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ABSTRACT

This paper explains how DiffServ has been implemented
an IP network simulator using an asynchronous conservat
parallel discrete event simulation (PDES) kernel. DiffSer
provides Quality of Service (QoS) functionality for IP net
works and is designed to provide greater scalability and low
overhead than previous IP based QoS schemes. The pa
explains the DiffServ components that have been impl
mented, focusing on the implementation of the preempti
network buffers required to provide DiffServ functionality.
Certain optimisations possible for non-preemptive netwo
buffers are not possible here. The paper explores whi
will work in the preemptive case. In particular, exploiting
lookahead is more difficult leading to reduced performanc
in some cases. Optimisation schemes are described for t
different preemptive buffering strategies and performan
results demonstrating the costs of using these buffers
presented.

1 INTRODUCTION

This paper explains some of the modelling techniques us
in implementing DiffServ in the IP-TN/E parallel discrete
event network simulation and emulation system (Simmond
Bradford, and Unger 2000). In particular, it explains th
different network buffer implementations that already exis
in the system and the new ones added to support DiffSe
Network buffers are used by hosts and routers to ho
packets that are waiting to be written out to a network link
We examine the difference between the implementation
buffers that support non-preemptive strategies and ones t
support preemptive strategies. Preemptive strategies
required to model some of the functionality provided b
DiffServ enabled routers (Cisco 2003).

DiffServ provides end-to-end quality of service (QoS
functionality on IP networks. It is designed to provide
greater scalability than previous QoS mechanisms such
IntServ and RSVP (see RFC 2210). The aim in deployin
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DiffServ is to meet the requirements of different types of
traffic traversing a network segment. For example, voice
traffic using the voice over IP protocol (VoIP) requires
little bandwidth but requires low latency and jitter. On the
other hand, the File Transfer Protocol (FTP) requires large
bandwidth, but can tolerate large latencies, jitter and some
packet loss.

The Internet Protocol Traffic and Network (IP-TN)
simulator and the IP-TNE network emulation system that
shares the same core simulation components use a chann
oriented logical process modelling methodology (Chandy
and Misra 1981, Bryant 1977). The CCTKit conservative
PDES kernel (Simmonds, Kiddle, and Unger 2002) is used.
This has been shown to provide high performance sequentia
operation as well as high performance parallel operation
on shared memory parallel computers. CCTKit uses task
partitioning and schedules tasks using the Critical Channe
Traversing (CCT) algorithm (Xiao et al. 1999).

The addition of DiffServ functionality to the IP-TN/E
system has been done in order to support simulation and
emulation studies being performed in cooperation with the
company developing the Alberta SuperNet. SuperNet will
eventually contain over 8410km of fibre optic cable divided
into two distinct networks: the base area network, and the
extended area network. Axia SuperNet Ltd. is responsible
for building the extended area network and for the operation
and management of the entire Alberta SuperNet once it is
completed. IP-TN has to be able to model the DiffServ
functionality provided by specific Cisco routers, therefore
the IP-TN/E DiffServ implementation has been based on
functionality provided by Cisco’s Internet Operating System
(IOS).

SuperNet will provide broadband access to all schools,
colleges, hospitals, clinics, libraries and government organ
isations in Alberta. Particular projects of interest include
remote learning using streaming media and collaborative
visualisation for both schools and medical practitioners.
Latency sensitive traffic sources will have to compete with
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all of the other traffic seen today on general use network
i.e., HTTP downloads, peer-to-peer file sharing, etc.

Before DiffServ was added to IP-TN, the only net-
work buffer implementations in IP-TN were non-preemptive
With these, packets are removed from each network buffer
first-in, first-out (FIFO) order. This correctly models most
network buffers, but DiffServ requires various forms of
preemptive service. One strategy forwards packets strict
according to their marked priority. Another strategy involves
sharing bandwidth according to marked priority. Both o
these strategies require different buffer implementations an
offer different opportunities for optimised modelling. Diff-
Serv also requires support for preferentially dropping pack
ets, although this can be accomplished without preventin
any of the buffering optimisations.

The rest of the paper is as follows. Section 2 give
an overview of DiffServ. Section 3 describes the IP-TN
simulator, gives a brief description of the CCTKit parallel
simulation kernel used by IP-TN and describes the DiffSer
functionality that has been implemented. Section 4 describ
the implementation of the various network buffers in IP-TN
Then section 5 presents results comparing the performan
of simulations that use the different network buffer types
implemented in IP-TN/E. Section 6 provides a summar
and concluding remarks.

