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ABSTRACT

ROSS.Net brings together the four major areas of networ
ing research: network modeling, simulation, measureme
and protocol design. ROSS.Net is a tool for computin
large scale design of experiments through components su
as a discrete-event simulation engine, default and exte
sible model designs, and a state of the art XML inte
face. ROSS.Net reads in predefined descriptions of netwo
topologies and traffic scenarios which allows for in-dept
analysis and insight into emerging feature interactions, ca
cading failures and protocol stability in a variety of situations
Developers will be able to design and implement their ow
protocol designs, network topologies and modeling scen
ios, as well as implement existing platforms within the
ROSS.Net platform. Also using ROSS.Net, designers a
able to create experiments with varying levels of granularit
allowing for the highest-degree of scalability.

1 INTRODUCTION

Fundamental to the process of network protocol desig
and operations are a variety of performance analysis tec
niques (Jain 1991; Floyd and Paxson 2001). These tec
niques have been used by researchers in a variety
different contexts: analytic models (e.g., TCP model
Padhye et al. 2000; self-similar models, Leland et a
1994; and topology models, Tangmunarunkit et al. 2002
simulation platforms (e.g., ns-2, Breslau et al. 2000
SSFNet<www.ssfnet.org> ; and GloMoSim<pcl.
cs.ucla.edu/projects/glomosim> ), prototyping
platforms (e.g., MIT Click Router toolkit, Kohler et al.
2000; XORP, Handley et al. 2003), tools for system
atic design of experiments and exploring parameter sta
spaces (e.g., Recursive Random Search, Ye and Kalyana
man 2003); STRESS, Helmy et al. 2000), experiment
-
t

ch
n-

rk

s-
.

r-

e
,

n
h-
h-
of
,
.
),
;

te
ra-
l

emulation platforms (e.g., Emulab, White et al. 2002
real-world overlay deployment platforms (e.g., Planetla
Peterson et al. 2002), and real-world measurement
data-sets (<www.cadia.org> ).

The high-level motivation behind the use of these too
is simple: to gain varying degrees of qualitative and qua
titative understanding of the behavior of the system-und
test. This high-level purpose translates into a number
specific lower-level objectives: validation of protocol de
sign and performance for a wide range of parameter val
(parameter sensitivity), understanding of protocol stabil
and dynamics, and studying feature interactions betwe
protocols. Broadly, we may summarize the objective as
quest for general invariant relationships between netwo
parameters and protocol dynamics (Jain 1991; Floyd a
Paxson 2001; Floyd and Kohler 2003).

If we already have so many tools, it is natural to ask, w
are more sophisticated tools required? Sally Floyd and V
Paxson (2001) pinpoint a number of reasons why simulat
the Internet (or a significant representative fraction of it)
difficult. They point to three reasons: scale, heterogene
and rapid change.

To enable these capabilities requires a number of
novations across the fronts of modeling, simulation eng
design and design of experiments (DOE). On the mod
ing and simulation front, ROSS.Net enables, (i) optimis
parallel simulation engine (called ROSS which stands
Rensselaer’s Optimistic Simulation System) which leve
ages memory-efficient reversible computation instead
using traditional state-saving to support rollback reco
ery (ii) systemic memory-efficient methodology for mode
construction using a combination of library interfaces
key data structures and algorithms, and (iii) measureme
These high-level objectives are translated into an integra
XML-based configuration and libraries platform that mak
it possible for a researcher to combine topology, parame
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configuration information and to selectively compose a se
of experiments that execute space and time efficient mode
resulting in accurate answers to the questions posed by t
model designer.

Scaling the simulation platform is just one dimension o
our research. Recall that, beyond mere scaling of simulatio
platforms, we need capabilities to address the remainin
two issues: heterogeneity and rapid change. Heterogene
means more than just having support for multiple protoco
models (e.g., ns-2) we urgently need large-scale experime
design capabilities that are integrated with the simulatio
and models to create an overarching test bed platform. Th
platform has the ability to help in the organization of multiple
simulation experiments in the quest of the general invarian
relationships between parameters and protocol respon
Floyd (2001) sums the state-of affairs by saying: “...we
can’t simulate networks of that size (global Internet). And
even if we could scale, we would not have the prope
tools to interpret the results effectively...” To address thi
need, we have developed a large-scale experiment des
platform called ROSS.Net that allows us to characteriz
and optimize protocol response. In general the protoc
response is a function of a large vector of parameter
i.e. is a response surface in a large-dimensional parame
space. The result of this work includes a unified searc
and optimization framework with demonstrated ability to
pose meaningful large-scale design questions and provi
“good” characterizations rapidly.

