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ABSTRACT

When designing a network simulation environment intend
specifically for modeling large–scale topologies, a numb
of issues must be addressed by the simulator designer. M
ory requirements for network simulation engines can gro
quadratically with the size of the simulated topology an
can easily exceed available memory on modern works
tions. The number of outstanding simulation events gro
linearly with the number of packets in flight being modele
and can lead to performance bottlenecks when managin
sorted event list of millions of events. Tracking the resu
of the simulation using a packet–level log file can result
excessive usage of disk space. We discuss the design o
Georgia Tech Network Simulator(GTNetS) with emphasis
on howGTNetSaddresses these issues. We give results fr
performance experiments showing the reduction in memo
and event list size as a result of our design decisions.

1 INTRODUCTION

Computer based simulation is widely used in almost
areas of networking research. A number of high–qual
simulation tools exist and are in widespread use. The
tools allow researchers to test and validate new and exist
protocols under a variety of conditions. An experiment
protocol can be shown to work correctly in the presen
of packet losses, packet re–ordering, lengthy delays, a
lengthy round–trip times. This type of protocol validation
typically done on fairly small scale topology models, sinc
the objective at this point is protocol correctness.

Once these protocols are known to be correct, the
havior of these protocols must be demonstrated in realis
size networks to insure that the performance of the proto
will be acceptable when deployed on a large scale. T
venerable and widely usedns2(McCanne and Floyd 1997)
can comfortably model networks of a few hundred to
few thousand network elements. Tools such aspdns(Riley,
Fujimoto, and Ammar 1999) andSSFNet(Cowie, Ogiel-
-
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e
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l

ski, and Nicol 2002) can be used on topologies of up
100,000 network elements, although this can be time co
suming. The creation of larger–scale simulation topologi
often consumes excessive amounts of CPU time and sys
memory, making this type of experimentation more dauntin
and therefore less common.

As the size of the simulated topology (and the numb
of data flows being modeled) grows to very large scale
computer resources in the simulation environment beco
the most critical issue, and generally are the limiting fact
for the topology size of the network model. These resourc
include memory constraints, disk space constraints and a
CPU time. See Riley and Ammar (2002) for a detaile
analysis of the overhead in all three of these areas us
the popularns2 simulation environment. This analysis in
dicates that, to achieve moderate to large–scale simulati
for computer networks, the simulator must be design
from the beginning with scalability in mind. TheGeorgia
Tech Network Simulator(Riley 2003) was designed in this
way, and has demonstrated good scalability and efficien
with network models consisting of several million networ
elements.GTNetSis designed to utilize distributed simu-
lation techniques, enabling linear scalability on a low–co
network of workstations. Here, we focus on efficiencies
a single sequential simulation only.

The remainder of this paper is organized as follow
Section 2 gives an overview of some of the network simul
tion tools presently in use. Section 3 discusses the trade
and design decisions used in theGTNetSdesign that led to
memory and CPU efficiency when simulating large–sca
networks. Section 4 gives some performance results us
GTNetS. Finally, section 5 summarizes this work.

2 RELATED WORK

There are a number of existing network simulation tools
existence that are in widespread use within the networki
research community. Each of these has strengths and we
nesses, and no single simulation environment is suitable
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all possible simulation requirements. In this section, w
discuss briefly several existing simulators, and indicate t
approximate level of scalability achieved by each.

The ns2 Network Simulator. The venerablens2
simulator (McCanne and Floyd 1997) is certainly the mo
popular and widely used simulation environment for ne
working research. It includes detailed models of a numb
of TCP variations, a large number of queuing discipline
several application models (such as HTTP web traffic), an
extensive logging and tracing support. In addition,ns2has
support for both wired fixed networks, and wireless ad
hoc networks. In the wireless domain, there are mode
for a number of ad–hoc routing protocols, includingDy-
namic Source Routing(DSR) (Johnson and Maltz 1996),
Ad–Hoc On–Demand Distance Vector(AODV) (Perkins and
Royer 1999); as well as a very detailed model of the IEE
802-11bMAC protocol specification.ns2can comfortably
model network topologies up to about 1,000 network ele
ments with the default routing methods, and about 16,0
network elements using ourNIx–Vector(Riley, Ammar, and
Fujimoto 2000) routing method.

