
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

AN IMPROVED COMPUTATIONAL ALGORITHM FOR ROUND-ROBIN SERVICE

Jorge R. Ramos
Vernon Rego

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, U.S.A.

Janche Sang

Department of Computer and Info. Science
Cleveland State University

Cleveland, OH 44139, U.S.A.

in
ach
hich
red
is

ling
al

-
job
es

ival
lex-
ut
i-
ith
par

we
ena
her
nal
s,
as

ar
ng

or

the
e
he
ive
on

a
es

xt-
91,
aw

R
nal

94).
en
tem
of
or
m

ol,

in
ing
his
n

s.
gi-
on
an
he
la

ble
n

ew
ent
nce
t a

u-
r
e-
elds
ABSTRACT

We present an efficient algorithm for effecting round-rob
service in discrete-event simulation systems. The appro
generalizes and improves upon a previous approach in w
a single arrival and a single departure event is conside
and handled at a time; further, the previous approach
already an improvement over naive round-robin schedu
currently in use in simulation libraries. The prior propos
offered a run-time complexity ofO(n2), because the pro
cessing of each event required an entire traversal of the
pool. We propose a generalized algorithm which includ
the previous case and also accommodates burst arr
and batch departures, further reducing run-time comp
ity to O(n logn). This is achieved through a detailed b
efficient computation of multiple departure times, while s
multaneously obviating the need for a job pool update w
each departure. Empirical results are presented to com
performance with previously proposed algorithms.

1 INTRODUCTION

Good simulation models are a powerful tools used to ans
performance questions related to waiting-line phenom
(Schwetman 1988), that are difficult to answer using ot
means. Because these models are usually computatio
intensive, efficient techniques for implementing algorithm
particularly those that reduce run-time, are very useful
simulation execution enhancements.

The round-robin(RR) service discipline is a popul
and widely used discipline in many real-world time-shari
systems because of its fairness. In this discipline, a job
customer is serviced for a single quantumq at a time. If
the remaining service time required by a job exceeds
quantum sizeq, the job’s processing is interrupted at th
end of its quantum and it is returned to the rear of t
queue, awaiting service quantum in the next round. A na
approach to implementing the RR discipline in simulati
is to physically dole out service quanta to the jobs in
round-robin fashion. For jobs with very large service tim
s

e

r

ly

this leads to very high event-handling overhead or conte
switch overhead in event-based simulations (McHaney 19
Fishman 2001), and in process-oriented simulations (L
and Kelton 2000), respectively.

The high cost of event-scheduling in the naive R
approach can be greatly reduced through a computatio
device that was introduced in Sang, Chung, and Rego (19
The idea is to run an algorithm which first predicts and th
schedules the next departure from the state of the sys
which is defined by the remaining service requirement
each job, the number of jobs and the next job in line f
service. A simple analysis shows that if an RR syste
has n jobs in service and no more jobs enter the po
the time complexity of the algorithm isO(n2). In this
paper, we develop a novel batch departure computation
which multiple departures can be scheduled without hav
to update the state of the pool on each departure. T
yields a new algorithm which further reduces simulatio
time complexity toO(n logn).

The remainder of the paper is organized as follow
In Section 2, we examine the components of the ori
nal single-departure computational algorithm. In Secti
3, we develop a new batch departure formula which c
significantly reduce simulation time. We also analyze t
problem of cancellations in the batch departure formu
and introduce the concept of “look ahead” as a desira
primitive in a simulation kernel. In Section 4 we present a
algorithm to handle the update of state and insertion of n
arrivals after a batch departure. In Section 5 we pres
the results of several experiments, comparing performa
with previously proposed algorithms. Finally, we presen
brief conclusion in Section 6.

