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ABSTRACT 

We present a system called RUBE, which allows a modeler 
to customize model components and model structure in 2D 
and 3D. RUBE employs open source tools to assist in model 
authoring, allowing the user to visualize models with differ-
ent metaphors. For example, it is possible to visualize an 
event graph as a city block, or a Petri network as an organi-
cally-oriented 3D machine. We suggest that such flexibility 
in visualization will allow existing model types to take on 
forms that may be more recognizable to modeling sub-
communities, while employing notation as afforded by inex-
pensive graphical hardware. There is also a possibility to 
create model types using entirely new notations. 

1 INTRODUCTION 

The discipline of computer simulation involves an inte-
grated set of components that are revisited, with feedback, 
and executed as required for analyzing real world systems. 
Generally, a simulation analyst proceeds by gathering data, 
formulating a hypothetical model for the system, turning 
this system into code, executing the code, gathering the re-
sulting data, and performing statistical analyses. Feedback 
can occur anywhere, so that after one or several computer 
runs are made, this suggests changes to the model. Most 
models assume an a priori structure of some sort: linear 
system, discrete event model type, differential equations. 
One of the tasks of simulation is model generation, and this 
involves a choice of model type and notation. Our purpose 
in this paper is to describe a system that we call RUBE 
(Fishwick 2002), which allows significant freedom in cus-
tomizing notation for models, and then executing them 
while leveraging the environment governed by the nota-
tion. So, for example, one might choose to define an event 
graph or a Petri net but then display this model using 3D 
components, and have the simulation execution feedback 
some of its results to animate the model as appropriate. 
 
The reason for this type of customization is to allow mod-
elers greater flexibility and freedom in representation, so 
that the metaphors that underlie all models can be brought 
forth and surfaced as required. 

RUBE is constructed as a kind of process, with proc-
ess components. At first a model is constructed in 2D or 
3D. For all models, we have subscribed to the idea of open 
source modeling and simulation environments, which aids 
in dissemination of the modeling software. For 2D, we are 
using SodiPodi and for 3D, Blender. In a pure modeling 
building environment, model components could be chosen 
from a library with full prior knowledge of their semantic 
functions. While our research is moving us in that direc-
tion, currently we must provide an environment that manu-
ally associates a 2D or 3D icon with its semantic meaning. 
So, a sphere might be a state or event, but the tool doesn’t 
know this ahead of time, so the modeler must specify it 
during the model authoring procedure. Additionally, the 
modeler must specify the semantic function associated 
with a model component. When in a state of a finite state 
machine, for example, the modeler will surely want code to 
be executed during that state’s duration. This code must be 
associated with the state. Models are translated into an 
XML (eXtensible Markup Language) language that we call 
MXL (Multmodeling eXchange Language) (Kim and 
Fishwick 2002).   

2 OVERVIEW 

2.1 Related Work 

There are visualization tools, which support the areas in 
Information Visualization, Software Visualization, and 
Model Visualization, and modeling tools for modeling and 
executing a simulation of complex systems. 

Kirner and Martins developed the InfoVis system, 
which combined the Information Visualization and the Vir-
tual Reality techniques to generate graphical representa-
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tions of the information. A notable feature of the InfoVis 
was that it provided the characteristics of Virtual Reality: 
Interaction and Navigation. However, they employed dif-
ferent commercial software to support these characteristics 
(Kirner et al. 2000).  

Another visualization tool used in the Software Visu-
alization is GAMMATELLA, developed by Orso and col-
leagues. They defined a distinct visualization approach that 
provided a multilevel representation of a software system 
and a use of coloring to represent its data. The users could 
efficiently visualize and explore the large amount of data 
along with big programs using these techniques (Orso et al. 
2003).  

RUBE, as a Model Visualization tool, focuses on the  
customization of a model structure. In RUBE, the users are 
allowed to customize their own structures, such as adding 
sounds, textures and objects, in appropriate areas. The cus-
tomization needs an explicit support in the way of XML 
languages, and edits to open source packages and it leads 
ultimately to an integrative modeling interface capability 
where different models can be laid on top of, or morphed-
to, the base scene being modeled. 

Modelica is an object-oriented modeling language for 
complex and heterogeneous physical systems. It supports 
hierarchical modeling and has the ability to represent the 
2D-based topology in a high-level abstraction as well as 
detailed model execution by using equations for modeling 
the physical system (Mattsson et al. 1998; Elmqvist et al. 
1999; Tiller 2001). 