Furthermore, by using parallel and distributed simula
tion methods, we have shown good scalability forns2, by
extending the basic simulation model to run on a netwo
of workstations. OurParallel/Distributed ns(pdns) (Riley,
Fujimoto, and Ammar 1999), has been shown to scale
a network topology of 250,000 network elements (Riley
Ammar, and Fujimoto 2000).

The GloMoSim/Parsec Simulation Engine. An-
other well known and popular simulator isGloMoSim(Zeng,
Bagrodia, and Gerla 1998), which is built on top of th
Parsec(Bagrodia, Meyer, Takai, Chen, Zeng, Martin, Park
and Song 1998) simulation engine.GloMoSimhas been
designed specifically to model wireless networks, and
designed to run in a parallel environment on a tightly cou
pled symmetric–multiprocessor system. It has very detail
models of the 802-11bMAC protocol, a number of rout-
ing protocols (including Bellman/Ford, AODV (Perkins and
Royer 1999), DSR (Johnson and Maltz 1996), and other
TCP, and various application models.

GloMoSimwas designed from the beginning to run in
parallel, and thus can achieve good parallel performance
some cases. However, theGloMoSimsimulator uses tightly
coupled shared memory for inter–process communicatio
which leads to limited scaling. In large–scale simulation
main memory is often the first resource to become exhaust
The dependence on shared–memory message passing li
the scale of aGloMoSimsimulation to a single computing
system, with the corresponding limits on available memor
Additionally, the original design criteria for theGloMoSim
product were focused mainly on performance rather th
scalability. Experiments by the developers ofGloMoSim
have demonstrated scalability up to about 1000 nodes.
ns
r

,

n

,

d.
its

The Scalable Simulation Framework (SSFNet).
TheSSFNet(Cowie, Nicol, and Ogielski 1999, Cowie, Liu,
Liu, Nicol, and Ogielski 1999) simulator was originally de-
veloped at Rutgers University (DIMACS), in collaboration
with Dartmouth University, and is presently maintained an
distributed by Renesys Corp. The product was design
from the beginning to be scalable and to give good perfo
mance across a wide range of topology scales. The prod
is available both in aJavaenvironment, as well as aC++
implementation. LikeGloMoSim, SSFNetis designed to run
on a tightly coupledSMPsystem, relying on a custom de-
signed thread scheduler and efficient memory–to–memo
message passing to achieve good parallel performance. U
like GloMoSim, the SSFsimulator was designed from the
beginning with scalability in mind, and thus is careful abou
limiting memory consumption wherever possible. TheSSF
simulator has been demonstrated by the developers on n
work topologies as large as 100,000 network elements.

The OpNet Network Simulator. The Op-
Net(Bertolotti and Dunand 1993) simulator is a widely–use
commercial software product developed by OpNet Technol
gies Inc. This simulator contains very detailed models o
a large number of network devices, including most com
mercial routers, switches, and hubs; as well as a numb
of wireless devices and MAC protocols. The product i
commercially successful, and has a large installed custom
base. The product is presently limited to a single proce
running on a single computing platform, but a version ab
to execute on parallel processors in under development. O
net also includes aHigh Level Architecture(HLA) interface,
but this interfaces supports interoperability with other tool
such as traffic generators, rather than distributed executio
Furthermore, efforts to model large networks using OpN
have had only limited success, primarily due to the limita
tions of single process execution. As part of our existin
COMPASSresearch effort, we developed a rudimentary dis
tributed version of this product (Wu, Fujimoto, and Riley
2001), but achieved only limited success.

