Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

ROSS.NET: OPTIMISTIC PARALLEL SIMULATION FRAMEWORK FOR
LARGE-SCALE INTERNET MODELS

David Bauer Murat Yuksel
Garrett Yaun Shivkumar Kalyanaraman
Christopher D. Carothers
Electrical and Computer Systems Engineering Department

Computer Science Department Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute 110 8th Street
110 8th Street Troy, NY 12180, U.S.A.

Troy, NY 12180, U.S.A.

ABSTRACT emulation platforms (e.g., Emulab, White et al. 2002),
real-world overlay deployment platforms (e.g., Planetlab,
ROSS.Net brings together the four major areas of network- Peterson et al. 2002), and real-world measurement and
ing research: network modeling, simulation, measurement data-sets{www.cadia.org>).
and protocol design. ROSS.Net is a tool for computing The high-level motivation behind the use of these tools
large scale design of experiments through components suchis simple: to gain varying degrees of qualitative and quan-
as a discrete-event simulation engine, default and exten- titative understanding of the behavior of the system-under-
sible model designs, and a state of the art XML inter- test. This high-level purpose translates into a humber of
face. ROSS.Net reads in predefined descriptions of network specific lower-level objectives: validation of protocol de-
topologies and traffic scenarios which allows for in-depth sign and performance for a wide range of parameter values
analysis and insight into emerging feature interactions, cas- (parameter sensitivity), understanding of protocol stability
cading failures and protocol stability in a variety of situations. and dynamics, and studying feature interactions between
Developers will be able to design and implement their own protocols. Broadly, we may summarize the objective as a
protocol designs, network topologies and modeling scenar- quest for general invariant relationships between network
ios, as well as implement existing platforms within the parameters and protocol dynamics (Jain 1991; Floyd and
ROSS.Net platform. Also using ROSS.Net, designers are Paxson 2001; Floyd and Kohler 2003).

able to create experiments with varying levels of granularity, If we already have so many tools, itis natural to ask, why

allowing for the highest-degree of scalability. are more sophisticated tools required? Sally Floyd and Vern
Paxson (2001) pinpoint a number of reasons why simulating

1 INTRODUCTION the Internet (or a significant representative fraction of it) is

difficult. They point to three reasons: scale, heterogeneity
Fundamental to the process of network protocol design and rapid change.
and operations are a variety of performance analysis tech- To enable these capabilities requires a number of in-
niques (Jain 1991; Floyd and Paxson 2001). These tech- novations across the fronts of modeling, simulation engine
nigues have been used by researchers in a variety of design and design of experiments (DOE). On the model-
different contexts: analytic models (e.g., TCP models, ing and simulation front, ROSS.Net enables, (i) optimistic
Padhye et al. 2000; self-similar models, Leland et al. parallel simulation engine (called ROSS which stands for
1994; and topology models, Tangmunarunkit et al. 2002), Rensselaer's Optimistic Simulation System) which lever-
simulation platforms (e.g., ns-2, Breslau et al. 2000; ages memory-efficient reversible computation instead of
SSFNet<www.ssfnet.org> ; and GloMoSim<pcl. using traditional state-saving to support rollback recov-
cs.ucla.edu/projects/glomosim>), prototyping ery (ii) systemic memory-efficient methodology for model
platforms (e.g., MIT Click Router toolkit, Kohler et al. construction using a combination of library interfaces to
2000; XORP, Handley et al. 2003), tools for system- key data structures and algorithms, and (iii) measurement.
atic design of experiments and exploring parameter state These high-level objectives are translated into an integrated
spaces (e.g., Recursive Random Search, Ye and Kalyanara-XML-based configuration and libraries platform that make
man 2003); STRESS, Helmy et al. 2000), experimental it possible for a researcher to combine topology, parameter

