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ABSTRACT  

Visualization has been successfully applied to analyse 
time-dependent data for a long time now. Lately, a number 
of new approaches have been introduced, promising more 
effective graphs especially for large datasets and multi-
parameter data. In this paper, we give an overview on the 
visualization of time-series data and the available tech-
niques. We provide a taxonomy and discuss general as-
pects of time-dependent data. After an overview on con-
ventional techniques we discuss techniques for analysing 
time-dependent multivariate data sets in more detail. After 
this, we give an overview on dynamic presentation tech-
niques and event-based visualization. 

1 MOTIVATION AND BACKGROUND  

The analysis of time-series data is one of the most widely 
appearing problems in science, engineering, and business.  
In the last years this problem gained increasing importance 
due to the fact that more sensitive sensors in science and 
engineering and the widespread use of computers in corpo-
rations have increased the amount of time-series data col-
lected by many magnitudes.   

For long, visualization has proven to be an effective 
approach to analyze time-series data. The motivation be-
hind this approach is to exploit the phenomenal abilities of 
the human eye to detect structures in images.  A well de-
signed visualization can aid in answering the following 
questions for unknown temporal data (MacEachren 1995):  

• 

• 

• 

• 

Does a data element exist at a specific time? (Ex-
istence of a data element) 
When does a data element exist on time? Is there 
any cyclic behavior? (Temporal location) 
How long is the time span from beginning to end 
of the data element? (Temporal interval) 
How often does a data element occur? (Temporal 
texture) 
 
• 

• 
• 

How fast is a data element changing or how much 
difference is there from data element to data ele-
ment over time? (Rate of change) 
In what order do data elements appear? (Sequence) 
Do data elements exist together? (Synchronization) 

The visualization of time-dependent data has a long history.  
Time-series plots appeared for the first time in the illustra-
tion of planetary orbits in a text from a monastery school in 
the 10th or 11th  century (Tufte 1983). In science, time-series 
charts have been rediscovered not earlier than in the 18th 
century by Lambert. He applied line graphs to display peri-
odic variation in soil temperature in relation to depth under 
the surface (Lambert 1779). Today, a wider repertoire of 
techniques to visualize time-dependent data is available. 

In this paper, we give an overview of different tech-
niques suitable to analyze time-series data. In section 2 we 
introduce a taxonomy for time-dependence of data. In sec-
tion 3 we give an overview on visualization techniques for 
this problem field. Our classification of visualization tech-
niques distinguishes between static and dynamic representa-
tions as well as between more conventional techniques and 
special methods for multi-parameter data. Moreover, we dis-
cuss the common approach of event-based visualizations. 
We conclude in section 4 with general remarks on using the 
described techniques and issues for further research. 

2 TAXONOMY  

Before discussing visualization methods for time-
dependent data we want to clarify some basic notation. We 
consider multi-parameter data as a set of multidimensional 
multivariate data. We adopt the convention from Bergeron 
(1993) and Wong et al. (1997) that the term multidimen-
sional refers to the dimensionality of the independent vari-
ables, while the term multivariate refers to the dimension-
ality of the dependent variables of a data set. In our case 
the parameter time has an extraordinary importance, defin-
ing the independent dimension for which all other variables 
are given. That means, we consider multivariate data over 
time. Therefore, we can define that time dependent data is 
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characterized by data elements being a function of time. In 
general, data takes the following form: 

 
  (1) ( )tfd =
 
For data defined at discrete time stamps ti, this relation can 
be represented as: 

 
  (2) ( ) ( ) ({ nn dtdtdtD ,,,,,, 2211 …= )}

• 

• 

• 

• 

 
where 

 
  (3) ( )ii tfd =
 
The data elements di can represent different data types.  
Usually we differentiate between nominal, ordinal, and 
quantitative data, or tuples of these, whether an inherent 
ordering, or a meaningful distance metric is given for the 
data or not. In the case of multivariate data, a data element 
di combines at least the values of two variables.  

