
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

RUBE: A CUSTOMIZED 2D AND 3D MODELING FRAMEWORK FOR SIMULATION

Paul Fishwick
Jinho Lee

Minho Park
Hyunju Shim

Department of Computer and Information Science and Engineering

University of Florida
Gainesville, FL 32611, U.S.A.

ABSTRACT

We present a system called RUBE, which allows a modeler
to customize model components and model structure in 2D
and 3D. RUBE employs open source tools to assist in model
authoring, allowing the user to visualize models with differ-
ent metaphors. For example, it is possible to visualize an
event graph as a city block, or a Petri network as an organi-
cally-oriented 3D machine. We suggest that such flexibility
in visualization will allow existing model types to take on
forms that may be more recognizable to modeling sub-
communities, while employing notation as afforded by inex-
pensive graphical hardware. There is also a possibility to
create model types using entirely new notations.

1 INTRODUCTION

The discipline of computer simulation involves an inte-
grated set of components that are revisited, with feedback,
and executed as required for analyzing real world systems.
Generally, a simulation analyst proceeds by gathering data,
formulating a hypothetical model for the system, turning
this system into code, executing the code, gathering the re-
sulting data, and performing statistical analyses. Feedback
can occur anywhere, so that after one or several computer
runs are made, this suggests changes to the model. Most
models assume an a priori structure of some sort: linear
system, discrete event model type, differential equations.
One of the tasks of simulation is model generation, and this
involves a choice of model type and notation. Our purpose
in this paper is to describe a system that we call RUBE
(Fishwick 2002), which allows significant freedom in cus-
tomizing notation for models, and then executing them
while leveraging the environment governed by the nota-
tion. So, for example, one might choose to define an event
graph or a Petri net but then display this model using 3D
components, and have the simulation execution feedback
some of its results to animate the model as appropriate.

The reason for this type of customization is to allow mod-
elers greater flexibility and freedom in representation, so
that the metaphors that underlie all models can be brought
forth and surfaced as required.

RUBE is constructed as a kind of process, with proc-
ess components. At first a model is constructed in 2D or
3D. For all models, we have subscribed to the idea of open
source modeling and simulation environments, which aids
in dissemination of the modeling software. For 2D, we are
using SodiPodi and for 3D, Blender. In a pure modeling
building environment, model components could be chosen
from a library with full prior knowledge of their semantic
functions. While our research is moving us in that direc-
tion, currently we must provide an environment that manu-
ally associates a 2D or 3D icon with its semantic meaning.
So, a sphere might be a state or event, but the tool doesn’t
know this ahead of time, so the modeler must specify it
during the model authoring procedure. Additionally, the
modeler must specify the semantic function associated
with a model component. When in a state of a finite state
machine, for example, the modeler will surely want code to
be executed during that state’s duration. This code must be
associated with the state. Models are translated into an
XML (eXtensible Markup Language) language that we call
MXL (Multmodeling eXchange Language) (Kim and
Fishwick 2002).

2 OVERVIEW

2.1 Related Work

There are visualization tools, which support the areas in
Information Visualization, Software Visualization, and
Model Visualization, and modeling tools for modeling and
executing a simulation of complex systems.

Kirner and Martins developed the InfoVis system,
which combined the Information Visualization and the Vir-
tual Reality techniques to generate graphical representa-

Fishwick, Lee, Park, and Shim

tions of the information. A notable feature of the InfoVis
was that it provided the characteristics of Virtual Reality:
Interaction and Navigation. However, they employed dif-
ferent commercial software to support these characteristics
(Kirner et al. 2000).

Another visualization tool used in the Software Visu-
alization is GAMMATELLA, developed by Orso and col-
leagues. They defined a distinct visualization approach that
provided a multilevel representation of a software system
and a use of coloring to represent its data. The users could
efficiently visualize and explore the large amount of data
along with big programs using these techniques (Orso et al.
2003).

RUBE, as a Model Visualization tool, focuses on the
customization of a model structure. In RUBE, the users are
allowed to customize their own structures, such as adding
sounds, textures and objects, in appropriate areas. The cus-
tomization needs an explicit support in the way of XML
languages, and edits to open source packages and it leads
ultimately to an integrative modeling interface capability
where different models can be laid on top of, or morphed-
to, the base scene being modeled.

