(s, xb, zi )

else
(s, zo) = δint (s, zi )

endif
else
(s, zo) = δext (s, t − tlast , xb, zi )

endif
…
tlast = t
tnext = tlast + ta(s, zi )
flush zi

end

Figure 8: Extract of a Paced Distributed Simulator inJames



Himmelspach, Röhl, and Uhrmacher

ss
of
in
a
m
e

re
n

a
st

n
s
s
.

e-

in

t
a
l
e

xt
a

sed
ed
ing
e
re
ur
-
st
s.
nd
s,
s.
n
rly-

in
to
re.

e
w
he

e-
all

ls,

r

es

ls
er
de-
on
ec-
cts
ent
he
e-
n
en
it
x
ts
es
5,
If
In this case all simulators run in real-time and proce
events in receive order. A general problem with this kind
real-time simulation is repeatability. (Bacon and Goldste
1991) classified non-determinism arising from input-dat
system calls, and interrupts. Non-determinism arising fro
input data can be distinguished whether the input has be
sent by logical processes, by externally running softwa
or by other sources, like human operators (McLean a
Fujimoto 2000).

Whereas in the context ofMole and for testing dif-
ferent planning agents (Uhrmacher and Gugler 2000) p
allel, distributed simulators have been employed, for te
ing Autominder in the current virtual environment a
sequential simulation suffices. Thus, one source of no
determinism, which is induced by messages that are pas
between and processed in receive order by logical proces
of distributed, parallel simulators (Figure 9), is avoided
However, the other sources of non-determinism still r
main.

while simulation not yet finished
t = tstart + Scale ∗ (twcnow − twcstart )
blockUntil (t ≥ tnextEvent )∨
peripheralEventF romAgent

if peripheralEventF romAgent then
for all simulators

charge peripheral input port zi
peripheralEventF romAgent = f alse

calculate Imminents
for all simulators ∈ Imminents

execute (λ(s, zi )) and propagate to input ports
of Influencees and update Influencees

for all simulators ∈ Imminents
if externalEventF romModel then
(s, zo) = δcon(s, xb, zi )

else
(s, zo) = δint (s, zi )

endif
for all simulators ∈ Influencees \ Imminents
(s, zo) = δext (s, t − tlast , xb, zi )

…
for all simulators ∈ Imminents ∪ Influencees
tlast = t
tnext = tlast + ta(s, zi )

tnextEvent = minimum of next events of simulators
for all simulators

flush peripheral input port zi
end

Figure 9: Extract of the Sequential Paced Simulator
James

The sequential simulation holds all information abou
the simulators, which are reduced to data structures and
no longer active threads — their associated atomic mode
the coupled models they belong to, and the coupling b
tween models. The simulation waits until the time of ne
event is reached or messages of an external source h
,

n
,
d

r-
-

-
ed
es

re
s,
-

ve

arrived. These messages are the only ones still proces
in receive order. The peripheral input ports are charg
with the messages from the agents, and the correspond
output functions and transition functions are invoked. Th
time of next event is calculated and the peripheral ports a
flushed. Whereas the sequential simulator suffices in o
currentAutominder scenario, a distributed paced simula
tion system will be necessary for an efficient testing of mo
agent applications, particularly mobile agent application
Testing mobile agents and their strategies, e.g. (Küpper a
Park 1999), requires often valid network models and thu
fast and efficient parallel, distributed simulation strategie
Currently we are designing a paced distributed simulatio
system which uses time-stamped messages. The unde
ing concept is similar to (McLean and Fujimoto 2000) in
utilizing time stamps for reducing non-determinism.

Scaling a paced simulation that exchanges events
receive order time with agent software in general means
lessen or to amplify the time pressure for the agent softwa
In the case ofAutominder , whose activities depend on
wall clock time, the call to the internal clock is re-directed
to a virtual clock, which advances time according to th
scaling factor used in the simulation to speed up or to slo
down the experiments. This can also be done during t
simulation run.

If a scaled paced simulation exchanged events in tim
stamp order the local time models used to transform w
clock time into simulation time would have to be carefully
selected. A simultaneous usage of different time mode
e.g. locally within each model as utilized in theMole
scenario, or within externally running agents — the latte
would be easy to realize in theAutominder scenario —
and globally within the scaled paced simulation, aggravat
the interpretation of simulation results.