3 GTNetSDESIGN

In this section, we discuss the design decisions inGeorgia
Tech Network Simulatorthat allowed more efficient simu-
lation of very large–scale networks. These efficiencies fa
into three basic categories:

1. Reducing Event List Size
2. Managing Memory
3. Reducing Log File Size

Each of these areas are discussed in more detail below

3.1 Reducing Event List Size

We have three optimizations that substantially reduce th
overall size of the pending event queue. Since insertio
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Figure 1: Simple Network Topology

into sorted queues areO(lgN), reducing the size of this
queue results in improved execution time.

3.1.1 FIFO Receive Queues

Consider the simple network topology shown in figure 1
This consists of two nodes,A andB, a simplex link con-
necting the nodes, and a packet queue associated with
link. To model the correct behavior of this topology, th
simulator typically needs two pending simulation even
for each packet transmitted. Each packet transmission w
schedule one simulation event to indicate that the pac
is received by the receiver, and a second event to indic
that transmission is completed at the sender. Note t
these two events are at different simulation times due to t
speed–of–light propagation delay on the link. Pseudo–co
for a packet transmission action is similar to the following

PROCEDURE TransmitPacket
/* Process Packet Tx Event */
IF (Link Not Busy) THEN

/* Calculate time to transmit */
TransmitTime =

PacketSize / LinkBandwidth;
/* Schedle Rx Event at Receiver */
SchedulePacketRxEvent

(TransmitTime + PropogationDelay);
/* Schedule Link Free Event */
ScheduleLinkFreeEvent(TransmitTime);
Set Link Busy;

ELSE
/* Link is busy */
/* Enque the packet for later Tx */
EnquePacket();

END IF;
END Transmitpacket;

PROCEDURE LinkFreeEvent
/* Process a LinkFree Event */
Set Link Not Busy;
IF (Queue Not Empty)

Remove Packet From Queue;
TransmitPacket;

END IF;
END LinkFreeEvent;
he
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Since each packet transmission requires two events,
count of pending events, assuming all links are active, is
least 2N (N is the number of simplex links defined in the
simulated topology). In reality, it is often several timesN
if there is a significant propagation delay on the link. Fo
a simulation of 1 million full duplex links, the event queue
can easily exceed 10 million pending events. Since th
time to insert an event in a sorted queue isO(lgN) in the
general case, this can result in significant CPU overhea
We point out that theCalendar Queue(Brown 1988) (which
is the default event scheduler inns2) can in some cases
realizeO(1) insertions, but degenerates toO(n) insertions
in extreme cases. ForGTNetSwe chose anO(lgN) event
scheduler based on theC++ standard template libraryMap
container, which works consistently in all cases.

Our design for packet transmission and receipt proces
ing in GTNetSreduces the number of pending events from
two events per packet in–flight to one event per simple
link, using two optimizations described below. While the
number of packets in–flight and number of simplex link
have the same “Big–O” limit, in practice the packet in–fligh
count is several times the simplex link count.

We observed that the timestamps for packet transm
sions on a single simplex link are strictly in increasing orde
of simulation time. A packet transmitted on link A->B must
always be sent at a simulation time greater than that of t
previous packet transmitted on that link. With this in mind
we replaced the scheduling of receive events for all pac
ets in–flight with a singlefirst–in–first–outqueue at each
receiver. ThisFIFO queue has a constant insertion an
removal time. At any point in time, there is only one even
in the sorted event queue for each simplex link with packe
in–flight, which will process the packet receipt eventfor the
earliest pending packet on that link only. All other pending
packets for that link are simply stored in theFIFO queue
at the receiver. When the packet receive event for a giv
link is removed from the sorted event queue and process
another pending event is scheduled for the next packet,
one is present in theFIFO queue. For simplex links with
significant propagation delays and potentially large numbe
of packets in–flight, this optimization results in a substantia
reduction in the size of pending event list.

3.1.2 Abstract Packet Queues

Secondly, we noted that in many cases the queuing de
for a packet in aFIFO queue (such as a simple DropTail
style packet queue) can be deterministically calculated wh
the packet is inserted in the queue. This fact allows us
reduce the size of the pending event list by a factor of tw
by eliminating the need for theLinkFreeevent, as follows.