There are many problems that only occur when at
tempting large scale simulation, including visualization
abstraction and analyzing the results. There is a differen
between simulation and emulation. In emulation, we striv
to recreate a real world situation. In simulation, we are
allowed to make abstractions and generalizations. The
abstractions are critical to the performance of the simulatio
engines. These abstractions can lead to high performan
models, but at the same time yielding results that do no
answer the networking questions being investigated. It
important that simulation systems provide a mechanism b
which the appropriate level of abstraction can be achieve
which maximizes simulator performance for the question
being asked. Large scale simulation systems must provi
a way of collecting data and analyzing the results in
meaningful way. The experiment designer must be able
characterize each component of the system separately, a
be able to analyze the growth patterns, see the effect
topology and protocols, and find and predict clusters. The
need to be able to correlate topology and traffic characte
istics to protocol, queuing and routing statistics. ROSS.Ne
allows experiment designers to do just that.
ers,
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2 ROSS.NET BIG PICTURE

Unlike conventional network simulators where simple, fla
models are simulated, ROSS.Net brings together the fo
major areas of networking research: network modelin
simulation, measurement and protocol design. The b
picture is shown in Figure 1-a. Using a state of the art XM
interface, ROSS.Net is able to read in predefined descriptio
of network topologies and traffic scenarios which allows fo
the first time in-depth analysis and insight into emergin
feature interactions, cascading failures and protocol stabil
in a variety of situations.

Developers are be able to design and implement th
own protocol designs, network topologies and modeling sc
narios, as well as implement existing platforms within th
ROSS.Net platform. And using ROSS.Net, designers are
able to create experiments with varying levels of abstractio
allowing for the highest-degree of scalability. As a practica
example, a designer could put together a ROSS.Net si
ulation which would combine real network topology data
such as an autonomous system with several hierarchical l
els, including areas, subnets, gateways, stand-alone syst
or endpoints, in addition to lower level elements such a
bridges, switches and repeaters. On top of the topology
traffic generating scenario could also be specified for ea
of the machines as appropriate. ROSS.Net would then
able to run the design in a multitude of varying conditions
computing statistical measurements, highlighting scalab
ity issues, as well as pin-pointing network trends expect
or otherwise. Figures 2-a and 2-b shows the structure
modeling and simulation of ROSS.Net. ROSS.Net basica
constructs a shell on top of the ROSS simulation engine

3 ROSS.NET FRAMEWORK

The ROSS.Net framework consists of several elemen
including a discrete-event, optimistic parallel simulatio
engine ROSS (Carothers, Bauer, and Pearce 2002), a
lection of protocol libraries and the overarching ROSS.N
simulation model, XML schema for describing models, an
design of experiments tool called DOT. Where possibl
ROSS.Net borrows from best use practices seen in oth
simulation systems. ROSS.Net adds to those features n
design elements which have been missing and allows
the first time experimental design and analysis at a hi
level, incorporating techniques from the areas of simulatio
modeling, and measurement.

The design of experiments tool (DOT) allows for inves
tigators to specify the type and duration of the experime
being designed. Once described, the DOT configures a
executes the ROSS.Net core with the specified XML inp
data descriptors, simulator engine performance paramet
and protocol dependent parameters and executes a se
algorithm such as random recursive search (Ye and Kaly
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(a) ROSS.Net and Other Major Experimentation Areas (b) Layered Architecture of ROSS.Net

Figure 1: ROSS.Net Big Picture
e
d
t
h

c
ta
t
n
t
f
s
ts
o
s
P
is
t

a
ec

f
ct
a
g,
-

f

ely

to
er.
re

of
he
t
in
ing
le
tial
).
se
e
ck
y
st
els
d

e
r-

s,
d
ll

s.

is
naraman 2003). Many executions might be needed in ord
to complete the DOT picture before complex analysis an
validation can be completed. ROSS.Net can then genera
reports and graphs based on the semantic content of t
experiment as well as validate the experiment results.