Besides the data elements, the time axis itself can be 
characterized in more detail. For this purpose Frank (1998) 
introduced a taxonomy and distinguishes between:  

Discrete time points vs. interval time:  
Discrete time points describe the time as abstrac-
tions, comparable to discrete Euclidian points in 
space. These points have no duration. In contrast 
to that, interval time uses an interval scaled time 
axis like days, months, or years. In this case, data 
elements di are defined for a time duration, speci-
fied by two time points. 
Linear time vs. cyclic time:  
Linear  time assumes a starting point and defines a 
linear time axis with data elements from past to fu-
ture. However, many natural processes are cyclic 
like the cycle of the seasons. To meet these re-
quirements a cyclic time axis can be used. The 
point order of a cyclic time axis is meaningless 
with respect to a cycle, e.g. morning is before eve-
ning, but the morning also comes after the evening. 
Ordinal time vs. continuous time:  
These variants distinguish, whether the time axis is 
scaled ordinal or continuously. In the first case, only 
statements like “before” or “after” are possible. In 
the second case, we can quantify the time difference 
between the appearance of two data elements.  
Ordered time vs. branching time vs. time with mul-
tiple perspectives:  
Ordered time axes consider events that happen one 
after the other. That means, data element di follows 
di-1 in time and precedes di+1. Branching time is 
used for scenarios where sequences of actions are 
foreseen. In this case multiple alternatives are pos-
sible, depending on future decisions: Each data 
• 

• 

element di can be followed by the data elements 
di+1 , di+1’, di+1’’ and so on. This kind of time axis 
supports decision making processes. Moreover, 
time with multiple perspectives allows specifying 
more than one data element di for one time step ti. 
In doing so, further elements xi, zi … can be associ-
ated with ti to define parallel events in time.     

By using the taxonomy of Frank we have characterized the 
temporal aspects of the data. In the following chapter we 
will discuss how such data can be visualized. 

3 VISUALIZATION TECHNIQUES FOR  
TIME-DEPENDENT DATA 

The purpose of the visualization of time dependent data is 
to detect and validate characteristic properties of a un-
known function f. In particular, we are interested in the ex-
ploration of time patterns, and the temporal behavior of 
data elements di to answer the questions listed in section 1.  

For the visualization of time-dependent data we can 
distinguish two cases based on the time dependence of the 
visual representations:  

The visual representation is not time-dependent:  
The visual representation does not automatically 
change over time. Modifications result from user 
interaction only. In this case, we speak about 
static representations. 
The visual representation is time-dependent: 
The visual representation changes dynamically 
over time and is a function of time. We denote 
this form as dynamic representation.   

Both forms have their specific benefits, and it has to be 
decided based on the concrete task, which kind of repre-
sentation should be used. We cover static representations 
in section 3.1, and deal with dynamic representations in 
section 3.2.  

3.1  Static Representations  

Static representations have been used to depict time-
dependence of data for quite a while now. This type of rep-
resentation has certain benefits. Most important, they allow 
the conclusion of quantitative statements. Moreover, spe-
cial data features and patterns as well as data values, time 
steps and positions can be explored according to the under-
lying scales without temporal limitations.   

A number of well-known, conventional techniques 
have been developed in the past, and we will give a brief 
overview in the following section. Most of these tech-
niques, however, are limited to the representation of a sin-
gle variable over several time steps or a limited number of 
time variables and time steps. The visualization of multi-
variate data for longer time periods requires more effort, 
and is a current research topic. We discuss some novel ap-
proaches in section 3.1.2. 
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3.1.1 Conventional Visualization Methods  

The ground for effective visualization has been prepared 
by Bertin (1983), who distinguished 8 visual variables 
which could be used to encode nominal, ordinal or quanti-
tative data visually. Mackinlay (1986) carried on this work 
and presented an enhanced ranking of visual variables. All 
conventional visualization techniques can be understood as 
an application of the fundamental insights revealed by Ber-
tin and Mackinlay. 