When a packet is transmitted on a non–busy link, th
packet receipt event is created normally, either by scheduli
the event in the sorted event queue, or by appending it in t
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FIFO event queue as described above, and the link is se
busy. However, theLinkFreeevent is not created. Instead
we maintain aFIFO data structure at the transmitting link
called theAbstract Queue Info Deque(AQID), that stores
the transmission start time, transmission end time, and
size of the packet. When another packet is later transmit
on the same link, we first remove any stale packets from t
AQID (packets that have already completed transmitting
and the number of bytes in the DropTail queue is reduc
accordingly. If there are still remaining entries in theAQID,
we calculate the time that the packet is to be received
the receiver by adding the packet transmission time a
propagation delay to thetransmission end timeof the most
recentAQID entry, and schedule the packet receipt normal
If the AQID is empty, the link is no longer busy and the
packet transmission is handled normally. We call this meth
Abstract Queuing, since packets are never actually queued
the transmitter, but rather forwarded directly to the receiv
with the appropriate queuing delay accounted for in th
packet receipt time.

By eliminating the scheduling and processing ofLink-
Freeevents, we reduce the total number of events proces
due to packet transmissions by a factor of two. We hast
to point out that thisAbstract Queuingmethod can only be
used in cases where the queuing delay of a packet can de
ministically be calculated when the packet is enqueued. F
links with collision detection or avoidance methods, such
Ethernet LANs or 802.11 wireless links, this optimizatio
cannot be used. Further, this optimization has little effe
on the instantaneous event list size, since at any one ti
there would be at most oneLinkFreeevent for each simplex
link in the topology.

3.1.3 Timer Buckets

Finally, we observed that for simulations modeling TC
data flows, there is always at least one pending event
the event queue for every active TCP connection. Eve
active TCP flow has at least one pendingTimeoutevent
for the most recently transmitted sequence number. Th
events are almost always later canceled and removed fr
the pending event queue when an acknowledgment pac
is received. Timeout events are only actually scheduled a
acted upon when data packets are lost along the path fr
the sender to the receiver. Further, we observed that in
simulation environment, these timeout events are typica
created and processed with a high degree of accuracy in
timestamp of the event. Timeout events are scheduled a
processed with nano–second accuracy or better, resultin
a somewhat unrealistic simulation. In actual end–system
timer events are processed on more granularClock Tick
intervals, which are typically on the order of milliseconds

With these issues in mind, we designedGTNetSusing
the concept ofTimer Buckets, as follows. We start with
t
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r

e

e

t

e
d
n
,

specifying a user configurable timer buckets interval, whic
defaults to ten milliseconds. We then create a simple vect
data structure, with each entry in the vector representing
pending timeout events for a fixed timer buckets interva
in the future. For example, the zeroth entry in the vecto
contains all timeout events scheduled for ten millisecond
in the future, the next entry is all timeouts for twenty
milliseconds, and so forth. Each of these entries is called
Timer Bucket. We note that, for each timer bucket, entrie
are scheduled in strictly increasing timestamp order, an
thus a simpleFIFO queue, with constant insertion and
removal time, can be used to maintain all pending timeou
for each bucket. When scheduling a new timeout even
we simply append the event to the tail of theFIFO queue
for the appropriate timer buckets, which is a constant tim
operation. If the bucket was empty prior to the insertion, w
schedule an event in the sorted event queue that represe
the earliest timeout for any event in that bucket. When
timeout event is canceled (which does not necessarily occ
in FIFO order), we do not remove the event from theFIFO
queue unless it is the earliest pending event for that buck
Rather, we simply mark it as canceled. When a timeo
event is scheduled for processing, it will by definition be
the earliest pending event for its bucket. At that time
it is removed from the head of theFIFO queue. If the
new head is marked as canceled it is also removed (as
all consecutive canceled events that become the head
the queue). If the resultingFIFO queue is non–empty, a
new sorted event list entry is scheduled for the appropria
simulation time for later processing.