703

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

configuration information and to selectively compose a set 2 ROSS.NET BIG PICTURE
of experiments that execute space and time efficient models
resulting in accurate answers to the questions posed by theUnlike conventional network simulators where simple, flat
model designer. models are simulated, ROSS.Net brings together the four
Scaling the simulation platform is just one dimension of major areas of networking research: network modeling,
our research. Recall that, beyond mere scaling of simulation simulation, measurement and protocol design. The big
platforms, we need capabilities to address the remaining picture is shown in Figure 1-a. Using a state of the art XML
two issues: heterogeneity and rapid change. Heterogeneity interface, ROSS.Netis able to read in predefined descriptions
means more than just having support for multiple protocol of network topologies and traffic scenarios which allows for
models (e.g., ns-2) we urgently need large-scale experiment the first time in-depth analysis and insight into emerging
design capabilities that are integrated with the simulation feature interactions, cascading failures and protocol stability
and models to create an overarching test bed platform. This in a variety of situations.
platform has the ability to help in the organization of multiple Developers are be able to design and implement their
simulation experiments in the quest of the general invariant own protocol designs, network topologies and modeling sce-
relationships between parameters and protocol response.narios, as well as implement existing platforms within the
Floyd (2001) sums the state-of affairs by saying: “..we ROSS.Net platform. And using ROSS.Net, designers are be
can’t simulate networks of that size (global Internet). And able to create experiments with varying levels of abstraction,
even if we could scale, we would not have the proper allowing for the highest-degree of scalability. As a practical
tools to interpret the results effectively...” To address this example, a designer could put together a ROSS.Net sim-
need, we have developed a large-scale experiment designulation which would combine real network topology data,
platform called ROSS.Net that allows us to characterize such as an autonomous system with several hierarchical lev-
and optimize protocol response. In general the protocol els, including areas, subnets, gateways, stand-alone systems
response is a function of a large vector of parameters, or endpoints, in addition to lower level elements such as
i.e. is a response surface in a large-dimensional parameterbridges, switches and repeaters. On top of the topology, a
space. The result of this work includes a unified search traffic generating scenario could also be specified for each
and optimization framework with demonstrated ability to of the machines as appropriate. ROSS.Net would then be
pose meaningful large-scale design questions and provide able to run the design in a multitude of varying conditions,
“good” characterizations rapidly. computing statistical measurements, highlighting scalabil-
There are many problems that only occur when at- ity issues, as well as pin-pointing network trends expected
tempting large scale simulation, including visualization, or otherwise. Figures 2-a and 2-b shows the structure of
abstraction and analyzing the results. There is a difference modeling and simulation of ROSS.Net. ROSS.Net basically
between simulation and emulation. In emulation, we strive constructs a shell on top of the ROSS simulation engine.
to recreate a real world situation. In simulation, we are
allowed to make abstractions and generalizations. These3 ROSS.NET FRAMEWORK
abstractions are critical to the performance of the simulation
engines. These abstractions can lead to high performanceThe ROSS.Net framework consists of several elements,
models, but at the same time yielding results that do not including a discrete-event, optimistic parallel simulation
answer the networking questions being investigated. It is engine ROSS (Carothers, Bauer, and Pearce 2002), a col-
important that simulation systems provide a mechanism by lection of protocol libraries and the overarching ROSS.Net
which the appropriate level of abstraction can be achieved simulation model, XML schema for describing models, and
which maximizes simulator performance for the questions design of experiments tool called DOT. Where possible,
being asked. Large scale simulation systems must provide ROSS.Net borrows from best use practices seen in other
a way of collecting data and analyzing the results in a simulation systems. ROSS.Net adds to those features new
meaningful way. The experiment designer must be able to design elements which have been missing and allows for
characterize each component of the system separately, andthe first time experimental design and analysis at a high
be able to analyze the growth patterns, see the effect of level, incorporating techniques from the areas of simulation,
topology and protocols, and find and predict clusters. They modeling, and measurement.
need to be able to correlate topology and traffic character- The design of experiments tool (DOT) allows for inves-
istics to protocol, queuing and routing statistics. ROSS.Net tigators to specify the type and duration of the experiment
allows experiment designers to do just that. being designed. Once described, the DOT configures and
executes the ROSS.Net core with the specified XML input
data descriptors, simulator engine performance parameters,
and protocol dependent parameters and executes a search
algorithm such as random recursive search (Ye and Kalya-

704

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

Testbeds
(e.g. EmuLab,
PlanetLab)

XML Interface

. ROSS.Net
5 T
Modeling ROSS.Net g f§ PrOll_)CO| Input R Desin$-07-el;(g$riment
Community M(eflar-nsl;:::rar:ign) % - coDr:::grr:ity Parameters v (i:iR(sv USF{
XML Interface
Output
e e ROSS teps
romer‘!tz‘m,elc.
Measurement
Community
(a) ROSS.Net and Other Major Experimentation Areas (b) Layered Architecture of ROSS.Net