A classical example for a very effective time-series 
chart is Minard’s display of the fate of Napoleon’s army on 
the campaign against Russia, presented almost 150 years 
ago (Minard 1844-70, see Figure 1). This graph is still be 
considered one of the best statistical charts ever drawn 
(Tufte 1983). It succeeds well in exploiting the spatial di-
mension and in applying additional visual variables to de-
pict, the path of the campaign, the size of the army left, and 
the temperature (Elvins 1997).  

More conventional approaches are based on the map-
ping of time on an available quantitative scale. In case of a 
1D scale this leads to a Sequence Graph, in case of a 2D or 
3D graph to a Time Series Graph. Like in standard cases, 
the appropriateness of a technique depends on the kind of 
data available, for instance Point Graphs for point data, 
Line Graphs for continuous data, Bar Graphs for cumula-
tive data, and Circle Graphs for cyclic data (Harris 1996; 
see Figure 2 for an example).  

More complex graphs can be generated by mapping a 
static graph as an independent representation of the data  
element di for a time-step ti onto a more general graph rep-
resentation for more then one data element. In case the tar-
get graph is a sequence graph this leads to a Chess Plot 
(Monmonier 1990), in case of a time series plot to the con-
 

 
 

Figure 1: Minard’s Classical Visualization of the Fate 
of Napoleon’s Army on the Campaign against Russia 
(Minard 1844-70, from Tufte 1983) 
cept of Composite Graph, or, in a quite modern interpreta-
tion using the third dimension, to a Worlds-within-Worlds 
visualization (Feiner et al. 1990).  

time 

value 

Figure 2: Graphs for Time-Dependent Data. Left: Sec-
tor Graph. Middle: Stacked Bar Chart. Right: Circle
Graph  (after Harris, 1996) 
 

Even one step further are approaches which succeed in 
linking such independent representation of data for each  
time-step to a single map. Examples are the Change Chart, 
which presents an evolution of a symbol to display changes 
in data over time, and the Stacked Bar Chart, which repre-
sents the total amount of data as a single bar and depicts 
the increases at each time step by colour or texture. The 
Parallel Coordinates Technique (Inselberg 1997) some-
how also belong into this category. Here, a number of ro-
tated sequence charts are connected by linking correspond-
ing data elements in each graph. Originally used to 
visualize multivariate data by mapping on the different se-
quence charts, this type of plot may also be used to present 
time-series data by mapping the different time-steps to the 
individual axis. In this form, Parallel Coordinates have ac-
tually been used much longer (see Figure 3; note the re-
verse arrangement of years from right to left.). 

Last not least, interaction techniques have also been 
utilized to present temporal aspects. Most prominent is the 
Temporal Brushing, where the brushing of a timeline leads 
to the rendering of an appropriate graphical representation 
 

 

Figure 3: Parallel Coordinates for the Visualization of
Time-Dependent Data (Garnett 1903, taken from Brinton
1919).  
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for the selected time-step, and Temporal Focusing,  where 
a detailed but static view is presented for a selected time 
frame (Monmonier 1990). 

Most of the techniques mentioned above have been 
designed with the focus on presenting simple forms of 
time-series data. Nowadays, the analysis of multivariate 
time-series data becomes more and more important. The 
next chapter gives an overview of a number of techniques 
specifically designed for this purpose. 

3.1.2 Visualization Methods for  
Multivariate Data over Time  

Visualizing multivariate data over long time periods re-
quires special effort. In this case the data element di  for a 
given time step ti covers the data values for more than one 
variable. We present a selection of methods covering this 
topic. For a more detailed discussion see e.g. Schumann et 
al. (2000). 