Modelica is an object-oriented modeling language for
complex and heterogeneous physical systems. It supports
hierarchical modeling and has the ability to represent the
2D-based topology in a high-level abstraction as well as
detailed model execution by using equations for modeling
the physical system (Mattsson et al. 1998; Elmqvist et al.
1999; Tiller 2001).

PtolemyII provides heterogeneous, concurrent model-
ing and design, and it is based on MoML to specify each
model. MoML is an XML-based functional block model-
ing language and supports multimodeling for PtolemyII
(Buck et al. 1994; Lee et al. 2000; Liu et al. 2002).

Modelica is a 2D-based toolkit and is not an XML-
based language. It does not provide any customization for
the model visualization nor does it directly support reusing
or exchanging of models. PtolemyII supports 2D and par-
tially, 3D (Java 3D) visualization, whereas RUBE fully
supports XML-based 2D(SVG) and 3D(X3D) web-based
visualization and simulation (Fishwick 1996; Page et al.
1998; Page et al. 2000) as well as a multimodel (Fishwick
and Zeigler 1992; Nance et al. 1999; Zeigler et al. 2001).
The block diagram of MoML is composed of general func-
tional blocks that are more complex than the simple blocks
of DXL in RUBE (Lee and Fishwick 2002).

2.2 RUBE Framework

A simplified overall structure of the XML-based RUBE
framework is shown in Figure 1. RUBE is an XML-based
framework and application, which permits the users to
specify and simulate a dynamic model, with an ability to
customize a model presentation using 2D or 3D visualiza-
tion. In Figure 1, the RUBE framework is defined using
two stages: model representation and model creation.

For model representation, a dynamic model, which is
generated by a 2D or a 3D interface, is composed of two
sorts of files: a scene file, which contains 2D or 3D geome-
try objects, and a model file, which is represented by MXL.
RUBE uses Sodipodi and Blender for each representation of
the 2D or the 3D model scenes and behaviors. The scene
files don’t have any information about model behavior or
dynamics except regarding the appearance of the model. The
scene files can be either 2D or 3D XML documents: SVG
(Scalar Vector Graphics) or X3D (eXtensible 3D) respec-
tively. The MXL file describes the behavior of the model to
represent the model file that describes a heterogeneous mul-
timodel in an abstract level such as FBM (Functional Block
Model) and FSM (Finite State Machine).

For model creation, a 2D or a 3D merge engine, which
uses XSLT (eXtensible Stylesheet Language Transforma-
tion), merges two XML documents: a scene file and a model
file. For model simulation, the MXLtoDXL translator trans-
lates a model file written in MXL into an assembly level
modeling language called DXL, which can be described
with homogeneous simple block diagrams. The DXL is
translated into an executable programming code for the
model simulation using the DXLtoJavascript translator. The
programming code can be executed using SimpackJ/S (Park

Simulation code
…

SimPackJ/S
…

Simulation file

MXL file
MXLtoDXL

translator using
XSLT

DXLtoJavascript
translator using

DOM
DXL file

MXL file Simulation file

Scene file
2D & 3D

Merge engine

2D & 3D
RUBE dynamic
modeling file

2D interface
(Sodipodi)

3D interface
(Blender)

Figure 1: RUBE Framework

Fishwick, Lee, Park, and Shim

and Fishwick 2002), which provides the underlying code
foundation libraries, classes, and objects.

3 RUBE METHODOLOGY

3.1 Example: A Four-Stroke Gasoline Engine

In this section, we will introduce a scene, a four stroke
gasoline engine as an example of how to use RUBE. A
four-stroke gasoline engine has four phases, which cycle
until the engine is turned off. The four phases are Com-
pression, Ignition, Expansion, and Exhaustion. In this
gasoline engine, injected fuel vapor is compressed by the
piston of the cylinder (Compression) and then the fuel is
ignited (Ignition). As a result of the ignition, the piston of
the cylinder moves back (Expansion). The resulting fumes
exit through the exhaust manifold (Exhaustion).