Figure 1: ROSS.Net Big Picture

naraman 2003). Many executions might be needed in order network nodes has already been demonstrated conclusively
to complete the DOT picture before complex analysis and (Yaun, Carothers, and Kalyanaraman 2003).
validation can be completed. ROSS.Net can then generate Reverse computation is the process of being able to
reports and graphs based on the semantic content of theundo operations that are speculatively executed out of order.
experiment as well as validate the experiment results. When an out of order event is found in the system, events are
At the heart of ROSS.Net is Rensselaer’'s Optimistic “rolled back”, or reverse computed. The key advantage of

Simulation System or ROSS. ROSS demonstrated that sta- an optimistic approach is that it operates independent of the
ble, highly efficient execution using only a small constant underlying network topology. Thus, it continues to exploit
more memory than required by the sequential simulation all the available parallelism even during dynamic changes in
is possible. Running on top of ROSS is the ROSS.Net topology. Previously the caveat has been that state-saving
simulation. The ROSS.Net simulation pulls together all of overheads dominate the computation costs resulting in little
the model modules into one cohesive structure and gives or no increase in performance as compared to sequential
them access to ROSS.Net network simulation components model execution (Carothers, Perumalla and Fujimoto 1999).
such as global data structures represent the network topol- To address this problem, a new approach called reverse
ogy, and a connection library for traffic scenarios as well as computation for realizing the undo operation of the state
provides certain functionality such as a per node default IP space is being used. With reverse computation, the roll back
layer for support of routing and queuing in cases where this mechanism in the optimistic simulator is realized not by
is not provided by the sub-model directly. The ROSS.Net classic state-saving, but by literally allowing to the greatest
model also contains the XML interfaces for the input and possible extent events to execute backward. Thus, as models
output streams associated with the DOT. are developed for parallel execution, both the forward and

reverse execution code must be written.
3.1 ROSS

3.2 EXAMPLE EXPERIMENT
ROSS is an optimistic parallel simulation engine that is
targeted for low event granularity models. ROSS’ APl is As an example of the types of experiments that can be
based on a message-passing interface. LPs communicateperformed with ROSS.Net, we summarize our recent per-
strictly by exchanging timestamped event messages as directformance study using the AT&T topology as part of an
reading and writing of LP state is prohibited. In addition, overall large-scale TCP model simulation (Yaun, Carothers,
an efficient timer interface is provided for the purpose of and Kalyanaraman 2003). This network topology obtained
network protocol modeling, as well as a reversible abstract from the Rocketfuel website (Spring, Mahajan and Wetherall
data structure and memory management library. ROSS has2002). As shown in Figure 3, the core US AT&T network
already been used to develop models of IP-multi-casting, topology contains 13,173 router nodes and 38,164 links.
TCP, UDP, BGP4 and OSPFv2 as well as modeling of wire- What makes Internet topologies like the AT&T network both
less and sensor networks. It's ability to model millions of interesting and challenging from a modeling prospective is

the spareness and power-law structure (Spring, Mahajan

705

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

User-defined Reversible
Data Structures

User model
(BGP, OSPF, TCP, UDP, IP,
queuing, routing, ete)

User-defined XML
Modeling Specification

User-defined XML

Network Topologies Protocol Detail Enabler
ROSS Net Network Simulation /
ROSS.Net models ROSS.Net Reversible R
(BGP, OSPFv2, TCP Reno, UDP, Data Structures Layer N1 protocols. |
IP, quening, routing, ctc) i
ROSS.Net XML 0
Modeling Specification T re———
ayer 1 protocas
ROSS.Net XML Network el &
Topologies fityjEacs
Partial 1 \ Detailed
| ROSS s ¢ E—) ooied
(Large Scale) (Small Scale)
(a) Subscription Structure of ROSS.Net Models (b) Multi-Abstraction Paradigm of ROSS.Net