2 THE SINGLE-DEPARTURE
COMPUTATIONAL ALGORITHM

An appropriate representation of the job pool in the comp
tational algorithm is a circular linked list, which the serve
traverses in a circular fashion. The original algorithm pr
sented in Sang, Chung, and Rego (1994) keeps three fi

Ramos, Rego, and Sang

ing
lar
th
ive

ion,
par
ps
of
job
ing
by

e
nd
to

t
ture
led.

en-
riva
ich
nd
ith

the
of

tion
A
la 1
asy
nta
nts

ha
are
ent

ract
tion
s b
ool
he

d
w

,
e
re

e

e

-

ol

a

e

g
):

e
nd
of
n’t
for each job record: a process identifier (PID), remain
service-time, and a link to the next element in the circu
list. An additional pointer HEAD, which is associated wi
pools of jobs, is used to indicate the job which is to rece
the next quantum of service.

The computational algorithm uses a scheduling funct
that traverses the pool and determines the next job to de
— the one with minimum remaining service time. It kee
track of this time (minrem), and also counts the number
steps (steps) between the current head (i.e., the current
to be serviced) and the job to depart. Upon determin
these two parameters, the next departure is identified
using the size of the pool (poolsize) and service quanta
(q) through a simple formula:

current_t ime + ((minrem− 1)× poolsize (1)

+steps)× q.

Consider a pool of jobs (A, B, C, D, E) that hav
remaining service-time (5, 6, 3, 4, 8) respectively a
HEAD points to A. it is easy to see that the next job
leave the system isC, if no new arrivals occur prior to the
departure, after(3− 1)× 5+ 3= 13 quanta. Observe tha
if an arrival event occurs before the scheduled depar
event, the scheduled departure event has to be cancel

3 NEW BATCH DEPARTURE
ALGORITHM

The original single-departure computational algorithm id
tifies one potential departure event and handles one ar
event at a time. We propose a novel algorithm in wh
we consider the possibility of processing burst arrivals a
batch departures, to handle the simulation of models w
bursty traffic. Figure 1 illustrates the difference between
original algorithm and the new batch algorithm in terms
the number of events. The new formula is a generaliza
of the formula used in the single-departure algorithm.
simple approach, such as repeatedly applying the Formu
presented in Section 2, is not trivial, since there is no e
way to keep track of the different remaining service qua
for jobs in the pool and the position of the head as eleme
get removed.

3.1 Derivation of the Generalized Formula

The new method exploits complete traversals of a somew
artificially simplified pool, where the head and pool size
determined by the initial state, and used for all subsequ
computations. With this approach we only need to subt
the extra quanta to get an exact solution. The subtrac
of quanta can be expressed mathematically, and can thu
easily accounted for. Further, all departures from the p
can be scheduled solely from initial state information. T
t

l

t

e

formula will be derived assuming that no new jobs arrive
between the invocation of the algorithm and the schedule
n departures. We will, however, address the issue of ne
arrivals later.

We build a table T that contains the pool elements
the remaining service times, the relative positions and th
relative order of distinct departures. The scheduled departu
time of the next job from the pool is then given by:

current_t ime + [vi × size_of _pool − (term1)−
(term2)] × q,

wherevi = remaining time for jobi, and (term 1) and (term
2) are explained in detail below.

This formula reflects three constraints imposed on th
pool, namely:

• Complete traversal of the fixed-size pool
• Extra steps due to counting elements that hav

already departed, which is term 1
• Extra steps due to traversal from a particular ele

ment to tail, which is term 2.
We now examine these terms in detail, assuming a po

of n elements.
Term 1: For a (potentially) departing jobi (i =

1,2, ..., n), term 1 is given by:

i−1∑
j=1

(vi − vj) = (i − 1)× vi −
i−1∑
j=1

vi .

On the left side of the equation, we subtract the extr
steps counted between the current jobi and all previously
departing jobsj . The expression on the right side of
the equation is the one useful for implementation of th

algorithm, since the term
i−1∑
j=1

vi can be stored in a single

variable.
Term 2: Term 2 is a little more difficult, as we will

shortly see. For departing jobi (i = 1,2, ..., n), term 2 is
given by:

(Pool_size_at_round_i) – (Relative position of jobi to
head).