The timer buckets optimization reduces the size of th
event list fromO(k) wherek is the number of active TCP
flows, to O(j) where j is the number of timer buckets.
The number of timer buckets is a function of the compute
TCP round trip times and cannot be known precisely i
advance. However, assuming a ten millisecond bucket siz
the number of buckets in a reasonable simulation is n
more than a few hundred. Interestingly, this optimizatio
also results in a more realistic simulation, since real TC
implementations schedule and process timeouts in coa
grain clock tick intervals which are analogous to our timer
bucket interval.

3.2 Managing Memory

A second area where care must be taken in simulator des
is in memory management. While theGTNetSdesign is
careful with memory usage in almost all areas, we prese
three particular memory management design decisions th
result in substantial savings in the overall memory footprin
of the simulation.
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3.2.1 Routing Tables

The amount of memory required to create and maintain si
ulated routing tables in a large–scale simulation can beco
excessive. In order to route packets through a network, ea
node must make a routing decision to determine theNext
Hop node that represents the shortest path (or some ot
routing metric) to the ultimate destination. This decisio
typically involves referencing aRouting Tablethat has, in
the extreme, one entry for every possible packet destinat
at each possible routing decision point. This routing tab
lookup method results in memory requirements ofO(N2),
whereN is the number of nodes in the simulated topo
ogy. The popularns2simulator uses a hash–based routin
lookup by default, which reduces this limit somewhat b
ignoring unused entries. TheSSFNetsimulator uses routing
aggregation methods based onIP prefixes, which also re-
duces the overall memory requirements. InGTNetS, we use
two optimizations which reduce or eliminate the memor
requirements for routing tables.

First is the use of the on–demandNIx–Vectorrouting
method by default. This method does not use routin
tables at all, but rather uses a source–based routing met
whereby routing information is contained in each packe
Routes are computed as needed, and are cached at pa
sources for later reuse. TheNIx–Vectorrepresentation for
the routing information is very compact and introduce
little overhead in the packet routing decisions. TheNIx–
Vector routing approach was previously published (Rile
Ammar, and Fujimoto 2000) as part of our work withpdns,
so details of this method are omitted here.GTNetSalso
supports the creation of static routing tables (based on
all–pairs shortest–path–first algorithm) if the presence
routing tables is required for the simulation results desire

Next is the elimination of any routing information (eithe
the NIx–Vectorcreation or the static routing tables) atleaf
nodesin the simulation. Consider the two simple topologie
shown in figures 2 and 3. Figure 2 shows a portion of
topology with five leaf nodes, connected to the remainde
of the topology by a single gateway using point–to–poi
links. Figure 3 shows a similar topology, with five lea
nodes on an Ethernet LAN and a single gateway.

For the case of the point–to–point links in figure 2
is easy to observe by inspection that routing decisions
the leaf nodes are trivial. In all cases, any packet genera
by a leaf node is unconditionally forwarded to the gatewa
excepting packets addressed to the leaf node itself. T
GTNetSrouting computations will never calculate routing
information for leaf nodes with a single point–to–poin
link, resulting in a substantial memory savings when usin
the static routing method. Surprisingly, the popularns2
simulator does not implement this simple optimization.

The Ethernet LAN case shown in figure 3 is less obviou
but in fact can use the same optimization. When creating
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Rest of Network

Leaf Nodes

Gateway

Figure 2: Point–to–Point Leaf Nodes

Ethernet LAN inGTNetS, an optionalsingle gatewaycan be
specified which denotes the gateway node as shown. Pack
generated at the leaf nodes can either be destined for ano
leaf on the same LAN, or somewhere else in the networ
GTNetSchecks for local routes usingIP Addressesand
Network Masksmuch like real network implementations. If
a local route is found, then no routing decision is needed.
a local route is not found, then the packet is unconditional
forwarded to the gateway as described above. In neith
case is any routing information required, and thus rou
computations can be skipped for these leaf nodes.