Figure 2: ROSS.Net Modeling and Simulation Concepts

and Wetherall 2002). In the case of AT&T, there are less plus routers) and a large case with 266,160 LPs. In each
than 3 links on average. However, at the super core there configuration, half of the end hosts establish a TCP session
is a high-degree connectivity. Typically, an Internet service to a randomly selectedeceiving host. We observe this
provider’s super core will be configured as a fully connected configuration is almost pathological for a parallel network
mesh. Consequently, backbone routers will have up to 67 simulation because the amount of remote network traffic
connections to other routers, some of which are other back- will be much greater than is typical in practice Our
bone or super core routers and other links to region core goal is to demonstrate simulator efficiency under high-stress
routers. Once at the region core level, the number of links workloads for realistic topologies.
per router reduces and thus the connectivity between other We observed over 99% efficiency for our parallel runs.
region cores is spare. Most of the connectivity is dedicated However, despite the efficiency, the speedup results were
to connecting local points of presence (PoPs). marginal but encouraging. Our best case speedup as 1.25
In performing a breath-first-search of the AT&T topol- for the medium configuration and 1.29 for the large config-
ogy, there are distinct eight levels. At the backbone, there uration. The platform used in this performance study was a
are 414 routers. At each successive level yields the fol- dual Hyper-threaded 2.8 GHz Pentium 4 Xeon processors,
lowing router count : 4,861, 5,021, 1,117, 118, 58, 6 and which multiplexes two instruction streams or threads per
at the final level there are 5 nodes. There were a number processor. We attribute the disparity between efficiency and
of routers not directly reachable from within this network. end speedup to the enormous amount of remote messages
Those routers are most likely transit routers going strictly sent between instruction streams/processors. The AT&T
between autonomous systems (AS). With the transit routers network topology for a round-robin LP to processor map-
removed, our AT&T network scenario has 11,670 routers. ping results in almost 80% of the all processed events being
Link weights are derived based on the relative bandwidth remotely schedule. We hypothesize that behavior on the
of the link in comparison to other available links. In this part of the model reduces memory locality and results in
configuration, routing is keep static, however we do have much higher cache miss rates. Consequently, all instruction
dynamic routing currently working on a light-weight OSPF streams are spending more time stalled waiting for memory
model in which we plan to integrate with our TCP model requests to be satisfied. With a better load distribution,
in the very near future. we believe the speedup results will be much higher and
The bandwidth ranged from almost 10 Gb/sec at the potentially scale to larger processor configurations. The
top-level down to 70 Kb/sec at the lower levels. The buffer memory requirements for the AT&T scenario were 269 MB
size and link delay ranged from 12 MB and between 10ms for the medium size network and 328 MB for the large size
to 30ms delay at the top-level to 5 KB buffer size and 5ms of network, yielding a per TCP connection overhead of 2.8
delay at the lower layers of the network. This configuration KB and 1.3 KB respectively.
was scaled to both a medium case with 96,500 LPs (end hosts

706

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

File Edit Miew Search Go Bookmarks Tasks Help

<.

|%| Back

v \3 §§ L& hittp:/fwmnw.cs washington.edu/researchinetworking/rocketfuelfinteractives/701 8us. himl
Fonward Reload Stop

] g Search] Print 7|

' o] Home | @! Bookmarks l Red Hat Metwork L." Support L." Shop L‘.’ Products r_‘.’ Training

[3 e @ |

Figure 3: AT&T Network Topology (AS 7118) from the Rocketfuel Data Bank for the Continental U.S.A.

4 LARGE-SCALE EXPERIMENT DESIGN AND
ANALYSIS

(i.e., obtain maximum information about) the black-box

with the minimum number of experiments. Another goal is

robust characterization, i.e., one that is minimally affected by
Scaling the simulation platform is just one dimension of external sources of variability and uncontrollable parameters,
our research. Recall that, beyond mere scaling of simula- and can be specified at a level of confidence.

tion platforms, we need capabilities to address the issues The underlying premise of experiment design is that

of heterogeneity and rapid change in simulating large net-

works to extract and interpret meaningful performance data.