4 CONCLUSION

The testing of agents by simulation requires different mode
and also different strategies for synchronization. Wheth
representatives of the software to be tested are used
pends on how early in the designing process the simulati
is employed. Representatives can be derived from sp
ifications and lend themselves to testing specific aspe
of the agents. Because they can be used to complem
the software developed so far and provide insights into t
internal functioning of agents and their modules during ex
cution, representatives will be of use to interface simulatio
and agents early in the design process. However, wh
simulation is applied to test software, most of the time
will support so called behavioral testing. This black bo
testing, often executed by a third party, usually represen
35 to 65 percent of all testings whereby these percentag
are even higher for object oriented programs (Beizer 199
p. 11) and may even be topped by agent software.



Himmelspach, Röhl, and Uhrmacher

t
e
e
d

t

n
s
s

l-

is
e
d

g

ch

e

.

b

,
:
o-

-
-

3.

or
s.

3.

s:

ts

-

-

the entire system is tested it will be rather an environmen
model than a representative that will serve as an interfac
between simulation and agent system. Thus, during th
development process the coupling between simulation an
agent systems might be gradually loosened.

In the beginning of developing the agent system no
only the environment but also part of the agents will be
modeled. Therefore, an as fast as possible execution a
the use of local time models might support the early stage
of designing agents best. Later the agent software gain
weight and autonomy in the experimental setting. Rea
time executions of simulation and treating simulation and
agents as equal partners might provide the answer to th
changed perspective. However, it is not the case that pac
simulation is exclusively used in later phases and unpace
simulation in earlier phases. Thus, the required flexibility
refers not only to the modeling layer, but will permeate all
layers of simulation systems which are aimed at supportin
the design of software agents.

ACKNOWLEDGMENTS

This research is supported by the DFG (German Resear
Foundation).

REFERENCES

Bacon, D., and S. Goldstein. 1991. Hardware-assisted r
play of multiprocessor programs. InProceedings of
the ACM/ONR Workshop on Parallel and Distributed
Debugging, Volume 26 of ACM SIGPLAN Notices,
194–206.

Baumann, J., F. Hohl, K. Rothermel, and M. Strasser. 1997
Mole-Concepts of a mobile agent system.WWW Journal
- Special Issue on Applications and Techniques of We
Agents1 (3): 133–137.

Beizer, B. 1995.Black-Box Testing. John Wiley & Sons,
Inc.

Cho, Y. 2001.RTDEVS/CORBA: A Distributed Object Com-
puting Environment for Simulation-Based Design of
Real-Time Discreet Event Systems. Ph. D. thesis, Elec-
trical and Computer Engineering Dept., University of
Arizona.

Cho, Y., B. Zeigler, and H. Sarjoughian. 2001. Design and
implementation of distributed real-time DEVS/CORBA.
In IEEE Systems, Man, and Cybernetics Conference.
Tucson.

Ciancarini, P., and M. J. Wooldridge. (Eds.) 2001.Agent-
Oriented Software Engineering, Volume 1957 ofLecture
Notes in Computer Science. Springer.

Dam, K. H., and M. Winikoff. 2003. Comparing agent-
oriented methodologies. InProceedings of the Fifth In-
ternational Bi-Conference Workshop on Agent-Oriented
Information Systems. Melbourne. To appear.
d

d

-

Fujimoto, R. 2000.Parallel and Distributed Simulation
Systems. John Wiley and Sons.

Harrold, M. J. 2000. Testing: A roadmap. InICSE - Future
of SE Track, 61–72.

Jennings, N. R., K. Sycara, and M. Wooldridge. 1998. A
roadmap of agent resarch and development.Autonomous
Agents and Multi-Agent Systems1 (1): 275–306.

Kitano, H., S. Tadokoro, H. Noda, I. Matsubara, T. Takhasi
A. Shinjou, and S. Shimada. 1999. Robocup-rescue
Search and rescue for large scale disasters as a d
main for multi-agent research. InProc. of the IEEE
Conference on Systems, Men, and Cybernetics.

Küpper, A., and A. Park. 1999. Realizing Nomadic commu
nication with mobile agents: Strategies and their evalu
ation. In Telecommunications Information Networking
Architecture Conference.

McLean, T., and R. Fujimoto. 2000. Repeatability in real-
time distributed simulation executions. In14th Work-
shop on Parallel and Distributed Simulation (PADS
2000), 23–32.