3.2.2 Representing Packets

In a large–scale simulation with millions of nodes and flows
the number ofPacketsflowing through the network can be
tens or hundreds of millions. Thus, careful attention mu
be given to efficient representation of simulated packets
order to keep the overall memory footprint manageabl
However, there are design tradeoffs to be considered whi
may result in less flexibility and ease of use if memor
usage is the only consideration.

A typical packet inGTNetSis shown in figure 4. The
packet consists of two parts. First are three fixed positio
fields identifying the packet, followed by thePDU Stack.
The first three fields are included for ease of use of th
simulator, and have no correspondence to real netwo
packets. The unique identifier is a 32 bit value unique to th
packet, and can be used in the simulator to track individu
through the network. The timestamp field indicates th
simulation time when this packet was created. The siz
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Figure 3: Ethernet Leaf Nodes

PDU Stack Top

GTNetS Packet

Unique ID

Packet Size

Creation Time

PDU Stack HTTP TCP IP 802.3

Figure 4: TypicalGTNetSPacket

field indicates the size, in bytes, of the packet including a
Protocol Data Units(PDUs) associated with this packet.
This size is the actual size of the data being transmitte
rather than the amount of memory used by theGTNetSpacket
representation. For example, theGTNetS IPV4 PDUis a
C++ class object with a total size of 32 bytes. Howeve
the size used to calculate the transmission time of theIPV4
PDU is of course 20 bytes plus the size of anyIP Options.

The PDU stack consists ofPDUs which are appended
and removed from the packet as it moves down and u
the protocol stack. When a new packet is generated
an application (for example a browser creating an HTT
request), the HTTP header is created and pushed on
PDU stack. At the next lower layer (TCP for example),
an appropriatePDU is again generated and pushed, an
the packet continues down the stack. When a packet
received from a link at a layer two processor (for exampl
IEEE 802.3(IEEE 2000)), thePDU is popped and examined.
However, in our design we do not actually remove thePDU
pointer from the data structure, but rather simply adjust
Top pointer. This allows for the case where aPDU that is
popped from the stack will immediately pushed back on (fo
rs.
,

y

e

s

example at theIPV4 layer at interior routers) and prevents
an unnecessarydeleteandnewoperation.

It is clear that this approach is somewhat memo
efficient in that each packet contains information for onl
those protocol data units that are present in the packet.
contrast,ns2packets have data fields for all possiblePDUs,
regardless of whether thatPDU is actually present in each
particular packet. However, we could have gained addition
memory efficiency by bit–packing and byte–packing, as
specified by RFC 760 (Postel 1980a) for example. W
made the design decision in this case to sacrifice so
memory efficiency for ease–of–use and flexibility. Sinc
one use of network simulators is to study the affect o
changes or additions to existing protocols, our method
PDU representation allows easy addition of new fields
protocol headers while at the same time maintaining
accurate representation of the actual size of a packet to
transmitted on a communications link.

3.3 Reducing Log File Size

Network simulations typically create a log file which trace
the flow of packets through the simulated network. In th
extreme case, every packet transmission and receipt on
ery link, plus every packet enqueue and dequeue operat
at every queue is logged to a disk file. With moderate siz
simulations of a few hundred network elements, this meth
of packet logging is reasonable. However, when attemp
ing to model millions of network elements and potentiall
billions of packet transmissions, this method becomes u
wieldy. Our GTNetSdesign addresses this issue in tw
ways.

First, we provide built–in statistics collection that in
some cases can obviate the need for the log file. In ma
cases, the log file is used as input into a post–process
analysis program which further reduces the data and p
duces statistics. For example, if the simulation is modelin
web browsing activities, the log file analysis program migh
produce statistics regarding web response time. Other m
rics gathered by the log file analysis might include avera
queue length, queuing delay, or loss rate. Built into th
GTNetSimplementation are a number of statistics gatherin
mechanisms which calculate these statistics as the simu
tion is executing, if requested by the user. For examp
the web browsing models included withGTNetSwill gather
metrics for web response time, and will output these stat
tics as either a histogram or aCDF. All queue models in
GTNetSwill keep statistics on average size and lost packe
and will log that information to a summary file if requested
Thus, in many cases, the need for a detailed packet log
may not exist.