A well-known technique dealing with this problem is 
the ThemeRiver (Havre et al. 2000). This technique has 
been developed for document visualization: the frequency 
of the occurrence of special words in documents is counted 
for each time step. These occurrences are mapped to a spe-
cial bar chart (with a continuous linear time axis). Interpo-
lation between the bars (e.g. using Bezier splines) is used 
to generate the impression of a flowing surface for each 
word. The ThemeRiver technique allows an intuitive inter-
pretation of temporal changes of document occurrences as 
well as their temporal relations. 

Figure 4 shows an example of this technique repre-
senting the time series of normalized cluster centroids for 5 
variables of a climate model data set. Low values or a thin 
river snapshot represent extremely cold summers, whereas 
high values or a broad river snapshot characterize ex-
tremely hot summers. Viewing this graph, the first impres-
sion is that the number of high values for most of the vari-
ables representing the number of extreme hot summers 
increases with time in the second part of the 20th century. 
This is a special feature of the ThemeRiver technique, gen-
eral trends are very well represented. However, parameters 
are not treated equally. Variables near to the middle axis 
have more weight, and parameters towards outer bounda-
ries are represented with distortions. Due to this, interac-
tion functionality for a parameter re-arrangement has to be 
provided allowing to put interesting parameters together 
and, in so doing, to investigate correlations of variables. 

 

 

Figure 4: ThemeRiver Visualization for 100 Years of Cli-
mate Data. 
Another technique specifically designed to support the 
comparison and analysis of cyclic data is the Spiral Graph 
(Carlis et al. 1998, Weber et al. 2001). Here, the time axis 
is represented by a spiral. The data values di are rendered 
relatively to this spiral as points, lines or bars, depending 
on the characteristic of the data. Hence, this technique is as 
flexible as standard time series graphs. However, periodic 
structures can be detected much more easily. Moreover, it 
is possible to compare a small number of different data se-
quences by integrating them into the Spiral Graph. Fig-
ure 5 depicts an example for a Spiral Graph visualization. 
The detection of cycles in data can be enhanced by adding 
data analysis tools to detect prominent frequencies. These 
frequencies can be utilized to aid the user in the interactive 
steering process, i.e. by providing presets for time length to 
be mapped onto a spiral revolution. 

Another way to present time dependent data is to use 
special visual metaphors. One of such metaphor being par-
ticularly intuitive is the Calendar View (van Wijk et al. 
1999). This technique was introduced to present clusters of 
daily data values. Figure 6 gives an idea of this approach. 
 

 
Figure 5: Spiral Graph Visualization of Monthly Notifi-
cations of Illness. Left: Assumed cycle of 27 days. Right: 
Valid cycle of 28 days.  

 

 
Figure 6: Calendar View based on van Wijk et. al. 
(1999): Cluster Visualization of Daily Temperature 
Cycles based on  Hourly Measured Observations at the 
Station Potsdam during the Year 2000 (using the 
Correlation Coefficient as Similarity Measure). 
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The left view shows a calendar plot, in which the days are 
color-coded with respect to their affiliation to a certain 
cluster. The color scale of the clusters is presented on the 
right hand side of the figure. Now one can choose clusters, 
days or month of interest, and associated data values are 
drawn in the middle of the figure. Further interaction func-
tions as the selection of a mediod (mean trend) or a median 
(typical day representing its cluster) modus are also in-
cluded. In doing so, typical and non-typical clusters and 
relations can be identified effectively.  

Other examples for useful metaphors are a clock or a 
pencil. The technique SpiraClock uses a clock to present 
cyclic data (Dragicevic 2002). By moving the hand of the 
clock for- or backwards, data as well as special events are 
drawn or removed. If the amount of data to be presented 
exceeds a given threshold, the data of early time steps will 
be aggregated automatically. The technique Lexis Pencils 
(Brian et al. 1997) maps different time-dependent variables 
onto different faces of a pencil, starting with the top of the 
pencil (see Figure 7). Advantages of this approach are, the 
combination of continuous and discrete variables in one 
plot, different pencils can be presented together, and pen-
cils can be located in 3D space to show the spatial context 
of time-dependent data as well. 