The behavior of the engine can be described as the FSM
in Figure 2. While an input value of 0 will let the engine stay
at the current state, the value of 1 causes the engine to move
to the next state. An input value of 2 in the Ignition state in-
dicates that the ignition is turned off (Off state).

Figure 2: An FSM Describing a Four-Stroke Gasoline
Engine

Figure 3 shows an SVG visualization of engine snap-

shots for each phase. The intake, compression, power or
work, and exhaust stroke are mapped to an Expansion,
Compression, Ignition, and Exhaustion state respectively.
The position of the piston changes as the state of the en-
gine changes.

The engine system can also be modeled with a pipe-
line of 3 functions to create an FBM. To execute the en-
gine, input to and output from the engine must be specified
from the outside world. The engine can be embedded in-
side of the FBM block with one input and one output block
associated with it. The input block feeds the input value to
the engine. The engine block represents an engine model

Expan
sion

0

Ignition

Off

Exhaus-
tion

Com-
pression

2

1

1

1

1
0

0

Engine FSM

1

0
that behaves as described in Figure 2. The current state of
the engine is passed to the next block, namely the output
block. Visualization of the engine in 2D and 3D will be
discussed in section 3.2 and 3.3, respectively.

Figure 3: Phases of a Four-Stroke Engine in SVG A) In-
take Stroke; B) Compression Stroke; C) Power or Work
Stroke; D) Exhaust Stroke

DCBA

3.2 2D Model

2D model visualization in RUBE is achieved using SVG
(Scalable Vector Graphics). SVG represents a 2D graphic
information in a compact and portable form. It is a vector
and text based 2D graphic language. Unlike raster graphics,
SVG is in a vector format, which means SVG images can be
printed at any resolution without loss of image quality, when
one enlarges or reduces the size of the images.

As with other XML applications, an SVG file can be
created from a text editor. The three types of graphic ob-
jects in SVG are vector graphic shape, image, and text.
General SVG path elements and basic shapes enable the
construction of both simple and complex 2D models. The
basic shapes in SVG are the rectangle, circle, ellipse, line,
plotlines, and polygon. The filtering operation gives a
raster effect on the SVG drawings, while the graphics are
still scalable and displayable at different resolutions. Once
the developers understand the SVG elements and syntax,
they are free to build their own personalized model and
component representation.

SVG is relatively easy to create manually using a text
editor; however, having a visual editor which creates SVG
automatically is more useful. Sodipodi is the recommended
SVG editor in RUBE since its native file format is SVG.
Sodipodi provides a manual editing window from where
users can manipulate SVG objects in detail, such as giving
the object a meaningful ID. In addition, Sodipodi supports
the Linux system, as well as the Windows system. Figure 4
shows a snapshot of Sodipodi.

SVG viewers include an XML parser, a CSS parser,
and an SVG rendering engine to draw the images. Figure 5
shows rendered SVG of an FBM block diagram for a four
stroke gasoline engine. Three different colored rectangles
represent each block and two arrows, which consist of
three path objects, represent the data flow.

Fishwick, Lee, Park, and Shim

Figure 4: A Snapshot of the Sodipodi Interface

Figure 5: FBM for the Engine in SVG

Although SVG can be dynamic and interactive, the

SVG scene discussed in this section is static, without the
dynamic behavior associated with it. This SVG only visu-
alizes the engine system. Adding a dynamic behavior to
SVG drawings can be done by writing a script file.

The JavaScript code from SimPack J/S and the simula-
tion code generated based on the model file are integrated
with the scene file. As a result of a dynamic behavior, the
code is added to the static scene file. Figure 6 shows the
simulation output of the engine model from the 2D authoring
process. Text in the input block and the current state block
represent values of each block at simulation time 99. The tra-
jectory of input to the engine block is drawn in the en-

Figure 6: Simulation Output from the 2D Engine Model
gine input graph, and the trace of the current state over
time is shown in the engine state graph.

3.3 3D Model

We use Blender as a 3D authoring tool and the Python
scripting language for implementing an interface.