PtolemyII provides heterogeneous, concurrent model-
ing and design, and it is based on MoML to specify each 
model. MoML is an XML-based functional block model-
ing language and supports multimodeling for PtolemyII 
(Buck et al. 1994; Lee et al. 2000; Liu et al. 2002).  

Modelica is a 2D-based toolkit and is not an XML-
based language. It does not provide any customization for 
the model visualization nor does it directly support reusing 
or exchanging of models. PtolemyII supports 2D and par-
tially, 3D (Java 3D) visualization, whereas RUBE fully 
supports XML-based 2D(SVG) and 3D(X3D) web-based 
visualization and simulation (Fishwick 1996; Page et al. 
1998; Page et al. 2000) as well as a multimodel (Fishwick 
and Zeigler 1992; Nance et al. 1999; Zeigler et al. 2001). 
The block diagram of MoML is composed of general func-
tional blocks that are more complex than the simple blocks 
of DXL in RUBE (Lee and Fishwick 2002).  

2.2 RUBE Framework 

A simplified overall structure of the XML-based RUBE 
framework is shown in Figure 1. RUBE is an XML-based 
framework and application, which permits the users to 
specify and simulate a dynamic model, with an ability to 
customize a model presentation using 2D or 3D visualiza-
tion. In Figure 1, the RUBE framework is defined using 
two stages: model representation and model creation. 

For model representation, a dynamic model, which is 
generated by a 2D or a 3D interface, is composed of two 
sorts of files: a scene file, which contains 2D or 3D geome-
try objects, and a model file, which is represented by MXL. 
RUBE uses Sodipodi and Blender for each representation of 
the 2D or the 3D model scenes and behaviors. The scene 
files don’t have any information about model behavior or 
dynamics except regarding the appearance of the model. The 
scene files can be either 2D or 3D XML documents: SVG 
(Scalar Vector Graphics) or X3D (eXtensible 3D) respec-
tively. The MXL file describes the behavior of the model to 
represent the model file that describes a heterogeneous mul-
timodel in an abstract level such as FBM (Functional Block 
Model) and FSM (Finite State Machine).  

For model creation, a 2D or a 3D merge engine, which 
uses XSLT (eXtensible Stylesheet Language Transforma-
tion), merges two XML documents: a scene file and a model 
file. For model simulation, the MXLtoDXL translator trans-
lates a model file written in MXL into an assembly level 
modeling language called DXL, which can be described 
with homogeneous simple block diagrams. The DXL is 
translated into an executable programming code for the 
model simulation using the DXLtoJavascript translator. The 
programming code can be executed using SimpackJ/S (Park 
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Figure 1: RUBE Framework 
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and Fishwick 2002), which provides the underlying code 
foundation libraries, classes, and objects. 

3 RUBE METHODOLOGY 

3.1 Example: A Four-Stroke Gasoline Engine 

In this section, we will introduce a scene, a four stroke 
gasoline engine as an example of how to use RUBE. A 
four-stroke gasoline engine has four phases, which cycle 
until the engine is turned off. The four phases are Com-
pression, Ignition, Expansion, and Exhaustion. In this 
gasoline engine, injected fuel vapor is compressed by the 
piston of the cylinder (Compression) and then the fuel is 
ignited (Ignition). As a result of the ignition, the piston of 
the cylinder moves back (Expansion). The resulting fumes 
exit through the exhaust manifold (Exhaustion).  

The behavior of the engine can be described as the FSM 
in Figure 2. While an input value of 0 will let the engine stay 
at the current state, the value of 1 causes the engine to move 
to the next state. An input value of 2 in the Ignition state in-
dicates that the ignition is turned off (Off state). 
 

Figure 2: An FSM Describing a Four-Stroke Gasoline 
Engine 

 
Figure 3 shows an SVG visualization of engine snap-

shots for each phase. The intake, compression, power or 
work, and exhaust stroke are mapped to an Expansion, 
Compression, Ignition, and Exhaustion state respectively. 
The position of the piston changes as the state of the en-
gine changes.   

The engine system can also be modeled with a pipe-
line of 3 functions to create an FBM. To execute the en-
gine, input to and output from the engine must be specified 
from the outside world. The engine can be embedded in-
side of the FBM block with one input and one output block 
associated with it. The input block feeds the input value to 
the engine. The engine block represents an engine model 
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1
0 

0

Engine FSM 

1 

0 
that behaves as described in Figure 2. The current state of 
the engine is passed to the next block, namely the output 
block. Visualization of  the engine in 2D and 3D will be 
discussed in section 3.2 and 3.3, respectively. 