 

Time

Different 
variables on each 
face of the pencil  

 
 

Map

Lexis Pencil

 
 

Figure 7: Example for a Lexis Pencil Visualization.  
 
Beside using metaphors to generate clear and expressive 

displays common visualization techniques can be extended 
to time-dependent data. One example of such an approach is 
the technique Wormplots (Treinish et al. 1997), which is 
based on the well-known Scatterplot. For each discrete time 
step ti a Scatterplot is drawn. Point clouds are identified in 
the first plot, and represented by little circles. The behavior 
of these point clouds is traced over time, and the associated 
circles are connected from one time step to the following by 
linear interpolation. In doing so, so-called worms are gener-
ated and displayed, which represent the temporal behavior of 
a point cloud. Figure 8 gives an example of this idea. 
 
Figure 8: Wormplot (Treinish et al. 1997) 

 
Another common visualization approach is axis-based 

visualization. In this case axes are drawn and scaled with 
regard to the range of associated variables. In section 3.1.1 
we have already given some examples for that including 
traditional techniques using only one axis, or the technique 
of Parallel Coordinates using one axis for each variable of 
a multivariate data set. Now we will further introduce 2 
axis-based approaches, considering multivariate data as 
well as the extraordinary importance of the time axis 
(Tominski et al. 2003a, Tominski et al. 2003b). The Time-
Wheel technique presents the time axis in the center of the 
display, and arranges the other axes circularly around it 
(see Figure 9). A single colored line segment connects a 
time step on the time axis and corresponding data values 
on the variable axes. It is obvious, that the temporal behav-
ior of a variable can be explored most efficiently, if the 
variable’s axis is arranged parallel to the time axis. Other-
wise, when an axis is almost perpendicular to the time axis 
its visual analysis is very difficult. Therefore, shortening of 
axis length and color fading is provided according to the  
 
variable axes time axis

reduced color
intensity

lines connecting
time and feature

values  
Figure 9: Demonstration of the TimeWheel Technique: 6 
Variable Axes are Arranged Circularly around an Exposed 
Centered Time Axis. 
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angle with the time axis (see Figure 9). Interactive rotation 
of the TimeWheel is supported so that a user can move axes 
of interest into a position parallel to the time axis. 

Another axis-based technique is the MultiComb. Here, 
multiple time axis (one for each variable) are circularly ar-
ranged either outward from the center of the display or 
star-shaped (see Figure 10). To avoid overlapping plots 
axes do not start at the center of display. The center area 
can be used to draw further information like a special 
glyph for value comparison or an aggregated view of 
“past” values. 

 

 
Figure 10: Two Views of Different Data Sets Visual-
ized with MultiCombs. Left: Time Axes Extend from 
the Center; an Aggregation View and Mirrored Plots 
are Provided. Right: Variable Axes Extending from the 
Center and Circularly Arranged Time Axis. 

 
If the range of the time axis is rather large, or many 

variables have to be considered, a visual presentation 
might be very complex. In such situations it can be useful, 
not to display data values directly, but to draw special 
events of interest based on the data values. We will discuss 
this approach in more detail in section 3.3. 

3.2 Dynamic Representations  

Except for the interaction techniques mentioned above, 
none of the discussed techniques has applied temporal as-
pects to represent data. Dynamic representations, on the 
other hand, make direct use of time to depict some data. 
They are able to demonstrate the general temporal behav-
iour, the dynamic of data and processes very well. Let the 
data elements di be given over a time period from tstart to 
tend. The most natural approach is to map the temporal as-
pects of the data directly onto the time control of a dy-
namic representation, where the data elements’ representa-
tion changes over time (e.g. size, shape, colour, texture, 
transformation). Here, we have to consider the different 
cases, how the time dependence of the data values di can be 
given (see section 2). 