Blender is a free and a fully functional 3D model-
ing/rendering/animation package for Linux/Unix/Windows
systems. Python is an interpreted, interactive, and object-
oriented programming language that is often compared to
Tcl, Perl, Scheme or Java. Python combines remarkable
power with very clear syntax, which is also usable, as an
extension language, for applications that need a program-
mable interface. Python is included in Blender as a script-
ing language, which allows us to use Python script to ex-
port a scene graph into different files, such as MXL
(Multimodel eXchange Language) and VRML (Virtual
Reality Modeling Language).

We have developed an interface to author a Blender
3D scene within the RUBE framework. The Blender inter-
face for RUBE consists of 2 parts: a Scene recognizer and
an Exporter. The Scene recognizer is a process that assists
the user in mapping each object of a Blender scene to
MXL elements and attributes. This provides a gateway for
converting 3D objects into text forms, called MXL. A
snapshot of the Scene recognizer is shown in Figure 7. For
example, as a user selects an object in a scene and moves a
mouse to an interface window in Blender, an attribute edi-
tor for the object appears dynamically. The user then
chooses a model type, such as FBM, FSM, and Petri-Net,
and an element type, such as block, state, trace, and transi-
tion. Currently FBM and FSM are supported as model
types. In addition, we provide a simulation element type
that is essential for model execution within an experimen-
tal frame. The contents of the attribute editor are changed
when a user presses the “continue” button. In Figure 7, if a
user selects an arrow and presses the button, the contents
of the attribute editor is changed. The new attribute editor
requests more specific data from the user, such as the
source object and the destination object. In this case, the
user can designate an object as the source or the destination
in the scene by (1) choosing an object, which may be a
source or a destination object, (2) moving the mouse to the
interface window, and then (3) pressing a source or a des-
tination button provided by the editor. All data given by
the user is stored in the dictionary data structure provided
by Python. This data can then be retrieved and modified
when the user selects the same object again.

Exporter is a collection of components that can create
a final dynamic scene file, VRML or Blender, using the
user’s Blender scene file, given input data and the user-
defined script files in JavaScript or Python source files.
Currently only the VRML scene is generated as a final dy-
namic scene. Figure 8 shows the final VRML scene created
by the interface.

Fishwick, Lee, Park, and Shim

Object attribute editor
ID: Each object name
Script ID: User-defined Script
file name
Function: function name in the
script file
Input port: Input type and a
number of ports
Output port: Output type and a
number of ports
Source and Destination: Ob-
ject’s source and destination

Figure 7: Scene Recognizer

Figure 8: Final VRML Scene Generated by the 3D-
Based RUBE Framework

In the 3D-based RUBE framework, we provide two

kinds of simulation methodologies: a real-time method us-
ing JavaScript in VRML, and a non-real-time method us-
ing Python in Blender. In the real-time simulation, the final
dynamic scene file is VRML with simulation codes in
JavaScript. However, in the non-real-time simulation, the
final dynamic scene file is Blender with simulation codes
in Python. In the VRML case, VRML has an ability to in-
teract with the user. The user can start, stop, or resume
model simulation by touching the 3D objects. Then
VRML allows the user to navigate the virtual world. In
contrast, Blender provides higher quality rendering, and
various kinds of 3D object types such as sub-division
polygon meshes and NURBS surfaces.

Figure 9 shows the simulation output of the engine
model under the real-time simulation environment. Two
graphs in Figure 9 represent an input trajectory and the cor-
responding state trajectory.

Figure 9: Simulation Output from the 3D Engine Model

3.4 XML-based Modeling and Simulation

MXL and DXL are XML-based modeling languages used
for representing and executing models in the RUBE fram-
work. MXL is an XML-based modeling language defined
for representing the semantics and the behaviors of a hetero-
geneous dynamic model such as a multimodel as well as a
simple FSM and FBM. DXL is a low-level XML-based
modeling language in RUBE. It represents a homogeneous
dynamic model using a simple block diagram, which con-
sists of blocks, ports, and connectors. Because both MXL
and DXL are XML-based, MXL models can be easily trans-
lated into DXL models through XSLT-based translators.

Figure 10 shows an MXL file for a four stroke gasoline
engine which is used for a 2D and a 3D modeling and simu-
lation. In Figure 10, <input> and <output> handles are used
to connect different blocks and to transfer data between
blocks in Figure 11. Because these blocks can include an-
other model for a multimodeling, these handles play a role
of connecting heterogeneous models. The element <simula-
tion> provides the factors for simulating a model such as
starting time, ending time, and time duration.