The pool size at a given round is obtained as (rememberin
that Pool_size is fixed at the instant the algorithm is invoked

Pool_size_at_round_i = (Pool_size − i + 1). (2)

For relative positions, we take into account that th
relative positions of jobs change as jobs are removed a
scheduled for departure, and that the relative positions
jobs stationed between the head and a departing job do
change, though the positions of others must change.

Ramos, Rego, and Sang
Simulated Time

Simulated Time

(a) The original computational algorithm
 (single arrival / single departure)

A: Job Arrival Event
D: Job Departual Event

AA A A DD D

A

A
A

A

1

2

3

17

A

A
A

A

18

19

20

29

A

A
A

A

30

31

32

66

DD1 D D D2 3 11 12 D DD13 14 23 D24

arrival burst

(b) The burst arrival / batch departure
 computational algorithm

batch departure

Figure 1: A Comparison of Single Arrival/Departure and Batch Ar-
rival/Departure
l.
on

re

ee
n
be
e

y

e

-

Let pi be the position of jobi relative to the fixed
head at the start of algorithm’s invocation on the poo
Based on the above explanation, the new relative positi
is determined as:

relative position = pi − φ(pi), (3)

where the functionφ(pi) defines the number of jobs with
relative positions smaller thanpi that have already departed.
A straightforward approach to computingφ(pi) by one-
by-one comparison will drive the time complexity of the
algorithm up toO(n2). Therefore, we have to resort to
a more efficient but also more complicated data structu
for the calculation ofφ(pi). We propose the use of a
widely-used data structure, called augmented red-black tr
or order-statistic tree (Cormen et al. 2001), which ca
support fast rank operations. The rank operation can
done in a time that is proportional to the height of th
red-black tree, i.e. inO(logn) time.

Given the rank, the relative position can be easil
calculated by following relationship:

φ(pi) = rank(pi)− 1.
Hence, computingφ(pi) can also be done inO(logn).
Combining Equation 2 and Equation 3, we obtain a

final form for term 2:

(pool_size − i + 1)− pi + φ(pi).
With Term 1 and Term 2 thus defined, we are finally in a
position to define a precise expression for the departure tim
of job i(i = 1,2, ..., n) for the batch-departure case (the
batch-departure formula), which has the following form:

current_t ime + [vi × pool_size − ((i − 1)× vi

−
i−1∑
j=1

vi)− ((pool_size − i + 1)− pi + φ(pi))] × q.

This formula is computationally simple to implement.
When invoked, it yields departure times starting from de
parturei = 1 to departurei = n, based solely on the initial
state of the pool.

Ramos, Rego, and Sang

i

e

f

s

e

e

e

n

.
n

A’s

.

y
n

n

s

.
re-

e
e

3.2 Computational Algorithm with
Look-Ahead

In the original computational algorithm, if an arrival event
occurs before a scheduled departure, the departure event
cancelled to preserve consistency of the pool. In replacing
single departures with batch departures, if cancellations ar
used when arrivals occur, we may arrive at a situation
where we compute and schedule the departure times o
a large numbern of jobs only to later find that nearly
all such departures must be cancelled because of arrival
This problem can be solved by resorting to a special look-
ahead primitive which looks ahead in the simulation to
determine the time of the next arrival. This makes for an
efficient computation that determines only what is needed
through constant monitoring via look-ahead, and becaus
this method does not alter a simulation’s trajectory, the
resulting simulation produces consistent results.

The algorithm has three major steps. Firstly, we traverse
the queue and build a table T containing relative positions
and remaining service times. Secondly, we sort the tabl
(using an efficient sorting algorithm such as quicksort) in
increasing order of remaining service timesvi , determine
the relative departure order and put it in the table T. After
obtaining necessary information, we use the batch departur
formula to schedule batch departure events. The algorithm
terminates when it completes the departure time computatio
for each of the jobs in the table T or when the next arrival
time (via look-ahead) is reached.

Both the computational algorithm and the naive al-
gorithm yield the same results, serving to verify that the
computational algorithm is indeed a correct and more effi-
cientO(n logn) algorithm for the prescribed task.