Figure 3: Phases of a Four-Stroke Engine in SVG A) In-
take Stroke; B) Compression Stroke; C) Power or Work
Stroke; D) Exhaust Stroke 

DCBA

3.2 2D Model 

2D model visualization in RUBE is achieved using SVG 
(Scalable Vector Graphics). SVG represents a 2D graphic 
information in a compact and portable form. It is a vector 
and text based 2D graphic language. Unlike raster graphics, 
SVG is in a vector format, which means SVG images can be 
printed at any resolution without loss of image quality, when 
one enlarges or reduces the size of the images. 

As with other XML applications, an SVG file can be 
created from a text editor. The three types of graphic ob-
jects in SVG are vector graphic shape, image, and text. 
General SVG path elements and basic shapes enable the 
construction of both simple and complex 2D models. The 
basic shapes in SVG are the rectangle, circle, ellipse, line, 
plotlines, and polygon. The filtering operation gives a 
raster effect on the SVG drawings, while the graphics are 
still scalable and displayable at different resolutions. Once 
the developers understand the SVG elements and syntax, 
they are free to build their own personalized model and 
component representation.  

SVG is relatively easy to create manually using a text 
editor; however, having a visual editor which creates SVG 
automatically is more useful. Sodipodi is the recommended 
SVG editor in RUBE since its native file format is SVG. 
Sodipodi provides a manual editing window from where 
users can manipulate SVG objects in detail, such as giving 
the object a meaningful ID. In addition, Sodipodi supports 
the Linux system, as well as the Windows system. Figure 4 
shows a snapshot of Sodipodi.  

SVG viewers include an XML parser, a CSS parser, 
and an SVG rendering engine to draw the images. Figure 5 
shows rendered SVG of an FBM block diagram for a four 
stroke gasoline engine. Three different colored rectangles 
represent each block and two arrows, which consist of 
three path objects, represent the data flow.  
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Figure 4: A Snapshot of the Sodipodi Interface 

 

 
Figure 5: FBM for the Engine in SVG 

 
Although SVG can be dynamic and interactive, the 

SVG scene discussed in this section is static, without the 
dynamic behavior associated with it. This SVG only visu-
alizes the engine system. Adding a dynamic behavior to 
SVG drawings can be done by writing a script file.  

The JavaScript code from SimPack J/S and the simula-
tion code generated based on the model file are integrated 
with the scene file. As a result of a dynamic behavior, the 
code is added to the static scene file. Figure 6 shows the 
simulation output of the engine model from the 2D authoring 
process. Text in the input block and the current state block 
represent values of each block at simulation time 99. The tra-
jectory of input to the engine block is drawn in the en- 
 

 
Figure 6: Simulation Output from the 2D Engine Model 
gine input graph, and the trace of the current state over 
time is shown in the engine state graph. 

3.3 3D Model 

We use Blender as a 3D authoring tool and the Python 
scripting language for implementing an interface.  

Blender is a free and a fully functional 3D model-
ing/rendering/animation package for Linux/Unix/Windows 
systems. Python is an interpreted, interactive, and object-
oriented programming language that is often compared to 
Tcl, Perl, Scheme or Java. Python combines remarkable 
power with very clear syntax, which is also usable, as an 
extension language, for applications that need a program-
mable interface. Python is included in Blender as a script-
ing language, which allows us to use Python script to ex-
port a scene graph into different files, such as MXL 
(Multimodel eXchange Language) and VRML (Virtual 
Reality Modeling Language). 

We have developed an interface to author a Blender 
3D scene within the RUBE framework.  The Blender inter-
face for RUBE consists of 2 parts: a Scene recognizer and 
an Exporter. The Scene recognizer is a process that assists 
the user in mapping each object of a Blender scene to 
MXL elements and attributes. This provides a gateway for 
converting 3D objects into text forms, called MXL. A 
snapshot of the Scene recognizer is shown in Figure 7. For 
example, as a user selects an object in a scene and moves a 
mouse to an interface window in Blender, an attribute edi-
tor for the object appears dynamically. The user then  
chooses a model type, such as FBM, FSM, and Petri-Net, 
and an element type, such as block, state, trace, and transi-
tion. Currently FBM and FSM are supported as model 
types. In addition, we provide a simulation element type 
that is essential for model execution within an experimen-
tal frame. The contents of the attribute editor are changed 
when a user presses the “continue” button.  In Figure 7, if a 
user selects an arrow and presses the button, the contents 
of the attribute editor is changed. The new attribute editor 
requests more specific data from the user, such as the 
source object and the destination object.  In this case, the 
user can designate an object as the source or the destination 
in the scene by (1) choosing an object, which may be a 
source or a destination object, (2) moving the mouse to the 
interface window, and then (3) pressing a source or a des-
tination button provided by the editor. All data given by 
the user is stored in the dictionary data structure provided 
by Python. This data can then be retrieved and modified 
when the user selects the same object again.  