Fishwick, Lee, Park, and Shim

Figure 10: MXL Specifying the Engine’s Dynamics

<?xml version=“1.0” encoding=“utf-16”?>
<MXL>
 <fbm id=“MXL”>
 <block id=“F1”>
 <output id=“F1_outports_integer1” … index=“0”/>
 <script lang=“JavaScript” src=“input.js” func=“gen”/>
 </block>

 <block id=“F2”>
 <input id=“F2_inports_integer1” … index=“0”/>
 <output id=“F2_outports_integer1” … index=“0”/>
 <script lang=“JavaScript” src=“input.js” func=“engine”/>
 </block>

 <block id=“F3”>
 <input id=“F3_inports_integer1” … index=“0”/>
 <script lang=“JavaScript” src=“input.js” func=“print”/>
 </block>
…
 </fbm>
 <simulation start_time=“0” end_time=“100”
 delta_time=“1” cycle_time=“1” />
</MXL>

DXL is based on functions that are translated into basic
code units of SimPackJ/S using event-based scheduling
(Fishwick 1995; Nance 1996; Zeigler 1984). Functional
blocks of DXL support heterogeneous models with synchro-
nous and asynchronous properties. Asynchronous blocks can
process the input data, when any of their input ports has
valid data, or send output to next blocks, when any of their
output ports has valid data. On the other hand, synchronous
blocks can only process the input data when all of their input
ports have valid data or can only send output to next blocks
when all of their output ports have valid data.

Figure 11: FBM Model with Block Handles

F1 F3F2

The simple blocks of DXL are actual program codes
such as Java or Javascript. They are executed by an event-
based scheduling method, which regards each simple block
as a unit of the simulation. DXL operates like an assembly
language layer for RUBE, by providing independence be-
tween various heterogeneous model types and their actual
simulation codes.

4 CONCLUSION

In this paper, we presented a new modeling and simulation
framework called RUBE. We explained 2D and 3D RUBE
methodologies with a four-stroke gasoline engine model.
The primary goal of RUBE is to provide the extensive
modeling and the simulation environment for modelers, to
achieve personalized, customized, and aesthetic modeling
in a 2D and a 3D model. RUBE also provides a convenient
and modularized Web-based modeling and simulation us-
ing emerging XML technologies.
While the above advantages of RUBE have given us a
novel modeling environment, allowing simulation models
to break out of minimal, standard iconography, we are cur-
rently working on a number of improvements to counter
the deficits of our approach. The primary disadvantage of
RUBE is that it is a little cumbersome to build models
compared with a special-purpose model building tool. The
price of customization and flexibility seems to be slower
speed in model creation. There are specific techniques that
we are researching to assist in solving this problem. The
first involves a set of libraries for both model components
and functions. Let’s take a finite state machine as the
model type under construction for an example. All states
and transitions should come with default functions and ge-
ometry. If the user wishes to make modifications, this is
made easier when defaults are present. So, the 3D defaults
might be spheres and 3D arrows. Default functions might
be to plot the current state over time as the machine output.
If the user chooses a special sort of geometry to represent a
state (such as a particular geometrical object) then it should
be possible to reuse that object in the model without ex-
plicitly specifying that it is also a state. The assumption
here is that for many classes of models, similar model
component types suggest similar geometry. Another prob-
lem is the issue of topological connectivity, which must be
manually specified in SodiPodi and Blender since they
know nothing of connectivity. A solution is to induce the
topology from the geometry using an intelligent algorithm.

Recently, we have been interested in a new modeling
environment for future work. We refer to this environment
as the integrative modeling interface, which allows the user
to switch between information, geometry, and dynamic
models while never leaving the immersive scene. This will
require more advanced visualization techniques and involve
a more complicated multimodel environment. In addition,
we will support the processing of an XML data stream in a
future DXL and a distributed simulation based on a message
passing method. In other words, each block can operate on
an XML input stream and produce an XML output. These
blocks can become the processes in a distributed simulation
system. This means a model itself can be processed as a pa-
rameter of blocks in DXL so that multiple models can com-
municate their data using message passing.