3.3 An Example

Consider the following illustration of the use of the batch-
departure formula. The traversal is done from left to right
to obtain a table T containing the remaining service times
vi , the relative positionspi and the departure orderi. After
sorting T by remaining service timevi , we obtain the data
shown in Table 1.

Table 1: Sample Pool
Job PID: C D A B E
Remaining timevi 3 4 5 6 8
Departure orderi 1 2 3 4 5
Relative positionpi 3 4 1 2 5

Now applying the batch departure formula applied for
i = 1 throughi = 5, we get:

• Departure 1: Job C,i = 1:
vi × pool_size = 3× 5= 15
s

.

term1 =(i − 1)× vi −
i−1∑
j=1

vi = 0− 0= 0

term2 = (pool_size−i + 1)− pi + φ(pi) = (5−
1+ 1)− 3+ 0= 2
departure = current_time +[15− 0− 2]q =
current_time + 13q

• Departure 2: Job D, i = 2:
departure = current_time +[20− 1− 1]q=
current_time + 18q

• Departure 3: Job A, i = 3:
departure = current_time +[25− 3− 2]q=
current_time + 20q

• Departure 4: Job B, i = 4:
departure = current_time +[30− 6− 1]q =
current_time + 23q

• Departure 5: Job E,i = 5:
departure = current_time +[40− 14− 0]q =
current_time + 26q.

A graphical explanation of the computation is demon-
strated in Figure 2. Consider the computation of the third
departure, i.e. Job A departs. A total of 25 ticks are doled
out to 5 jobs because Job A requires 5 ticks service time
These 25 ticks include 3 extra ticks (i.e. term1), as show
circled in Figure 2(a), given to C and D even after they have
been marked as having departed. Furthermore, because
relative position (i.e.,pi=1) is smaller than C’s (i.e., 3) and
D’s (i.e., 4), the value of A’sφ(pi) is 0. This results in
term2= 3− 1− 0= 2. There are two extra ticks, marked
by rectangles in the last row of Figure 2(a), distributed to
other in-pool jobs stationed after A (i.e., Jobs B and E)
Thus, deducting these 5 extra ticks from the total of 25
ticks, we obtain the value 20. A similar calculation for Job
B’s departure is depicted in Figure 2(b). Note that the value
of B’s φ(pi) is 1 because, among jobs that have alread
departed, only A has a smaller relative position (i.e., 1) tha
B (i.e., 2). Hence term2, which is 2− 2+ 1 = 1, shows
that one extra tick is given to an in-pool job (i.e., Job E).
Subtracting the extra quanta in term1 and term2, we obtai
the value 23 for Job B.

4 HANDLING CHANGES OF STATE

In the original single-departure computational algorithm
(n = 1), upon departing, the job updates the pool to the
correct state at the simulation time of the event and leave
the pool. For the batch departure case (n > 1), we have to
find a way of obtaining all necessary information in a single
traversal of the pool and then update all jobs accordingly
Since each departure must have a corresponding departu
event, any one of thesen departure events may be used to
update the state of the pool. Different discounts have to b
applied to different elements in the pool, depending on th
position of the head with respect to these elements.

Ramos, Rego, and Sang
 A B C D E A B C D E

term1=3
term1=6

term2=2
term2=1

25 − 3 − 2 = 20

30 − 6 − 1 = 23

(a) (b)

25 ticks
30 ticks

Figure 2: Sample Departures - (a) Job A Departs, (b) Job B Departs
h
ly

g
o
a

th

u
v

n

b

e

t
-

d
d

d
e

s
,

t
v-
e
ce
The algorithm is as follows: Assume that there aren
jobs to depart in a batch. The remaining service-time of t
nth job will be used as the discount quantity. Next, simp
traverse the pool from head to tail, subtractingdiscount for
each job lying between head and thenth job and subtracting
discount − 1 for the rest. Those jobs that have remainin
service-times less than or equal to zero are deleted fr
the pool, i.e., they have been scheduled for (potenti
departure. Once the update is done, the pool is reindex
and the new head is defined. The pool is then ready for
next invocation of the update algorithm.