“Heterogeneity” means more than just having support for
multiple protocol models (e.g., ns-2): we urgently need ex-
periment design or “meta-simulation” capabilities that are

integrated with the simulation and models to create an over- eters.

each experiment (e.g., a simulation run, an Emulab or
Planetlab test run) has a non-negligible cost. Simple de-
signs like “best-guess” or “one-factor-at-a-time” designs
are less favored in complex situations since they do not
provide information about the interactions between param-
Designs like full-factorial and fractional factorial

arching test bed platform (see Figure 1-b). The purpose (also called orthogonal designs), appropriately subjected to
of the large-scale experiment design piece of our research replication, randomization and blocking are preferred (Jain
is to systematically formulate and organize multiple sim- 1991; Montgomery 2001). The usual end-goal of formu-
ulation experiments in the quest of the general invariant lating regression models is to observe the effects of both
relationships between parameters and protocol performanceindividual parameters and parameter interactions (Jain 1991;
response. Montgomery 2001). Techniques like blocking and analysis
Design of Experiments or “experiment design” is awell of covariance are used to explicitly handle measurable, but

known branch of performance analysis, specifically, a sub
branch of statistics (Jain 1991; Montgomery 2001). It has
been used extensively in areas like agriculture, industrial

uncontrollable (a.k.a., “nuisance”) factors. Transforms on
data (e.g., Box-Cox power-law family of transformations)
can effectively aid in producing a family of non-linear re-

process design and quality control (Montgomery 2001), and gression models and stabilizing the variance of the response
has been introduced to the area of practical computer and (Jain 1991; Montgomery 2001).

network systems design by Raj Jain (Jain 1991). Statistical The next step beyond characterization (i.e., developing

experiment design views the system-under-test as a black- input-output regression models) is to determine the region

box that transforms input parameters to output metrics. in the important factors that leads to best-possible response.
The goal of experiment design is to maximally characterize The output or response in general will have an unknown

707

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

surface topology, also known as “response surface”. Theap-6 ROSS.NET MODEL
proach typically used involves quickly traversing the surface
sequentially (by using lower-order models built with frac- The ROSS.Net models which come with the distribution
tional factorial experiments) to reach interesting areas where include default models for protocols such as TCP, UDP,
more detailed (higher-order) characterization is done. Well- OSPFv2, BGP4 etc. Each protocol defines an XML descrip-
known small-polynomial order response-surface methods tor for the protocol for configuration and validation. These
include central composite design (CCD) (efficient fitting of models were generated by the ROSS.Net team at RPI and
second order models), Box-Behnken designs (Montgomery have been optimized using complex abstraction techniques
2001). Robust parameter designs (RPDs) for finding set- where appropriate, and conform to the RFC specifications.
tings for controllable variables that minimized the variability New models may be designed and included by the user
transmitted to the response from uncontrolled (or noise) vari- for protocol development and testing purposes by extend-
ables have been proposed by Taguchi (Taguchi 1986), thating the existing models or by providing complete model
have been credited for triggering a quality-control revolution implementations. Further, models may be generated and
in the 1980s-90s (Montgomery 2001). tested in the isolated environment of ROSS, and then ported
Taguchi’'s RPDs use highly fractionated factorial designs simply and quickly to the ROSS.Net API. The ROSS.Net
and other fractional designs obtained from orthogonal arrays. APl is based on the message passing API available in ROSS.
ROSS.Net is a fully modular and extensible system making
it simple for users to generate models in most languages
with a C language interface and incorporate them into the
There are typically two main data inputs for any given overall ROSS.Net structure. Users simply need to setup
model: topology and a traffic scenario. Several systems their module within the ROSS.Net system and provide an
have designed excellent approaches to describing some orXML parser for any user-defined XML descriptors used by
all of these inputs, but what is lacking is an abstract way their model.
in which network models are described so that they can be ROSS.Net also provides a simple API to model devel-
used across multiple simulation systems. Additionally, little opers for the use of ROSS timer events, and memory buffers.
or no work has been done on abstractly validating these Models should use these functions as they have been de-
inputs or, describing the results of the simulations. Even signed to be as efficient as possible within the ROSS memory
when work is done on describing the inputs and outputs to usage paradigm. They also aid in the quick development of
a simulation, it is invariably tied to a particular simulation models because they provide common functionality through
system and cannot be re-used or verified in another systeman abstract API.
without a great amount of effort. ROSS.Net parses the XML modeling specification and
Extensible Markup Language (XML) is a simple, very generates the necessary global data structure representing
flexible text format derived from SGML. Originally designed the network topology and connection database for use by
to meet the challenges of large-scale electronic publishing, all models through the use of access functions public in the
XML is also playing an increasingly important role in ROSS.Net API. The global data structure and connection
the exchange of a wide variety of data on the Web and database, with their associated API functions provide a high
elsewhere{www.w3c.org/XML/>). XML is one of the level approach to accessing the input data and allow models
fastest growing modern technologies which was designed to be able to efficiently compute necessary constructs such
primarily to make data application independent much as the as routing tables and connection streams.
Java programming language attempts to make applications All discrete-event engines define some form of entities