Secondly, we provide very fine–grained control ove
the logging of packet events, which leads to the logging
only those events that are of interest, and ignoring othe
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Log file entries inGTNetSare optionally created at every
protocol stack layer, both when packets are requested fro
a higher layer, and when packets are indicated from a low
layer. At each protocol layer, the logging of packets i
specified to be in one of three states,enabled, disabled, or
default. Additionally, each node in the simulated topology
has the same three packet logging states. The state
the logging at each protocol stack layer and at each no
is optionally specified individually when the topology is
created. By appropriate settings of the logging state
nodes and protocol stack layers, the logging of packets a
given node can either be always off (if the state isdisabled),
always on (if the state isenabled, or deferred to the decision
of the protocol stack layer if the state isdefault. Further,
it may be desirable for all packets for one or more dat
flows to be logged regardless of the logging state at nod
or layers. This can be accomplished by aforce log packet
flag in theGTNetSpacket.

When a packet arrives at a particular protocol stac
layer at a particular node, the algorithm for determining i
the packet should be logged is as follows:

if (no log file) DO NOT LOG;
else if (force log packet) LOG
else if (node = disabled) DO NOT LOG
else if (node = enabled) LOG
else if (protocol = disabled) DO NOT LOG
else if (protocol = enabled) LOG
else DO NOT LOG

In addition to the selective logging of packet information
as described above,GTNetSallows detailed specification of
exactly what information should be logged at each protoc
stack layer.For example, aPDU header for TCP inGTNetS
consists of eleven individual data items, corresponding to th
protocol information specified in RFC 761 (Postel 1980b
Each of those can be selectively enabled or disabled
the simulator user, allowing for the logging of only desired
information. For example, it may be the case that a particul
simulation has no use for source port and destination po
information for TCP packets, but needs the sequence numb
and acknowledgment numbers from each packet. Using t
selective enabling and disabling of individual protocol items
only the desired information is logged to the disk file.

A sample excerpt from aGTNetSlog file is shown in
figure 5. This shows a single TCP flow from node 0 to
node 4, with intermediate routers at nodes 2 and 3. Th
TCP endpoint at node 0 creates theSYN packet at time
1.77891, which is routed by nodes 2 and 3, and arrive
at node 4 at time 1.88897. Node 4 creates theSYN|ACK
packet which is received at node 0 at time 1.99904. Nod
0 responds with anACKpacket followed by 512 data bytes.
Each log file entry forIPV4 shows theTTL, the layer 4
protocol identifier (6 for TCP in this case), the source an
destinationIP addresses, and the packet unique identifie
f

r

4 EXPERIMENTS

We designed a set of experiments to demonstrate the eff
tiveness of the efficiency optimizations previously discusse
For these experiments, we used theCampus Networktopol-
ogy (Nicol 2002) shown in figure 6 as the basic building
block for the simulation. To scale the topology to large
sizes, we replicated the campus network multiple times, a
connected the subnetworks with gateway links as shown
the figure.

The first set of experiments demonstrates the reducti
in the pending event list size for the optimizations discusse
These experiments used a fixed topology size 200 camp
networks, which results in 107,600 nodes and 100,800 flow
The size of the pending event list was tracked at one seco
intervals. These results are shown in figure 7. In this figur
the x–axis is the simulation time and the y–axis is the siz
of the pending event list using a logarithmic scale. Th
three individual plots on the figure represent the size with n
optimizations, with theFIFO receive queue optimization,
and with theFIFO receive queue plus timer buckets. We
can see that with none of the optimizations, the event li
grows to nearly 1.4 million events. TheFIFO receive queue
reduces the event list size to a maximum of about 100,0
entries, and with both optimizations the maximum size o
the event list is only about 10,000. Figure 8 shows the tot
number of events scheduled for the same simulations, w
the x–axis on a linear scale. This figure shows clearly th
reduction in total event count by using the abstract queuin
optimization, reducing the event count by nearly a factor o
two. Also the timer buckets optimization reduces the eve
count slightly, since many timer events are canceled befo
getting scheduled.