Consider the batch departure of jobs C and D in o
previously defined example. Since job D is the last to lea
in the batch departure, we use D’s remaining service tim
(i.e., 4) as the quantitydiscount . Applying the proposed
algorithm we get the results in Table 2.

Table 2: Pool after Departure of C and D
Job PID A B C D E
Remaining timevi 5 6 3 4 8
Relative positionpi 1 2 3 4 5
discount (–) 4 4 4 4 3

Updated remaining timevi 1 2 –1 0 5

After deleting all jobs with zero or negative remaining
service-times from the pool (i.e., C and D), we obtain a
up-to-date pool with consistent state att ime = clock+18q,
as shown in Table 3. The new head will now point to jo
E.

Table 3: Updated Pool
Job PID A B E
Remaining timevi 1 2 5
e

m
l)
ed
e

r
e
e

5 PERFORMANCE EVALUATION

We ran a number of experiments to evaluate the performanc
of the batch departure algorithms. A single, unrestricted
queue served in round-robin fashion was used to implemen
and test the algorithms. Further, the algorithms were im
plemented within an application-layer residing above the
kernel of a thread-based process-oriented simulator base
on the Purdue Ariadne threads library (Mascarenhas an
Rego 1996). The input parameters used were quantumq,
exponentially distributed job interarrival times with mean
1/λ, exponentially distributed job departure times with mean
1/µ, and discretized exponentially distributed batch sizes
with mean 1+ 1/β. The output parameter measured was
the amount of CPU time required to do the simulations,
given specific values for the input parameters describe
above. Several variations of the proposed algorithms wer
implemented within the application-layer on the simulator
kernel, to evaluate the performance of the different idea
presented in the paper. To help identify the different runs
we use the following notation:

• orCA - the original single-departure computational
algorithm

• nuBD - the batch departure formula with one-
departure at a time

• buBD - the batch departure formula with batch
departures

• BD - nuBD or buBD.
Each experiment was repeated 20 times with differen

random number seeds for each run, and the results then a
eraged. As explained in Sang, Chung, and Rego (1994), th
use of averages does not represent the absolute performan
of the algorithms but rather their relative performance given
a particular configuration of parameters.

Ramos, Rego, and Sang

ou
t

o

te
r

nt

ith

ty

e
d.
D.

r-

y
re

e

t

5.1 Benchmarks

The first experiment was designed to evaluate the behavi
of the different variations of the algorithms to arrivals tha
occur one at a time.

5.1.1 Experiment 1: Sensitivity to Traffic Intensity with
Single Arrivals

The purpose of this experiment was to measure the perf
mance of the algorithms as the ratioρ = λ/µ is varied.
The service time,ST = 1/µ and the number of jobsN
were fixed at valuesST = 200 andN=20,000 jobs, while
λ was varied. The results are shown in Figure 3.

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Traffic Intensity

orCA
nuBD
buBD

Figure 3: Simulation Time vs. Traffic Intensity for
Single Arrivals

The following experiments were designed to evalua
the behavior of the different variations of the algorithms fo
arrivals that occur in distinct batches. For each arrival eve
where interarrival mean is 1/λ, a (discretized exponential)
batch size BA with mean 1+ 1/β was defined, and BA
arrival events were generated. The service time ST, w
mean 1/µ, was divided by BA to obtain the service time
for each job in an arriving batch to ensure system stabili

5.1.2 Experiment 2: Sensitivity to Batch Size

The purpose of this experiment was to measure the p
formance of the algorithms as batch size BA is varie
The systems evaluated include orCA, nuBD and buB
The parameters used were fixed 1/λ, 1/µ = 160, with
N = 10,000 jobs, while 1+ 1/β was varied. The exper-
iment was repeated for different values ofρ, by varying
1/λ, with results for 1/λ = 200,320 and 533 (ρ = 0.8,0.5
and 0.3) shown in Figures 4, 5 and 6, respectively.
r

r-

,

.