2 DIFFSERV

This section describes Differentiated Services (DiffServ
and how DiffServ functionality is provided in router’s using
Cisco IOS.

DiffServ is a quality of service mechanism for IP net-
works. It was designed to overcome some of the overhea
and scaling problems associated with the previous gener
tion IP network QoS mechanisms such as IntServ and RSV
IntServ provided QoS on a per-flow basis, while DiffServ
distributes network resources among classes of traffic.

The Differentiated Services Code Point (DSCP) is a
6-bit field in the IP header used to select the Per Ho
Behaviour (PHB) for the packet at each network node. Th
field is a redefinition of the IPv4 Type of Service (TOS)
3-bit precedence field. DiffServ’s assured forwarding (AF
classes are defined in RFC 2597 (Heinanen, et al. 1999
Within each AF class (AF1x through AF4x) there are three
drop probabilities “low,” “medium,” and “high”; however
the DiffServ standard does not specify a precise definitio
of these. The Expedited Forwarding (EF) PHB is defined i
RFC 2598 (Jacobsen, Nichols, and Poduri 1999). EF is
provide low loss, low latency, low jitter, assured bandwidth
through a DiffServ domain. Table 1 shows the differen
DSCP values and their associated PHBs.

Packets are marked with a DSCP suitable for what i
required by their application and to fit in with the policies of
an organisation. For example, it could be that all VoIP traffic
,
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from particular addresses are marked EF. Similarly traffi
from collaborative visualisation rooms may be marked E
Traffic from less important video streaming source may b
marked with AF43, to indicate that they want low latenc
(hence using AF4x) but are prepared to be dropped if the
is not enough space in the network to give low latenc
operation. Streams performing file-system backups acro
a network may work fine with high latencies, but work bes
if packets are not dropped. Therefore a DSCP of AF1
may be selected for these packets. It is also possible
have different types of packets in the same stream mark
differently. For example good performance has been sho
for TCP when routers give preference to certain packe
(Williamson and Wu 2002). In particular if some packet
near the end of a connection are lost it can be far mo
harmful to the overall performance than if a packet near t
start of a data transfer is lost. Therefore different DSC
values could be given to different packets to reflect this.

The marking of packets could be done by application
themselves, or by a switch or router on a LAN. Often packe
are remarked by the network provider to fit a Service Lev
Agreement (SLA) between the owner of the LAN and th
network provider. If the packets are marked on the LAN
it is possible that they could be remarked by the netwo
provider if the LAN is outputting packets marked in a wa
that does not agree with the SLA. In particular the SLA
may state that only a certain bandwidth of high priorit
traffic will be carried. A traffic policing mechanism could
be used to relabel packets when these limits are exceed
Note that to avoid packet reordering it is likely that th
policer would try to increase the drop probability rathe
than change the AF class if this is possible.

Routers in a DiffServ domain (network) may be eithe
edge or core routers. In core routers, the forwarding b
haviour for a given packet is determined by its DSCP fiel
Edge routers are referred to as ingress or egress rou
depending on whether packets are entering or leaving
DiffServ domain. In addition to forwarding packets, ingres
routers are also used to shape and police different traf
flows. Ingress routers often aggregate existing flows
remark the DSCP field as appropriate for the particular D
domain.

Cisco’s IOS provides several mechanisms to impleme
packet forwarding policies in each network buffer. Two suc
mechanisms arePriority Queuing and Custom Queuing.
Priority Queuing is implemented using four FIFO queue
The network administrator sets up a table that maps pack
with each possible DSCP value to a particular queue. Traf
mapped to the first queue is treated with the highest priori
so if there is a packet ready to be sent from this queue wh
the network device is ready to write to a link, the first packe
from this highest priority queue will be sent. Each of th
remaining queues are only serviced if the higher priori
queues are empty. The Priority Queuing mechanism has
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Table 1: DiffServ Codepoint

SBE Class 1 Class 2 Class 3 Class 4 EF
Low Drop 001010 010010 011010 100010

AF11 AF21 AF31 AF41
DSCP 10 DSCP 18 DSCP 26 DSCP 34

Medium Drop 000000 001100 010100 011100 100100 101110
SBE AF12 AF22 AF32 AF42 EF
DSCP00 DSCP 12 DSCP 20 DSCP 28 DSCP 36 DSCP 42

High Drop 001110 010110 011110 100110
AF13 AF23 AF33 AF43
DSCP 14 DSCP 22 DSCP 30 DSCP 38
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problem that lower priority queues could suffer starvation
networks carrying large amounts of higher priority packe
Therefore a policing mechanism may need to be configu
to prevent this from occurring.