In case of continuous linear time it is a natural ap-
proach to represent the time t found in the data directly and 
simply to generate appropriate representations for the data 
values d depending on the time t. In fact, we have to sam-
ple f(t) continuously regarding time to get data elements di 
to be visualized. This leads to a computer animation, where 
each element di corresponds to a frame i in the animation. 

To guarantee the perception of continuous movements 
and changes the rate of repetition of images must be high 
enough to guarantee smooth motion from frame to frame. 
Here, the sampling rate should not drop under 15 frames per 
second; continuous movements start being perceived smooth 
around 30 frames per second. If this sampling rate cannot be 
achieved, the animation displays jerkiness and quality usu-
ally drops dramatically. The reason for this is the sensibility 
of the human visual systems to sudden changes in the visual 
field, attracting out attention immediately. Lessons learned 
from video quality measurements show that in this case it 
might be a good approach to work without a continuous 
animation and to assume interval time instead, which leads 
to other approaches discussed below. 

It is not always suitable to map the observed time in-
terval <tstart, tend > directly to the duration of the whole 
animation, e.g. to wait for days to see a change in the visu-
alization of a weather simulation. In general, a positive 
scaling factor s is used to adjust the duration of the anima-
tion appropriately, leading to 

 
  (4) )( startttst −⋅=′
 
where denotes the animation time. We can distinguish 
between 

t′

Time-lapse visualizations (s < 1), • 
• 
• 

Real-time visualization (s = 1), and 
Slow motion visualizations (s > 1). 

In the exploration of the data in interactive visualization 
environments and for presentations it is also typical to vary 
s in time to spend more time on interesting time spots 
while passing intervals with no apparent changes.  

For interval data, the depiction of smooth movements 
for changes is not of interest. Nevertheless, time can be 
mapped to the temporal aspect of the presentation. In this 
case, this leads to a presentation similar to a slide show, 
where data elements di, are presented sequentially over 
time. The difference with respect to animation is that in 
this case no attempt is done to achieve the perception of a 
continuous movement. Again, experiences from corre-
sponding video presentations have shown that display time 
of around and over 1-2 seconds  for each frame seem to be 
appropriate. As mentioned before, continuous time data 
can be presented using the same metaphor. In this case, the 
result is a flashlight visualization, whereby data samples di 
are interpreted as interval data. 

For discrete time steps, we can actually take the same 
approach and present the data in terms of a flashlight visu-
alization. More common, however, is to assume an under-
lying data model with continuous time. If time samples ti 
are regular and close enough to achieve the perception of 
continuous movements, we proceed as in the case of con-
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tinuous data. Often, however, this will not be the case and 
data values will have to be interpolated based on local 
temporal neighbourhood. This technique is called inbe-
tweening. Various interpolation methods have been pro-
posed for this purpose. In general, the interpolation method 
has to suit the underlying data model. Moreover, if the in-
terpolation display is not continuous, the resulting anima-
tion will again display disturbing jerkiness. Thus, linear in-
terpolation is not appropriate in many cases. Special 
interpolation techniques have therefore been proposed to 
overcome this problem. For instance, in computer anima-
tion for sampling data based on moving physical bodies 
interpolation methods are commonly applied which give 
the impression of preservation of the moment of intertia, 
depicting slower movements at the begin and end of the 
trajectory (slow in, slow out; Lasseter 1987).  

In case of static data we can nevertheless utilize time 
to enhance the visualization, either to extend the amount of 
data displayed, or to depict multivariate aspects of the data. 
We are also free to map ordered or quantitative attributes 
onto the free parameter time. 

3.3 Event-Based Visualization  

The techniques discussed above assume generally an under-
lying linear discrete or continuous time model. A specific 
case is present when the data is event-based. Here we as-
sume that an event represents an occurrence in time signal-
ing a change in data. A general aspect of event-based data is 
that time between following events is usually not constant. 

Existing event-based data can be visualized using the 
same approaches as for discrete or continuous time data. 
The situation is however different when incoming events 
and the changes in data shall be visualized in real-time, e.g. 
for monitoring or controlling of a process. Since the occur-
rence of events is a priori not known, changes in the data 
cannot be foreseen. This puts restrictions on the application 
of certain visualization techniques, e.g.  the interpolation of 
data values.  