r-

10

15

20

25

30

35

40

0 10 20 30 40 50

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Batch Size Mean

orCA
nuBD
buBD

Figure 4: Simulation Time vs. Batch Size (ρ = 0.8)

5

10

15

20

25

0 10 20 30 40 50

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Batch Size Mean

orCA
nuBD
buBD

Figure 5: Simulation Time vs. Batch Size (ρ = 0.5)

5.1.3 Experiment 3: Sensitivity to Traffic

The purpose of this experiment was to measure the perfo
mance of the algorithms with the batch size BA fixed, while
α is varied. The systems evaluated include orCA, nuBD
and buBD. The parameters used were(1 + 1/β) = 30,
1/µ = 160 with N = 10,000 jobs, and 1/λ was varied.
The results are shown in Figure 7.

5.1.4 Interpretation of Results

The main cost incurred by the orCA algorithm is due to
repeated traversals of the pool and cancellations of man
departures. The main cost incurred by the batch departu
algorithm is due to sorting. The results indicate the relative
cost of these two algorithms, and how costs change with th
pool size. Experimentally, the pool size grows with both
large batch arrival sizes and a high traffic intensity.

Our experiments enable us to identify three differen
performance regions:

• The first region involves a single arrival at a time,
or very few arrivals. This behavior is witnessed
in Experiment 1. In this region, the pool sizes

Ramos, Rego, and Sang

e
g

y

is

,
of
g

s

h-

l
s,

nt
I
a

er
4.
e

an
r

g
1
e
g

of
ns
act
rs
e
a
ts
e
-
e
ns
a
le
f
ity

e
l
n

o

6

1.
5

10

15

20

25

0 10 20 30 40 50

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Batch Size Mean

orCA
nuBD
buBD

Figure 6: Simulation Time vs. Batch Size (ρ = 0.3)

20

25

30

35

0 0.2 0.4 0.6 0.8 1

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Traffic Intensity

orCA
nuBD
buBD

Figure 7: Simulation Time vs. Traffic Intensity for
Batch Arrivals

are relatively small, and it is cheaper to travers
the pool many times instead of performing sortin
operations. So orCA performs better than BD.

• The second region involves low to medium traffic
intensity. According to the figures, this is caused b
two variations: (1)α = 0 to 0.5 and batch arrivals
of any size; (2) batch arrivals, with batch-size below
a critical size (in the case of the experiments, th
is mean batch-size< 20). This is the behavior
witnessed in Experiments 2 and 3. In this region
we have pools of moderate size, and the cost
sorting is roughly the same as the cost of traversin
the pool repeatedly. Here, orCA and BD peform
equally well.

• The third region involves medium to high traffic
intensity (according to the figures, this correspond
to the experiments withα = 0.5 to 1) and a batch
size over a certain threshold (here, mean batc
size> 20 for the experiments). In this region it
costs significantly more to traverse a large poo
repeatedly than to perform a sort operation. Thu
BD offers better performance.
The reason why the performance-behavior of the differe
algorithms reverse when going from region I to region II
is that the repeated traversal of a large pool exhibits
theoretical asymptotic growth rate ofO(n2), whereas a sort
operation withn red-black tree insert/rank operations can
be done both in timeO(n logn). Thus, for large pool sizes,
the sorting and red-black tree algorithms tend to offer bett
performance. The regions are clearly demarcated in Table

Through our experiments, we have determined that th
batch departure formula-based algorithm works better th
the original single-departure computational algorithm fo
traffic intensitiesa > 0.5 and batch sizesBA > 20, which
includes situations of burstiness and high traffic. Examinin
region III, we see that here traffic intensity approaches
and more cancellations tend to occur for orCA. Also, th
difference between BA and orCA increases with increasin
pool size.