In Custom Queuing packets can be mapped to any
sixteen FIFO queues. The Custom Queuing mechan
works by allocating a certain amount of the currently ava
able link bandwidth to each queue. For example, in a sim
configuration you could map packets to four queues.
each queue you can specify the amount of the total bu
space available that will be assigned to this particular qu
and total number of bytes that will be serviced from th
queue before the scheduler moves to the next queue u
a simple round-robin approach.

With both Priority Queuing and Custom Queuing, th
network administrator can set the size of each FIFO que
This is an important part of the configuration since the s
of each buffer can play a key role in the way traffic
handled. For example, for packets that require low late
but can be dropped, a small buffer is appropriate. If a la
buffer filled up the packets would not meet their laten
requirement due to the increased queuing delay. There
it is better just to drop packets when too many of this type
packet are waiting. On the other hand, for queues hold
packets that can tolerate high latency, making the buff
larger helps to prevent packet loss.

For applications using TCP or other transport lay
protocols which respond to packet loss, Random Early De
(RED) can be enabled as part of a DiffServ strategy t
reduces the chance of severe congestion in a preventa
rather than responsive manner. RED avoids the glo
synchronisation problem that can occur when many T
flows are repeatedly congesting the network and restart
IP-TN’s DiffServ supports Weighted RED or WRED whic
is similar to normal RED but takes the DSCP into accou
when deciding whether or not to drop a packet. For exam
separate RED parameters may be specified for each P

3 IP-TN

The Internet Protocol Traffic and Network (IP-TN) simulat
(Simmonds, Bradford, and Unger 2000) is a discrete even
layer network simulator developed by the TeleSim group
g

.

e

t

,
l

.

,
.

the University of Calgary. IP-TN includes modelling suppo
for IPv4, ICMP, IP broadcast and now DiffServ. It als
supports fluid-flow and hybrid fluid-packet models, whic
require special implementations of non-preemptive netwo
buffers (Kiddle, Simmonds, and Williamson 2003); thes
will not be discussed in this paper. IP-TN forms the bas
of the Internet Protocol Traffic and Network Emulator (IP
TNE) which provides a real-time interactive test environme
for real network enabled applications and network servic
Due to the need to appear correct to real network servic
support for protocols such as the Internet Control Messa
Protocol (ICMP) is more complete than that found in man
other network simulation systems.

IP-TN/E uses the CCTKit PDES kernel (Simmond
Kiddle, and Unger 2002). CCTKit is an asynchronous cha
nel based conservative simulation kernel that impleme
the Critical Channel Traversing (CCT) synchronisation a
scheduling algorithm (Xiao et al. 1999). CCTKit was de
signed to provide fast parallel execution for a large class
simulation models, but has also proved to be effective
sequential simulation, often outperforming the best pure
sequential kernels. The CCT algorithm is under furth
development by at least two groups (Nicol and Liu 200
Simmonds, Kiddle, and Unger 2002; Nicol 2002).

CCTKit also uses the task scheduling ideas first i
troduced in TasKit (Xiao et al. 1999). In this algorithm
logical processes (LPs) are grouped into tasks, with
tasks being scheduled using CCT and the LPs within
task being scheduled in a way most suitable for the co
nectivity of those LPs. This could be done using a sing
priority queue, or using a fixed schedule for cases wh
there are well defined relationships between the LPs in
task. In the case of IP-TN, the priority queue technique
usually employed since the topology of IP networks do
not easily lend itself to fixed-schedule execution. CCTK
has been designed to avoid the use of locks wherever po
ble which leads to considerable performance advantage
many shared memory computers.

As in other IP level network simulators, packets a
carried through the network by events. An event is used
represent the arrival of a packet at a host or router. In so
cases other events are used to represent packets being a
to network buffers or leaving network buffers. How this
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done for the various types of network buffers implemente
in IP-TN is explained in section 4.

Events are also used to generate traffic and trigge
timeouts in hosts and routers. IP-TN has a number o
different traffic models including open loop models tha
send traffic at a constant rate or using various statistic
distributions. Also, it has closed loop traffic such as TCP
Reno and TCP SACK which can be used with a numbe
of different traffic models including web browser and web
server models. The capabilities of the HTTP 1.1 web
browser model have been demonstrated for testing larg
real web servers using IP-TNE (Williamson, Simmonds
and Arlitt 2002).