ACKNOWLEDGMENTS

We would like to thank the National Science Foundation
under grant EIA-0119532 and the Air Force Research
Laboratory under grant F30602-01-1-05920119532 for
support of this research.

REFERENCES

J. T. Buck, Ha S., E. A. Lee, and D. G. Messerschmitt.
1994. Ptolemy: A Framework for Simulating and Pro-

Fishwick, Lee, Park, and Shim

totyping Heterogeneous Systems, Int. Journal of
Computer Simulation, special issue on Simulation
Software Development, 4:155-182.

H. Elmqvist, S.E. Mattsson, and M. Otter. 1999. Modelica
- A Language for Physical System Modeling, Visuali-
zation and Interaction, Plenary paper. IEEE Sympo-
sium on Computer-Aided Control System Design,
CACSD’99, 630-639. Hawaii.

P. A. Fishwick and B. P. Zeigler. 1992. A Multimodel
Methodology for Qualitative Model Engineering,
ACM Transactions on Modeling and Computer Simu-
lation, 2(1):52-81.

P. A. Fishwick. 1995. Simulation Model Design and Exe-
cution: Building Digital Worlds. Englewood Cliffs,
NJ: Prentice-Hall.

P. A. Fishwick. 1996. Web-Based Simulation: Some Per-
sonal Observations, Proceedings of the 1996 Winter
Simulation Conference, 772-779. San Diego, CA.

P. A. Fishwick. 2002. rube: An XML-Based Architecture
for 3D Process Modeling and Model Fusion, Proceed-
ings of Enabling Technology for Simulation Science,
Part of SPIE Aerosense ‘02 Conference, 330-335. Or-
lando, FL.

T. Kim and P. A. Fishwick. 2002. An XML-Based Visuali-
zation and Simulation Framework for Dynamic Mod-
els. Proceedings of Enabling Technology for Simula-
tion Science, Part of SPIE Aerosense ‘02 Conference,
336-347. Orlando, FL.

T. G. Kirner and V. F. Martins. 2000. Development of an
Information Visualization Tool Using Virtual Reality.
Proceedings of the 2000 ACM symposium on Applied
computing, 604-606.

E. A. Lee and S. Neuendorffer. 2000. MoML - A Modeling
Markup Language in XML, Version 0.4, Technical
Memorandum UCB/ERL M00/12, University of Cali-
fornia, Berkeley, CA 94720.

J. Lee and P. A. Fishwick. 2002. A Dynamic Exchange
Language Layer for rube, Proceedings of Enabling
Technology for Simulation Science, Part of SPIE
Aerosense ‘02 Conference, 359-366. Orlando, FL.

X. Liu, J. Liu, J. Eker, and E. Lee. 2002. Heterogeneous
Modeling and Design of Control Systems, to appear in
Software-Enabled Control: Information Technology
for Dynamic Systems, New York, IEEE Press.

S. E. Mattsson, H. Elmqvist, and M. Otter. 1998. Physical
System Modeling with Modelica, Control Engineering
Practice 6:501-510,.

R. E. Nance 1996. A History of Discrete Event Simulation
Programming Languages, In History of Programming
Languages, ACM Press and Addison-Wesley Publish-
ing Co., 369-427.

R. E. Nance, E. M. Overstreet, and E. H. Page. 1999. Re-
dundancy in Model Specification for Discrete Event
Simulation. ACM Transactions on Modeling and Com-
puter Simulation 9(3):254-281.
A. Orso, J. Jones, and M. J. Harrold. 2003. Visualization of
Program-Execution Eata for Deployed Software. Pro-
ceedings of the 2003 ACM symposium on Software
visualization, 67-76.

E. H. Page, P. A. Fishwick, K. J. Healy, R. E. Nance, and
R. J. Paul. 1998. The Modeling Methodological Im-
pacts of Web-Based Simulation. Proceedings of the
1998 International Conference on Web-Based Model-
ing & Simulation, Simulation Series, Volume 30,
Number 1, P. A. Fishwick, D. R. C. Hill, and R.
Smith, Eds. Society for Computer Simulation, 123-
130. San Diego, CA.