5 XML MODELING

platform independent. Our goal for using XML is to make
the modeling data transparent to the simulation engine. In
addition to using XML for modeling, in the future we intend
to use XML interfaces to online components of the system
(e.g., PlanetLab, Emulab in both the control and data plane;
as well as interactive user interfaces, e.g., SNMP, RMON).
We use model data from real networks and are still able
to capture minute trends resulting from protocol changes,
policy changes and/or parameter changes. XML allows us to
find and clarify these results by designing experiments which
can be tightly controlled in the large-scale. XML allows
us to view scenarios and topologies as simply variables in

or logical processes (LPs) which describe the state of the
processes in the system. LPs must be mapped to the modelin
some way that minimizes remote message passing between
processing elements which require mutual exclusion devices.
ROSS.Net uses the XML model descriptor to complete this
mapping for the user and conforms to the OSI/ISO model
for networking layers. A typical model description includes

a node on the network, and the protocol layers that it is
expected to simulate. By analyzing the links between the
network nodes, ROSS.Net is able to determine a mapping
of network nodes to LPs automatically for the user, which
reduces the number of remote messages being passed. An

the parameter space of a design of experiments and to treatassumption we make is that network nodes with high degrees

those parameters as though they were a black box.

708

of connectivity will have a higher number of events being

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

passed to them. ROSS.Net also maps the protocol layersuse this packet as the final envelope for message passing
onto the LPs in such a way that muxing/demuxing of packet within the ROSS core. All protocol messages are packed
streams is handled automatically by a stream port number. into the ROSS.Net packet and transmitted to the appropriate

To further maximize the capabilities of discrete-event destination. The ROSS.Net LP then provides each layer
message passing, ROSS.Net handles internally the mappingwith both the ROSS.Net packet, as well as the encapsulated
of protocol layers to the OSI/ISO layering model within model header and data information. This not only reduces
each LP. This allows each modeled layer to act completely the event size being sent through the system, but enables the
independently of each other. ROSS.Net handles the details of different model layers to act independently of each other.
eventallocation and message passing between layers. Eventsn the downstream transmission, the FTP protocol model
passed between layers are not directly sent through the only receives and understands how to handle FTP protocol
ROSS core, but rather handed directly through the following packets. An underlying TCP protocol model only receives
layer for processing. By not passing the event through the the application layer packet size and a pointer to the meta-
ROSS core, ROSS.Net is able to simulate much higher data. The TCP layer decides how to appropriately send
levels of packet passing than in a conventional discrete- the meta-data, and generates several smaller TCP packets
event simulator. The only control given to each model when which ROSS.Net hands to the underlying IP layer for trans-
sending events is whether the event should be propagated upmission to the next LP in the routing table. The FTP layer
or down through the protocol stack. Because the models act does not explicitly call a TCP provided send function, nor
completely independently of each other, protocol designers does the TCP layer call an explicit IP layer send function.
are free to design their models in the maximum number of ROSS.Net simply hands the data either up or down be-
configurations. For example, running OSPF over IP would tween the layers. The combination of the layers determine
be a typical model representing current Internet behavior, but the LPs complexity of work. Several components may be
OSPF could be tested over TCP without any consideration connected together within an LP to form the overall logical
in the OSPF model. Each protocol becomes a building process, and ROSS.Net manages the interactions between
block where there are no limits on how they are placed them through the use of the abstract ROSS.Net packet.
together.