Myers, G. 1979.The Art of Software Testing. John Wiley
& Sons, Inc.

Odell, J., H. Parunak, M. Fleischer, and S. Brueckner. 200
Agent UML: A formalism for specifying multiagent
software systems. InAgent-Oriented Software Engi-
neering III, ed. F. Giunchiglia, J. Odell, and G. Weiss,
Volume 2585 ofLecture Notes in Computer Science,
16–31. Springer.

Peraire, C., S. Barbey, and D. Buchs. 1998. Test selection f
object-oriented software based on formal specification
In PROCOMET, 385–403.

Pollack, M. 1996. Planning in dynamic environments: The
DIPART system. InAdvanced Planning Technology,
ed. A. Tate. AAAI.

Pollack, M., L. Brown, D. Colbry, C. McCarthy, C. Orosz,
B. Peintner, S. Ramakrishnan, and I.Tsamardinos. 200
Autominder: An intelligent cognitive orthotic system
for people with memory impairment.Robotics and Au-
tonomous Systems. to appear.

Ryan, M., and P.-Y. Schobbens. 2002. Agents and role
Refinement in alternating-time temporal logic. InIntel-
ligent Agents VIII: Agent Theories, Architectures, and
Languages, ed. J. Meyer and M. Tambe, Volume 2333
of Lecture Notes in Artificial Intelligence, 100–114.
Springer-Verlag.

Schattenberg, B., and A. Uhrmacher. 2001. Planning agen
in James.Proceedings of the IEEE89 (2): 158–173.

Schütz, W. 1993.The Testability of Distributed Real-Time
Systems. Kluwer Academic Publishers, Boston / Dor-
drecht / London.

Uhrmacher, A. 2001. A system theoretic approach to con
structing test beds for multi-agent systems. InA Tapestry
of Systems and AI-based Modeling & Simulation The
ories and Methodologies: A Tribute to the 60th Birth-



Himmelspach, Röhl, and Uhrmacher

w

l

,

:

c

c-

t-

e
d
s
a

at

n
-

at
f

r-
n
u-
g
rs
day of Bernard P. Zeigler, ed. F. Cellier and H. Sar-
joughian, Lecture Notes on Computer Science. Ne
York: Springer.

Uhrmacher, A., and K. Gugler. 2000. Distributed, Paralle
Simulation of Multiple, Deliberative Agents. InParal-
lel and Distributed Simulation Conference PADS’2000.
Bologna: IEEE Computer Society Press.

Uhrmacher, A., and M. Krahmer. 2001. A Conservative
Distributed Approach to Simulating Multi-Agent Sys-
tems. InProc. European Multi-Simulation Conference,
ed. E. Kerckhoffs and M. Snorek, 257–264. San Diego
SCS.

van der Hoek, W., and M. Wooldrige. 2003. Towards a logi
of rational agency.Journal of Autonomous Agents and
Multi-Agent Systems11 (2): 133–157.

Wolpert, D., and J. Lawson. 2002. Designing agent colle
tives for systems with markovian dynamics. InAAMAS
2002: Autonomous Agents and Multi-Agent Systems.

Wooldridge, M., and N. Jennings. 1998. Pitfalls of agen
oriented development. InProceedings of the 2nd Inter-
national Conference on Autonomous Agents, 385–391.

AUTHOR BIOGRAPHIES

JAN HIMMELSPACH holds a MSc in Computer Science
from the University of Koblenz. His research interests ar
on developing methods for agent-oriented modeling an
simulation, with a focus on possible interaction pattern
between simulation and software agents. He is currently
research scientist at the Modeling and Simulation Group
the University of Rostock.

MATHIAS RÖHL holds a MSc in Computer Science from
the University of Rostock. His research interests are o
developing methods for agent-oriented modeling and sim
ulation and their application to sociological, biological and
software systems. He is currently a research scientist
the Modeling and Simulation Group at the University o
Rostock.

ADELINDE M. UHRMACHER is an Associate Professor
at the Department of Computer Science at the Unive
sity of Rostock and head of the Modeling and Simulatio
Group. Her research interests are in modeling and sim
lation methodologies, particularly agent-oriented modelin
and simulation and their applications. Web pages of autho
can be found at:<www.informatik.uni-rostock.
de/mosi>


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 799
	02: 800
	03: 801
	04: 802
	05: 803
	06: 804
	07: 805
	08: 806
	09: 807