6 CONCLUSION

It is well-known that simulations of CPU scheduling or
general waiting-line models can consume large amounts
processing time, especially when discrete-event simulatio
are supported by threads-based systems. We exploit the f
that a reduction in the number of scheduled events offe
a correspondingly sharp reduction in simulation time. W
built upon an algorithm we proposed previously, namely,
computational algorithm based on a formula which predic
the next (potential) job departure. This was shown to b
a significant improvement over a simple schedule of re
entrant events for simulating round-robin service. Here, w
generalized the idea to batches, to make efficient simulatio
that accommodate traffic that occurs in bursts. By obtaining
new batch-departure formula, we conclude that it is possib
to reduce simulation run-time even further. The idea o
infrequent pool-state updates reduces the time complex
fromO(n2) toO(n logn), and our experiments show the idea
to be effective. Further, the empirical results show that th
new algorithms perform significantly better that the origina
single-departure computational algorithm, especially whe
traffic intensity is high. We believe that generalizations t
the multiprocessor case are achievable.

ACKNOWLEDGMENTS

Research supported in part by DoD DAAG55-98-1-024
and PRF-6903235.

REFERENCES

Cormen, T., C. Leiserson, R. Rives, and C. Stein. 200
Introduction to Algorithms, Chapter 14: Augmenting
Data Structures. 2d ed. Boston, MA: McGraw-Hill.

Ramos, Rego, and Sang
Table 4: Performance of Round-Robin Algorithms
Traffic intensity

Service discipline 0 – 0.5 0.5 – 1

Single arrivals Region I: orCA has better performance

Batch arrivals, with mean size1– 20 Region II: equal performance for orCA and BD

> 20 Region III – BD performs better
ur
ra-

l
.
ms

ex
n
-
of

r
as-
er-

im-
in-
is

es
in

S.
ni-
92

ch,

ro-
s is

ue
d
ce,
as-
ral-

-
ts
Fishman, G.S. 2001.Discrete-Event Simulation. NewYork:
Springer-Verlag.

Law, A. and W.D. Kelton. 2000.Simulation Modeling and
Analysis. 3d ed. Boston, MA: McGraw-Hill.

Mascarenhas, E. and V. Rego. 1996. Ariadne: Architect
of a Portable Threads system supporting Thread Mig
tion. Software - Practice and Experience26(3):327–
357.

McHaney, R. 1991. Computer Simulation: A practica
perspective. San Diego, CA: Academic Press. 1991

Sang, J., K. Chung, and V. Rego. 1994. Efficient algorith
for simulating service disciplines.Simulation Practice
& Theory 1:223–244.

Schwetman, H.D. 1988. Using CSIM to model compl
systems. InProceedings of the 1988 Winter Simulatio
Conference, ed. M. Abrams, P. Haigh, and J. Com
fort, 246 – 253. Piscataway, New Jersey: Institute
Electrical and Electronics Engineers.

AUTHOR BIOGRAPHIES

JORGE R. RAMOS is a Ph.D. student in Compute
Sciences at Purdue University. He received a M
ters degree in Computer Sciences from Purdue Univ
sity in 2003. His current research interests include s
ulation systems, bandwidth trading, real-time data m
ing and knowledge discovery. His e-mail address
<jrramos@cs.purdue.edu> .

VERNON REGO is a Professor of Computer Scienc
at Purdue University. He received his M.Sc.(Hons)
Mathematics from B.I.T.S. (Pilani, India), and an M.
and Ph.D. in Computer Science from Michigan State U
versity (East Lansing) in 1985. He was awarded the 19
IEEE/Gordon Bell Prize in parallel processing resear
and is an Editor ofIEEE Transactions on Computers. His
research interests include parallel simulation, parallel p
cessing and software engineering. His e-mail addres
<rego@cs.purdue.edu> .

JANCHE SANG received the Ph.D. degree from Purd
University, W. Lafayette, IN, in 1994, and then joine
the Department of Computer and Information Scien
Cleveland State University, where he is currently an
sociate professor. His research interests include pa
e

lel and distributed computing, networks, software engi
neering, and simulation. He has received research gran
from NASA, NSF, OBOR, and OSC. His e-mail address is
<sang@cis.csuohio.edu> .

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 721
	02: 722
	03: 723
	04: 724
	05: 725
	06: 726
	07: 727
	08: 728