The applicability of general approaches from the field 
of information visualization especially in this field, has 
been proven e.g. by Matković et al. (2002) who applied 
successfully level-of-detail and focus and context tech-
niques for real-time monitoring of processes.  For this, they 
introduce the concept of multi-instrument (e.g. Multi-Bar 
and Multi-Gauge) allowing to monitor several data ele-
ments at a time at lower level of detail and to access more 
detailed information by focusing. 

Event-based visualization plays an important role in 
the field of simulation. Here, it not only allows to present 
the data for effective analysis but also to interact with the 
simulation in real-time: parameters can be adapted during 
the simulation and even the simulation model can be 
changed by adding or removing elements interactively. The 
user may also play an active role in the simulation, adding 
new events by its own. Examples for such applications can 
be found e.g. in online training situations in distributed 
simulators. VR techniques have gained increasing interest 
in such scenarios (see Figure 11 for an example). 

 

 

 
Figure 11: Event-Based Simulation and Visualization: 
Excerpts from an Online Emergency Simulation for 
Metro Stations, where Characters are Controlled Either 
by Human Trainees or Software Agents Taking the 
Role of an Individual in the Simulation ( Fraunhofer 
AGC 2002, see Dörner et al. 2000 for more details). 

 
Events represent the point in time when a change is 

about to happen with regard to the data and the underlying 
model. As such, these events are of special interest. Dy-
namic visualization is a valuable tool to detect these events 
and the corresponding changes in time-series data. How-
ever, especially in the cases of long-lasting simulations or 
multivariate and complex data it might still be difficult to 
detect important events and critical changes. Comparable 
to the detection of features in the spatial domain, corre-
sponding techniques have lately been applied to also detect 
events in given data. Post et al. (2002) apply this idea to 
the analysis of flow field data. Here, events are interpreted 
as the counterpart of spatial features in the evolution of 
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features. In this context they distinguish between the fol-
lowing types of events on spatial features: 

• 
• 
• 
• 
• 

• 

• 

• 

Birth or death, 
Entry or exit 
Split or merge, 
Topology change, and 
Collision. 

Post et al. provide first approaches to detect and extract 
such events based on rules. The development of corre-
sponding techniques and rules for other kinds of domains 
and data is still an open problem. 

4 CONCLUSION AND OUTLOOK  

The visual exploration of time-dependent data requires a 
special treatment of the factor time. This fact is often ne-
glected, since common visualization systems consider the 
time as a parameter among others leaving the control about 
it’s visualization in the hand of the user. On the other side, 
a number of special-purpose visualization techniques for 
time-dependent data have been developed lately. Each ap-
proach has specific characteristics and advantages. One has 
to decide, which technique to apply for a given problem. 
The following set of alternatives is a good starting point to 
find the appropriate technique:   

Static vs. dynamic representation.  
Depending, whether one is interested in detailed 
exploration without time limitations, the correla-
tive display of multivariate data, or in general 
trends and changes; 
Data vs. event visualization.  
Depending on the amount of a data set, or the in-
terest in special events; 
Conventional vs. multivariate display.  
Depending, whether the temporal behavior of only 
few variables or the analysis of multivariate corre-
lations is of special interest. 

Since there is more then one technique available for each 
alternative, further decisions have to be made based on the 
characteristics of the time-dependence (e.g. cyclic or lin-
ear, see section 2). 

Considering these aspects, visualization can surely 
support the exploration of time-dependent data. Further re-
search seems however to be necessary to couple the pre-
sented visualization methods with those depicting also the 
spatial context, since many time-dependent data sets ex-
hibit spatial dependencies as well. Here, only first ap-
proaches are available. Moreover, in the field of event-
based visualizations scientific work just has started, and 
further concepts must be developed. 
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