At the heart of ROSS.Net is Rensselaer’s Optimisti
Simulation System or ROSS. ROSS demonstrated that s
ble, highly efficient execution using only a small constan
more memory than required by the sequential simulatio
is possible. Running on top of ROSS is the ROSS.Ne
simulation. The ROSS.Net simulation pulls together all o
the model modules into one cohesive structure and give
them access to ROSS.Net network simulation componen
such as global data structures represent the network top
ogy, and a connection library for traffic scenarios as well a
provides certain functionality such as a per node default I
layer for support of routing and queuing in cases where th
is not provided by the sub-model directly. The ROSS.Ne
model also contains the XML interfaces for the input and
output streams associated with the DOT.

3.1 ROSS

ROSS is an optimistic parallel simulation engine that is
targeted for low event granularity models. ROSS’ API is
based on a message-passing interface. LPs communic
strictly by exchanging timestamped event messages as dir
reading and writing of LP state is prohibited. In addition,
an efficient timer interface is provided for the purpose o
network protocol modeling, as well as a reversible abstra
data structure and memory management library. ROSS h
already been used to develop models of IP-multi-castin
TCP, UDP, BGP4 and OSPFv2 as well as modeling of wire
less and sensor networks. It’s ability to model millions o
an
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network nodes has already been demonstrated conclusiv
(Yaun, Carothers, and Kalyanaraman 2003).

Reverse computation is the process of being able
undo operations that are speculatively executed out of ord
When an out of order event is found in the system, events a
“rolled back”, or reverse computed. The key advantage
an optimistic approach is that it operates independent of t
underlying network topology. Thus, it continues to exploi
all the available parallelism even during dynamic changes
topology. Previously the caveat has been that state-sav
overheads dominate the computation costs resulting in litt
or no increase in performance as compared to sequen
model execution (Carothers, Perumalla and Fujimoto 1999
To address this problem, a new approach called rever
computation for realizing the undo operation of the stat
space is being used. With reverse computation, the roll ba
mechanism in the optimistic simulator is realized not b
classic state-saving, but by literally allowing to the greate
possible extent events to execute backward. Thus, as mod
are developed for parallel execution, both the forward an
reverse execution code must be written.

3.2 EXAMPLE EXPERIMENT

As an example of the types of experiments that can b
performed with ROSS.Net, we summarize our recent pe
formance study using the AT&T topology as part of an
overall large-scale TCP model simulation (Yaun, Carother
and Kalyanaraman 2003). This network topology obtaine
from the Rocketfuel website (Spring, Mahajan and Wethera
2002). As shown in Figure 3, the core US AT&T network
topology contains 13,173 router nodes and 38,164 link
What makes Internet topologies like the AT&T network both
interesting and challenging from a modeling prospective
the spareness and power-law structure (Spring, Mahaj
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(a) Subscription Structure of ROSS.Net Models (b) Multi-Abstraction Paradigm of ROSS.Net

Figure 2: ROSS.Net Modeling and Simulation Concepts
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and Wetherall 2002). In the case of AT&T, there are le
than 3 links on average. However, at the super core th
is a high-degree connectivity. Typically, an Internet servic
provider’s super core will be configured as a fully connecte
mesh. Consequently, backbone routers will have up to
connections to other routers, some of which are other ba
bone or super core routers and other links to region co
routers. Once at the region core level, the number of lin
per router reduces and thus the connectivity between ot
region cores is spare. Most of the connectivity is dedicat
to connecting local points of presence (PoPs).

In performing a breath-first-search of the AT&T topol
ogy, there are distinct eight levels. At the backbone, the
are 414 routers. At each successive level yields the f
lowing router count : 4,861, 5,021, 1,117, 118, 58, 6 an
at the final level there are 5 nodes. There were a num
of routers not directly reachable from within this network
Those routers are most likely transit routers going strict
between autonomous systems (AS). With the transit rout
removed, our AT&T network scenario has 11,670 router
Link weights are derived based on the relative bandwid
of the link in comparison to other available links. In thi
configuration, routing is keep static, however we do ha
dynamic routing currently working on a light-weight OSPF
model in which we plan to integrate with our TCP mode
in the very near future.