ROSS.Net also provides a default IP layer for models 7 CONCLUSIONS
which do not specify an IP layer. This facilitates constructs
such as multi-homed TCP hosts, where the TCP modeler ROSS.Net brings together the four major areas of network-
is not concerned with the routing decision making. The ing research: network modeling, simulation, measurement
ROSS.Net default IP layer has several configurable options, and protocol design. ROSS.Net is a tool for computing
including queue usage, routing and demuxing of datagram large scale design of experiments through components such
streams. The experiment designer can choose from within as a discrete-event simulation engine, default and extensi-
the DOT interface what types of queuing mechanisms should ble model designs, and a state of the art XML interface.
be used for each class of network node, and then the IP Developers will be able to design and implement their own
layer for those nodes are automatically configured within protocol designs, network topologies and modeling scenar-
ROSS.Net. Conversely, the experiment design chosen in ios, as well as implement existing platforms within the
the DOT may prescribe which types of queuing mechanism, ROSS.Net platform.
if any, are needed in order to collect the relevant data for In the future we will develop online interfaces between
the experiment. In this way, the modeler no longer needs to ROSS.Net and live SNMP and RMON. Work has already
choose each and every configuration option, and ensure theirbeen completed on SNMP XML interfaces, so connecting
correctness, but can instead rely on high level experiment to these live sources should be relatively simple. We also
design to choose appropriate values and configurations for intend to develop interfaces to emulation platforms such as
them. Decision making at the DOT level also helps to PlanetLab and Emulab.
select the appropriate level of detail to collect during the
simulation execution(s), thereby maximizing the simulation ACKNOWLEDGMENTS
performance.

ROSS.Net provides a generic, compressed packet for This research is supported by an NSF CAREER Award
event transmissions. The ROSS.Net packet is intended to CCR-0133488, the DARPA Network Modeling and Simu-
simplify some of the packet details commonly found in lation program, contract #F30602-00-2-0537 and a AT&T
different protocols. The ROSS.Net packet header contains University Relations Program Grant.
information accessible to all model layers such as the source
and destination address and the stream port number as well
as some layer information such as direction the packet is
currently taking through the layer stack. ROSS.Net models

709

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

REFERENCES

Breslau, L., D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H. Yu. 2000. Advances in network simulatitBEE
Computer3(10): 59-67.

Carothers, C. D., Bauer, D., and S. Pearce, 2002. Ross:
a high-performance, low memory, modular time warp
system.Journal of Parallel and Distributed Computing
62: 1648-1669.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto.
1999. Efficient optimistic parallel simulations using
reverse computatiorACM Transactions on Modeling
and Computer SimulatioB(3): 224-253.

Floyd, S. 2001. Simulation is crucidEEE Spectrun38(1):

76, sidebar article.

Floyd, S., and E. Kohler. 2003. Internet research needs
better models. InFirst Workshop on Hot Topics in
Networks (HotNets-)Special Issue 3ACM SIGCOMM
Computer Communication Revied8(1): 29-34.

Floyd, S., and V. Paxson. 2001. Difficulties in simulating
the internet.|IEEE/ACM Transactions on Networking
9(4): 392-403.

Handley, M., O. Hodson, and E. Kohler. 2003. XORP:
open platforms for network research.Rinst Workshop
on Hot Topics in Networks (HotNets-Ipecial Issue
of ACM SIGCOMM Computer Communication Review
33(1): 53-58.

Helmy, A., D. Estrin, and S. Gupta. 2000. Systematic test-
ing of multicast routing protocols: Analysis of forward
and backward search techniquesltternational Con-
ference on Computer Communications and Networks
(ICCCN).

Jain, R. 1991The art of computer systems performance
analysis: techniques for experimental design, measure-
ment, simulation, and modelingViley - Interscience.

Kohler, E., R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. 2000. The click modular route€M Trans-
actions on Computer Systerh8(3): 263-297.

Leland, W., M. Taqgqu, W. Willinger, and D. Wilson. 1994.
On the self-similar nature of ethernet trafiEEE/ACM
Transactions on Networking(1): 1-15.

Montgomery, D. C. 2001Design and analysis of experi-
ments John Wiley and Sons.

Padhye, J., V. Firoiu, D. Towsley, and J. Kurose. 2000.
Modeling tcp reno performance: A simple model and
its empirical validation.|EEE/ACM Transactions on
Networking8(2): 133-145.

Peterson, L., T. Anderson, D. Culler, and T. Roscoe. 2002.
A blueprint for introducing disruptive technology into
the internet. InFirst Workshop on Hot Topics in Net-
works (HotNets-1) Special Issue oACM SIGCOMM
Computer Communication Revid@(1): 59-64.