Exporter is a collection of components that can create 
a final dynamic scene file, VRML or Blender, using the 
user’s Blender scene file, given input data and the user-
defined script files in JavaScript or Python source files. 
Currently only the VRML scene is generated as a final dy-
namic scene. Figure 8 shows the final VRML scene created 
by the interface. 
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Object attribute editor 
ID: Each object name 
Script ID: User-defined Script
file name 
Function: function name in the
script file 
Input port: Input type and a
number of ports 
Output port: Output type and a
number of ports 
Source and Destination: Ob-
ject’s source and destination  

Figure 7: Scene Recognizer 
 
Figure 8: Final VRML Scene Generated by the 3D-
Based RUBE Framework 
 
In the 3D-based RUBE framework, we provide two 

kinds of simulation methodologies: a real-time method us-
ing JavaScript in VRML, and a non-real-time method us-
ing Python in Blender. In the real-time simulation, the final 
dynamic scene file is VRML with simulation codes in 
JavaScript. However, in the non-real-time simulation, the 
final dynamic scene file is Blender with simulation codes 
in Python.  In the VRML case, VRML has an ability to in-
teract with the user. The user can start, stop, or resume 
model simulation by touching the 3D objects. Then  
VRML allows the user to navigate the virtual world. In 
contrast, Blender provides higher quality rendering, and 
various kinds of 3D object types such as sub-division 
polygon meshes and NURBS surfaces. 

Figure 9 shows the simulation output of the engine 
model under the real-time simulation environment. Two 
graphs in Figure 9 represent an input trajectory and the cor-
responding state trajectory. 
 
Figure 9: Simulation Output from the 3D Engine Model 

3.4 XML-based Modeling and Simulation 

MXL and DXL are XML-based modeling languages used 
for representing and executing models in the RUBE fram-
work. MXL is an XML-based modeling language defined 
for representing the semantics and the behaviors of a hetero-
geneous dynamic model such as a multimodel as well as a 
simple FSM and FBM. DXL is a low-level XML-based 
modeling language in RUBE. It represents a homogeneous 
dynamic model using a simple block diagram, which con-
sists of blocks, ports, and connectors. Because both MXL 
and DXL are XML-based, MXL models can be easily trans-
lated into DXL models through XSLT-based translators. 

Figure 10 shows an MXL file for a four stroke gasoline 
engine which is used for a 2D and a 3D modeling and simu-
lation. In Figure 10, <input> and <output> handles are used 
to connect different blocks and to transfer data between 
blocks in Figure 11. Because these blocks can include an-
other model for a multimodeling, these handles play a role 
of connecting heterogeneous models. The element <simula-
tion> provides the factors for simulating a model such as 
starting time, ending time, and time duration. 
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Figure 10: MXL Specifying the Engine’s Dynamics 

<?xml version=“1.0” encoding=“utf-16”?> 
<MXL> 
 <fbm id=“MXL”> 
  <block id=“F1”> 
   <output id=“F1_outports_integer1” … index=“0”/> 
   <script lang=“JavaScript” src=“input.js” func=“gen”/> 
  </block> 
 
  <block id=“F2”> 
   <input id=“F2_inports_integer1” … index=“0”/> 
   <output id=“F2_outports_integer1” … index=“0”/> 
   <script lang=“JavaScript” src=“input.js” func=“engine”/> 
  </block> 
 
  <block id=“F3”> 
   <input id=“F3_inports_integer1” … index=“0”/> 
   <script lang=“JavaScript” src=“input.js” func=“print”/> 
  </block> 
… 
 </fbm> 
 <simulation start_time=“0” end_time=“100”  
               delta_time=“1” cycle_time=“1” /> 
</MXL> 

DXL is based on functions that are translated into basic 
code units of  SimPackJ/S using event-based scheduling 
(Fishwick 1995; Nance 1996; Zeigler 1984). Functional 
blocks of DXL support heterogeneous models with synchro-
nous and asynchronous properties. Asynchronous blocks can 
process the input data, when any of their input ports has 
valid data, or send output to next blocks, when any of their 
output ports has valid data. On the other hand, synchronous 
blocks can only process the input data when all of their input 
ports have valid data or can only send output to next blocks 
when all of their output ports have valid data. 