The bandwidth ranged from almost 10 Gb/sec at th
top-level down to 70 Kb/sec at the lower levels. The buffe
size and link delay ranged from 12 MB and between 10m
to 30ms delay at the top-level to 5 KB buffer size and 5ms
delay at the lower layers of the network. This configuratio
was scaled to both a medium case with 96,500 LPs (end ho
plus routers) and a large case with 266,160 LPs. In ea
configuration, half of the end hosts establish a TCP sessi
to a randomly selectedreceiving host. We observe this
configuration is almost pathological for a parallel network
simulation because the amount of remote network traffi
will be much greater than is typical in practice. Our
goal is to demonstrate simulator efficiency under high-stre
workloads for realistic topologies.

We observed over 99% efficiency for our parallel runs
However, despite the efficiency, the speedup results we
marginal but encouraging. Our best case speedup as 1
for the medium configuration and 1.29 for the large config
uration. The platform used in this performance study was
dual Hyper-threaded 2.8 GHz Pentium 4 Xeon processo
which multiplexes two instruction streams or threads pe
processor. We attribute the disparity between efficiency a
end speedup to the enormous amount of remote messa
sent between instruction streams/processors. The AT&
network topology for a round-robin LP to processor map
ping results in almost 80% of the all processed events bei
remotely schedule. We hypothesize that behavior on t
part of the model reduces memory locality and results
much higher cache miss rates. Consequently, all instructi
streams are spending more time stalled waiting for memo
requests to be satisfied. With a better load distributio
we believe the speedup results will be much higher an
potentially scale to larger processor configurations. Th
memory requirements for the AT&T scenario were 269 MB
for the medium size network and 328 MB for the large siz
network, yielding a per TCP connection overhead of 2.
KB and 1.3 KB respectively.
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Figure 3: AT&T Network Topology (AS 7118) from the Rocketfuel Data Bank for the Continental U.S.A.
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4 LARGE-SCALE EXPERIMENT DESIGN AND
ANALYSIS

Scaling the simulation platform is just one dimension
our research. Recall that, beyond mere scaling of sim
tion platforms, we need capabilities to address the iss
of heterogeneity and rapid change in simulating large n
works to extract and interpret meaningful performance da
“Heterogeneity” means more than just having support
multiple protocol models (e.g., ns-2): we urgently need
periment design or “meta-simulation” capabilities that a
integrated with the simulation and models to create an o
arching test bed platform (see Figure 1-b). The purp
of the large-scale experiment design piece of our resea
is to systematically formulate and organize multiple si
ulation experiments in the quest of the general invari
relationships between parameters and protocol performa
response.

Design of Experiments or “experiment design” is a w
known branch of performance analysis, specifically, a s
branch of statistics (Jain 1991; Montgomery 2001). It h
been used extensively in areas like agriculture, indust
process design and quality control (Montgomery 2001), a
has been introduced to the area of practical computer
network systems design by Raj Jain (Jain 1991). Statist
experiment design views the system-under-test as a bl
box that transforms input parameters to output metr
The goal of experiment design is to maximally character
-
s
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-

h

e

l

d
l
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(i.e., obtain maximum information about) the black-bo
with the minimum number of experiments. Another goal
robust characterization, i.e., one that is minimally affected
external sources of variability and uncontrollable paramete
and can be specified at a level of confidence.

The underlying premise of experiment design is th
each experiment (e.g., a simulation run, an Emulab
Planetlab test run) has a non-negligible cost. Simple d
signs like “best-guess” or “one-factor-at-a-time” design
are less favored in complex situations since they do n
provide information about the interactions between para
eters. Designs like full-factorial and fractional factoria
(also called orthogonal designs), appropriately subjected
replication, randomization and blocking are preferred (Ja
1991; Montgomery 2001). The usual end-goal of form
lating regression models is to observe the effects of bo
individual parameters and parameter interactions (Jain 19
Montgomery 2001). Techniques like blocking and analys
of covariance are used to explicitly handle measurable,
uncontrollable (a.k.a., “nuisance”) factors. Transforms o
data (e.g., Box-Cox power-law family of transformations
can effectively aid in producing a family of non-linear re
gression models and stabilizing the variance of the respo
(Jain 1991; Montgomery 2001).