710

Sikdar, B., S. Kalyanaraman, and K. S. Vastola. 2001.
An integrated model for the latency and steady state
throughput of tcp connection®erformance Evalua-
tion 46: 139-154.

Spring, N., R. Mahajan, and D. Wetherall. 2002. Measuring
isp topologies with rocketfuel. I#Proceedings of the
2002 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications
(SIGCOMM) 133-145.

Taguchi, G. 1986@ntroduction to quality engineering\sian
Productivity Organization, UNIPUB, White Plains, NY.

Tangmunarunkit, H., R. Govindan, S. Jamin, S. Shenker,
and W. Willinger. 2002. Network topology generators
— structural vs. degree-based. Rroceedings of the
2002 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications
(SIGCOMM) 147-159.

White, B., J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar.
2002. An integrated experimental environment for dis-
tributed systems and networks. Froc. of the Fifth
Symposium on Operating Systems Design and Imple-
mentation (OSDI)255-270.

Yaun, G., C. D. Carothers, and S. Kalyanaraman. 2003.
Large-scale tcp models using optimistic parallel simula-
tion. To appear ithe Proceedings of th&7" Workshop
on Parallel and Distributed Simulation

Ye, T., and S. Kalyanaraman. 2003. A recursive random
search algorithm for large-scale network parameter con-
figuration. To appear irthe Proceedings of the 2003
ACM SIGMETRICS Conference

AUTHOR BIOGRAPHIES

DAVID BAUER is currently a completing his PhD in com-
puter science at Rensselaer Polytechnic Institute. While pur-
suing his PhD at RPI, he has designed and developed ROSS
and ROSS.Net in addition to other commercial distributed
systems. At GE/CRD he developed a design of experiments
tool for use in the research and development of mercury con-
sumption in fluorescent bulbs. While At the Maplinfo Corp.
Mr. Bauer developed software for the coordination and con-
figuration of multiple XML and Java servers. His research
interests include parallel and distributed systems and net-
work simulation with a focus on performance optimizations.
His email address isbauerd@cs.rpi.edu>

GARRETT YAUN is a Ph.D. student in the Department
of Computer Science at Rensselaer Polytechnic Institute.
His recent research in efficient TCP models for optimistic
parallel simulation won best paper at PADS 2003. Garrett’'s
research interests include parallel and distributed systems,
networking and modeling and simulation. His email address
is <yaung@cs.rpi.edu>

Bauer, Yaun, Carothers, Yuksel, and Kalyanaraman

CHRISTOPHER CAROTHERS is an assistant professor
in the Computer Science Department at Rensselaer Poly-
technic Institute. He received the PhD, MS, and BS from
Georgia Institute of Technology in 1997, 1996, and 1991,
respectively. Prior to joining RPI, he was a research scientist
at the Georgia Institute of Technology. As a PhD student, he
interned twice with Bellcore, where he worked on wireless
network models. In 1996, he interned at MITRE Corpora-
tion, where he was part of the DoD High Level Architecture
development team. His research interests include parallel
and distributed systems, simulation, and networking. His
email address ischrisc@cs.rpi.edu>

MURAT YUKSEL is currently a Post-Doctoral Research
Associate at ECSE Department of Rensselaer Polytechnic
Institute (RPI), Troy, NY. He received a BS degree from
Computer Engineering Department of Ege University, Izmir,
Turkey in 1996. He received MS and PhD degrees from
Computer Science Department of RPI in 1999 and 2002
respectively. His research interests are as network pricing,
routing in wireless networks, large-scale network simulation,
networking with free-space optics and performance analysis.
His email address isyuksem@ecse.rpi.edu>

SHIVKUMAR KALYANARAMAN is an Associate Pro-
fessor at the Department of Electrical, Computer and Sys-
tems Engineering at Rensselaer Polytechnic Institute in Troy,
NY. He received a B.Tech degree from the Indian Institute of
Technology, Madras, India in July 1993, followed by M.S.
and Ph.D. degrees in Computer and Information Sciences
at the Ohio State University in 1994 and 1997 respectively.
His research is in topics such as congestion control architec-
tures, quality of service, and free-space optical networking.
His email address isshivkumar@ecse.rpi.edu>

711

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 703
	02: 704
	03: 705
	04: 706
	05: 707
	06: 708
	07: 709
	08: 710
	09: 711