The next set of experiments shows the affect of th
memory efficiency optimizations discussed. We used th
same campus network topology as above, but this time us
varying numbers of campus networks (from 10 to 400) an
tracked the maximum memory footprint of the simulation
These results are shown in figure 9. In this figure, th
x–axis is the count of the total number of nodes in th
topology, and the y–axis is size of the memory footprin
in megabytes. The first plot is withNIx–Vector routing
enabled, the second is with static routing and the sing
gateway optimization, and the last is with static routing
The hardware that we used for these experiments had 2
of main memory, which is the limiting factor for maximum
topology size. TheNIx–Vectorrouting method can process
up to 330 campus networks (177,000 nodes) within this limi
where the static routing method can only achieve 40 camp
networks (21,000 nodes). The single gateway optimizatio
with static routing shows an improvement over plain stati
routing, achieving a maximum size of 150 campus network
(80,000 nodes).
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1.77891 N0 L4-TCP 10000 8 0 0 0 SYN 0 0 L3-4 64 6 192.168.0.1 192.168.1.1 1
1.78391 N2 L3-4 63 6 192.168.0.1 192.168.1.1 1
1.88396 N3 L3-4 62 6 192.168.0.1 192.168.1.1 1
1.88897 N4 L3-4 61 6 192.168.0.1 192.168.1.1 1 L4-TCP 10000 8 0 0 0 SYN 0 0
1.88897 N4 L4-TCP 80 1000 0 0 0 SYN|ACK 0 0 L3-4 64 6 192.168.1.1 192.168.0.1 2
1.89398 N3 L3-4 63 6 192.168.1.1 192.168.0.1 2
1.99403 N2 L3-4 62 6 192.168.1.1 192.168.0.1 2
1.99904 N0 L3-4 61 6 192.168.1.1 192.168.0.1 2 L4-TCP 80 1000 0 0 0 SYN|ACK 0 0
1.99904 N0 L4-TCP 10000 8 0 0 0 ACK 0 0 L3-4 64 6 192.168.0.1 192.168.1.1 4
1.99904 N0 L4-TCP 10000 8 0 0 0 0 0 512 L3-4 64 6 192.168.0.1 192.168.1.1 5
2.00404 N2 L3-4 63 6 192.168.0.1 192.168.1.1 4
2.00409 N2 L3-4 63 6 192.168.0.1 192.168.1.1 5
2.10409 N3 L3-4 62 6 192.168.0.1 192.168.1.1 4
2.10456 N3 L3-4 62 6 192.168.0.1 192.168.1.1 5
2.10910 N4 L3-4 61 6 192.168.0.1 192.168.1.1 4 L4-TCP 10000 8 0 0 0 ACK 0 0
2.10961 N4 L3-4 61 6 192.168.0.1 192.168.1.1 5 L4-TCP 10000 8 0 0 0 0 0 512
2.10961 N4 L4-TCP 80 10000 0 512 AC K 0 0 L3-4 64 6 192.168.1.1 192.168.0.1 7

Figure 5:GTNetSLog File Excerpt
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5 SUMMARY

We have demonstrated experimental results showing th
careful attention to event list management and memor
management in a network simulation can lead to significan
improvements in the overall topology size achievable in
single simulation execution. We achieved a topology siz
of 177,000 nodes in a single simulation address space on
inexpensive workstation with 2Gb of main memory, repre
senting a factor of 8 improvement over the size limit withou
our optimizations. This enables multi–million node simu-
lations using distributed simulation methods on a networ
of workstations.
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