The next step beyond characterization (i.e., developi
input-output regression models) is to determine the regi
in the important factors that leads to best-possible respon
The output or response in general will have an unknow
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surface topology, also known as “response surface”. The a
proach typically used involves quickly traversing the surfac
sequentially (by using lower-order models built with frac-
tional factorial experiments) to reach interesting areas whe
more detailed (higher-order) characterization is done. Wel
known small-polynomial order response-surface method
include central composite design (CCD) (efficient fitting of
second order models), Box-Behnken designs (Montgome
2001). Robust parameter designs (RPDs) for finding se
tings for controllable variables that minimized the variability
transmitted to the response from uncontrolled (or noise) var
ables have been proposed by Taguchi (Taguchi 1986), th
have been credited for triggering a quality-control revolution
in the 1980s-90s (Montgomery 2001).

Taguchi’s RPDs use highly fractionated factorial design
and other fractional designs obtained from orthogonal array

5 XML MODELING

There are typically two main data inputs for any given
model: topology and a traffic scenario. Several system
have designed excellent approaches to describing some
all of these inputs, but what is lacking is an abstract wa
in which network models are described so that they can b
used across multiple simulation systems. Additionally, little
or no work has been done on abstractly validating thes
inputs or, describing the results of the simulations. Eve
when work is done on describing the inputs and outputs t
a simulation, it is invariably tied to a particular simulation
system and cannot be re-used or verified in another syste
without a great amount of effort.

Extensible Markup Language (XML) is a simple, very
flexible text format derived from SGML. Originally designed
to meet the challenges of large-scale electronic publishin
XML is also playing an increasingly important role in
the exchange of a wide variety of data on the Web an
elsewhere (<www.w3c.org/XML/> ). XML is one of the
fastest growing modern technologies which was designe
primarily to make data application independent much as th
Java programming language attempts to make applicatio
platform independent. Our goal for using XML is to make
the modeling data transparent to the simulation engine.
addition to using XML for modeling, in the future we intend
to use XML interfaces to online components of the system
(e.g., PlanetLab, Emulab in both the control and data plan
as well as interactive user interfaces, e.g., SNMP, RMON

We use model data from real networks and are still abl
to capture minute trends resulting from protocol change
policy changes and/or parameter changes. XML allows us
find and clarify these results by designing experiments whic
can be tightly controlled in the large-scale. XML allows
us to view scenarios and topologies as simply variables
the parameter space of a design of experiments and to tre
those parameters as though they were a black box.
-

t

r

t

6 ROSS.NET MODEL

The ROSS.Net models which come with the distribution
include default models for protocols such as TCP, UDP
OSPFv2, BGP4 etc. Each protocol defines an XML descrip
tor for the protocol for configuration and validation. These
models were generated by the ROSS.Net team at RPI a
have been optimized using complex abstraction techniqu
where appropriate, and conform to the RFC specification
New models may be designed and included by the us
for protocol development and testing purposes by exten
ing the existing models or by providing complete mode
implementations. Further, models may be generated a
tested in the isolated environment of ROSS, and then port
simply and quickly to the ROSS.Net API. The ROSS.Ne
API is based on the message passing API available in ROS
ROSS.Net is a fully modular and extensible system makin
it simple for users to generate models in most languag
with a C language interface and incorporate them into th
overall ROSS.Net structure. Users simply need to setu
their module within the ROSS.Net system and provide a
XML parser for any user-defined XML descriptors used by
their model.

ROSS.Net also provides a simple API to model deve
opers for the use of ROSS timer events, and memory buffe
Models should use these functions as they have been d
signed to be as efficient as possible within the ROSS memo
usage paradigm. They also aid in the quick development
models because they provide common functionality throug
an abstract API.

ROSS.Net parses the XML modeling specification an
generates the necessary global data structure represen
the network topology and connection database for use b
all models through the use of access functions public in th
ROSS.Net API. The global data structure and connectio
database, with their associated API functions provide a hig
level approach to accessing the input data and allow mode
to be able to efficiently compute necessary constructs su
as routing tables and connection streams.