E. H. Page, A. Buss, P. A. Fishwick, K. J. Healy, R. E.
Nance, and R. J. Paul. 2000. Web-Based Simulations:
Revolution or Evolution? ACM Transactions on Mod-
eling and Computer Simulation, 10(1):3-17.

M. Park and P. A. Fishwick. 2002. SimPackJ/S: A Web-
Oriented Toolkit for Discrete Event Simulation, Pro-
ceedings of Enabling Technology for Simulation Sci-
ence, Part of SPIE Aerosense ‘02 Conference, 348-
358. Orlando, FL.

M. Tiller. 2001. Introduction to Physical System Modeling
with Modelica. Kluwer International Series in Engineer-
ing and Computer Science, 615, Kluwer Publishing.

B. P. Zeigler. 1984. Multifacetted Modeling and Discrete
Event Simulation, Academic Press.

B. P. Zeigler, H. Praehofer, and T. G. Kim. 2001. Theory
of Modleing and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems,
Second Edition, Academic Press.

AUTHOR BIOGRAPHIES

PAUL FISHWICK is Professor of Computer and Infor-
mation Science and Engineering at the University of Flor-
ida. He received the PhD in Computer and Information
Science from the University of Pennsylvania in 1986, and
has six years of industrial and government production and
research experience (Newport News Shipbuilding and
NASA Langley Research Center). His research interests
are in computer simulation modeling and analysis methods
for complex systems. He is a Senior Member of the IEEE
and a Fellow of the Society for Computer Simulation. He
is also a member of the IEEE Society for Systems, Man
and Cybernetics, ACM and AAAI. Dr. Fishwick founded
the comp.simulation Internet news group (Simulation Di-
gest) in 1987, which has served numerous subscribers. He
has chaired several workshops and conferences in the area
of computer simulation, including serving as General Chair
of the 2000 Winter Simulation Conference. He was chair-
man of the IEEE Computer Society technical committee on
simulation (TCSIM) for two years (1988-1990) and he is
on the editorial boards of several journals including the
ACM Transactions on Modeling and Computer Simula-
tion, IEEE Transactions on Systems, Man and Cybernetics,

Fishwick, Lee, Park, and Shim

The Transactions of the Society for Computer Simulation,
International Journal of Computer Simulation, and the
Journal of Systems Engineering. He has delivered 10 Key-
note addresses at major conferences relating to simulation.
He has published over 125 technical publications, written
one textbook, co-edited two Springer Verlag volumes in
simulation, and published seven book chapters. His email
and web addresses are <fishwick@cise.ufl.edu>
and <http://www.cise.ufl.edu/~fishwick>.

JINHO LEE is a Ph.D. student in Computer and Informa-
tion Science and Engineering at the University of Florida.
He received his M.S. in Computer and Science Engineer-
ing from Sungkyunkwan Univerity in 1999. His research
interests are modeling methodology and distributed sys-
tem. His email address is <jhlee@cise.ufl.edu>.

MINHO PARK is a PhD student of Computer and Infor-
mation Science and Engineering at the University of Flor-
ida. He received his M.S. in Computer and Information
Science and Engineering at the University of Florida in
2002. He worked as a software engineer at Korea Securi-
ties Computer Corporation in Korea, from 1994 to 1998
and an assistant manager at Good-Morning Securities
Company in Korea, from 1999 to 2000. His major research
areas are modeling for computer simulation and 3D Model
Visualization and customization. His email address is
<mhpark@cise.ufl.edu>.

HYUNJU SHIM is a Ph.D. student in Computer and In-
formation Science and Engineering at the University of
Florida. She received her M.S. in Computer and Informa-
tion Science and Engineering from the University of Flor-
ida in 2003. Her research interests include 2D Model Visu-
alization, customization, and simulation. Her email address
is <hshim@cise.ufl.edu>.

mailto:fishwick@cise.ufl.edu
http://www.cise.ufl.edu/~fishwick
mailto:rbarton@psu.edu
mailto:fishwick@cise.ufl.edu
http://www.cise.ufl.edu/~fishwick
mailto:rbarton@psu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 755
	02: 756
	03: 757
	04: 758
	05: 759
	06: 760
	07: 761
	08: 762