Figure 11: FBM Model with Block Handles 

F1 F3F2 
 

The simple blocks of DXL are actual program codes 
such as Java or Javascript. They are executed by an event-
based scheduling method, which regards each simple block 
as a unit of the simulation. DXL operates like an assembly 
language layer for RUBE, by providing independence be-
tween various heterogeneous model types and their actual 
simulation codes.  

4 CONCLUSION 

In this paper, we presented a new modeling and simulation 
framework called RUBE. We explained 2D and 3D RUBE 
methodologies with a four-stroke gasoline engine model. 
The primary goal of RUBE is to provide the extensive 
modeling and the simulation environment for modelers, to 
achieve personalized, customized, and aesthetic modeling 
in a 2D and a 3D model. RUBE also provides a convenient 
and modularized Web-based modeling and simulation us-
ing emerging XML technologies. 
While the above advantages of RUBE have given us a 
novel modeling environment, allowing simulation models 
to break out of minimal, standard iconography, we are cur-
rently working on a number of improvements to counter 
the deficits of our approach. The primary disadvantage of 
RUBE is that it is a little cumbersome to build models 
compared with a special-purpose model building tool. The 
price of customization and flexibility seems to be slower 
speed in model creation. There are specific techniques that 
we are researching to assist in solving this problem. The 
first involves a set of libraries for both model components 
and functions. Let’s take a finite state machine as the 
model type under construction for an example. All states 
and transitions should come with default functions and ge-
ometry. If the user wishes to make modifications, this is 
made easier when defaults are present. So, the 3D defaults 
might be spheres and 3D arrows. Default functions might 
be to plot the current state over time as the machine output. 
If the user chooses a special sort of geometry to represent a 
state (such as a particular geometrical object) then it should 
be possible to reuse that object in the model without ex-
plicitly specifying that it is also a state. The assumption 
here is that for many classes of models, similar model 
component types suggest similar geometry. Another prob-
lem is the issue of topological connectivity, which must be 
manually specified in SodiPodi and Blender since they 
know nothing of connectivity. A solution is to induce the 
topology from the geometry using an intelligent algorithm. 

Recently, we have been interested in a new modeling 
environment for future work. We refer to this environment 
as the integrative modeling interface, which allows the user 
to switch between information, geometry, and dynamic 
models while never leaving the immersive scene. This will 
require more advanced visualization techniques and involve 
a more complicated multimodel environment. In addition, 
we will support the processing of an XML data stream in a 
future DXL and a distributed simulation based on a message 
passing method. In other words, each block can operate on 
an XML input stream and produce an XML output. These 
blocks can become the processes in a distributed simulation 
system. This means a model itself can be processed as a pa-
rameter of blocks in DXL so that multiple models can com-
municate their data using message passing.   
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The Transactions of the Society for Computer Simulation, 
International Journal of Computer Simulation, and the 
Journal of Systems Engineering. He has delivered 10 Key-
note addresses at major conferences relating to simulation. 
He has published over 125 technical publications, written 
one textbook, co-edited two Springer Verlag volumes in 
simulation, and published seven book chapters. His email 
and web addresses are  <fishwick@cise.ufl.edu> 
and <http://www.cise.ufl.edu/~fishwick>.  

JINHO LEE is a Ph.D. student in Computer and Informa-
tion Science and Engineering at the University of Florida. 
He received his M.S. in Computer and Science Engineer-
ing from Sungkyunkwan Univerity in 1999. His research 
interests are modeling methodology and distributed sys-
tem. His email address is <jhlee@cise.ufl.edu>. 

MINHO PARK is a PhD student of Computer and Infor-
mation Science and Engineering at the University of Flor-
ida. He received his M.S. in Computer and Information 
Science and Engineering at the University of Florida in 
2002. He worked as a software engineer at Korea Securi-
ties Computer Corporation in Korea, from 1994 to 1998 
and an assistant manager at Good-Morning Securities 
Company in Korea, from 1999 to 2000. His major research 
areas are modeling for computer simulation and 3D Model 
Visualization and customization. His email address is 
<mhpark@cise.ufl.edu>. 

HYUNJU SHIM is a Ph.D. student in Computer and In-
formation Science and Engineering at the University of 
Florida. She received her M.S. in Computer and Informa-
tion Science and Engineering from the University of Flor-
ida in 2003. Her research interests include 2D Model Visu-
alization, customization, and simulation. Her email address 
is <hshim@cise.ufl.edu>. 
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