All discrete-event engines define some form of entitie
or logical processes (LPs) which describe the state of th
processes in the system. LPs must be mapped to the mode
some way that minimizes remote message passing betwe
processing elements which require mutual exclusion device
ROSS.Net uses the XML model descriptor to complete th
mapping for the user and conforms to the OSI/ISO mode
for networking layers. A typical model description includes
a node on the network, and the protocol layers that it
expected to simulate. By analyzing the links between th
network nodes, ROSS.Net is able to determine a mappin
of network nodes to LPs automatically for the user, whic
reduces the number of remote messages being passed.
assumption we make is that network nodes with high degre
of connectivity will have a higher number of events being
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passed to them. ROSS.Net also maps the protocol lay
onto the LPs in such a way that muxing/demuxing of pack
streams is handled automatically by a stream port numb

To further maximize the capabilities of discrete-even
message passing, ROSS.Net handles internally the mapp
of protocol layers to the OSI/ISO layering model within
each LP. This allows each modeled layer to act complete
independently of each other. ROSS.Net handles the details
event allocation and message passing between layers. Ev
passed between layers are not directly sent through
ROSS core, but rather handed directly through the followin
layer for processing. By not passing the event through t
ROSS core, ROSS.Net is able to simulate much high
levels of packet passing than in a conventional discret
event simulator. The only control given to each model whe
sending events is whether the event should be propagated
or down through the protocol stack. Because the models
completely independently of each other, protocol designe
are free to design their models in the maximum number
configurations. For example, running OSPF over IP wou
be a typical model representing current Internet behavior, b
OSPF could be tested over TCP without any considerati
in the OSPF model. Each protocol becomes a buildin
block where there are no limits on how they are place
together.

ROSS.Net also provides a default IP layer for mode
which do not specify an IP layer. This facilitates construc
such as multi-homed TCP hosts, where the TCP mode
is not concerned with the routing decision making. Th
ROSS.Net default IP layer has several configurable option
including queue usage, routing and demuxing of datagra
streams. The experiment designer can choose from with
the DOT interface what types of queuing mechanisms shou
be used for each class of network node, and then the
layer for those nodes are automatically configured with
ROSS.Net. Conversely, the experiment design chosen
the DOT may prescribe which types of queuing mechanism
if any, are needed in order to collect the relevant data f
the experiment. In this way, the modeler no longer needs
choose each and every configuration option, and ensure th
correctness, but can instead rely on high level experime
design to choose appropriate values and configurations
them. Decision making at the DOT level also helps t
select the appropriate level of detail to collect during th
simulation execution(s), thereby maximizing the simulatio
performance.

ROSS.Net provides a generic, compressed packet
event transmissions. The ROSS.Net packet is intended
simplify some of the packet details commonly found in
different protocols. The ROSS.Net packet header conta
information accessible to all model layers such as the sou
and destination address and the stream port number as w
as some layer information such as direction the packet
currently taking through the layer stack. ROSS.Net mode
s

.

g

f
ts

p
t

,

r

r

use this packet as the final envelope for message pas
within the ROSS core. All protocol messages are pack
into the ROSS.Net packet and transmitted to the appropr
destination. The ROSS.Net LP then provides each la
with both the ROSS.Net packet, as well as the encapsula
model header and data information. This not only reduc
the event size being sent through the system, but enables
different model layers to act independently of each oth
In the downstream transmission, the FTP protocol mo
only receives and understands how to handle FTP proto
packets. An underlying TCP protocol model only receiv
the application layer packet size and a pointer to the me
data. The TCP layer decides how to appropriately se
the meta-data, and generates several smaller TCP pac
which ROSS.Net hands to the underlying IP layer for tran
mission to the next LP in the routing table. The FTP lay
does not explicitly call a TCP provided send function, n
does the TCP layer call an explicit IP layer send functio
ROSS.Net simply hands the data either up or down b
tween the layers. The combination of the layers determ
the LPs complexity of work. Several components may
connected together within an LP to form the overall logic
process, and ROSS.Net manages the interactions betw
them through the use of the abstract ROSS.Net packet

7 CONCLUSIONS

ROSS.Net brings together the four major areas of netwo
ing research: network modeling, simulation, measurem
and protocol design. ROSS.Net is a tool for computin
large scale design of experiments through components s
as a discrete-event simulation engine, default and exte
ble model designs, and a state of the art XML interfac
Developers will be able to design and implement their ow
protocol designs, network topologies and modeling scen
ios, as well as implement existing platforms within th
ROSS.Net platform.

In the future we will develop online interfaces betwee
ROSS.Net and live SNMP and RMON. Work has alrea
been completed on SNMP XML interfaces, so connecti
to these live sources should be relatively simple. We a
intend to develop interfaces to emulation platforms such
PlanetLab and Emulab.
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