The DiffServ implementation that has been added t
IP-TN/E is designed to model the functionality provided
in Cisco’s IOS software. As such, it is mostly compliant
with IETF standards defined in RFC 2474 (Nichols, et al
1998), RFC 2475 (Blake, et al. 1999), RFC 2597 and RF
2598. The various components of IP-TN’s DiffServ are
now outlined.

IP-TN’s DiffServ implementation allows classification
of traffic based on IP source and destination addresse
interface, and DSCP value. The modeller may also “classify
packets simply by assigning DSCP codes on a per traffi
object basis. Packets can be marked with any of the DSC
values in Table 1.

To facilitate traffic conditioning, IP-TN can also classify
packets based on whether they conform to a particular servi
level agreement (traffic policing). IP-TN uses a leaky-bucke
traffic policing algorithm, different actions may be specified
for traffic that conforms with or that exceeds the prescribe
bandwidth allotment.

Per-hop behaviours can be defined using a combinatio
of priority queuing, custom queuing and, Weighted Random
Early Detection (WRED). Per-hop behaviours are selecte
based on the packet header’s DSCP value.

Implementation details of the various congestion man
agement schemes (priority queuing and custom queuing) a
presented in the following section which is devoted solel
to buffer implementation issues.

4 IP-TN NETWORK BUFFERS

This section describes the implementation of the variou
network buffers in IP-TN. It starts by describing the three
non-preemptive FIFO buffer implementations, followed by
the new preemptive buffer implementations that provid
DiffServ modelling support.

All IP-TN/E network buffers are modelled as fixed size
buffers, the size of which can be defined in the simulatio
input file. The size of the buffer is defined in terms of numbe
of bytes, rather than number of packets, as with some oth
network simulators. Unlike ATM cells, IP packets have a
variable length between 20 bytes and the Maximum Transf
r
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Unit (MTU) which represents the maximum frame size o
the local network.

Some of the buffer implementations attempt to dynam
cally increase the amount of lookahead which is the amou
of time into the future that the occurrence of events at an L
can be predicted. By dispatching events carrying packe
to the next host early this increases its knowledge of t
future which can lead to increased runtime performanc
particularly when executing in parallel.

4.1 Non-Preemptive Buffers

IP-TN/E has three implementations of non-preemptive FIF
buffers calledsimple_no_opt, standard_optandnolist_opt.

The simple_no_opt buffers are provided as an eas
understandable buffer implementation that is simple for no
PDES experts to modify. They were originally provided
to enable testing of context-aware TCP (Williamson an
Wu 2002). Later work in the same area builds on th
new buffer implementations presented later in this sectio
The simple_no_opt buffer does not perform any lookahe
optimisation.

Actions involved with routing a packet are shown in
Figure 1. A packet arrives at a router carried with a
arrival event. There is some amount of processing an
router lookup delay after which an attempt is made to p
the packet in the appropriate network buffer. This is abuffer
insert event. Note that there may not be room to insert th
packet into the buffer. In this case the packet would b
dropped. If there are other packets waiting to be sent t
packet would then remain in a queue until acheck queue
event occurs when it is time to dispatch the packet. Aft
the amount of time taken to pass the packet to the oth
end of the link passes, which is equal to the propagati
delay plus the time taken to transmit the packet across
network, anarrival event is triggered at the destination hos

With simple_no_opt buffers, once an arrival event i
received a buffer insert (BI) event is created and sent to t
current LP; i.e., this is a self event. On receiving a BI eve
a check queue (CQ) self event is generated if the buff
is currently empty. Otherwise nothing needs to be done
this time since another CQ event has already been post
When a CQ event is received the next packet waiting
be sent is taken from the buffer and attached to an arriv
event that is dispatched to the destination LP. Also, if th
buffer is not empty at this point a new CQ event is poste
to arrive when the packet just sent will have left the buffe

The standard_opt buffers utilise a lookahead optim
sation. They also take advantage of being non-preempt
by eliminating the BI event. This can be done by eithe
assuming that all router lookups will take the same amou
of time, which is the assumption made here, or by assu
ing that the device doing the router lookup is executin
sequentially. When assuming a variable lookup time an
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transmission delay
+ propagation delay

Time

queuing delay

arrival attransmitarrival of
packet desitination

router lookup delay

insert packet
in buffer

Figure 1: Timeline of Events Used in Buffering Algorithms
ill
th

er
ue
or
nts
in
is
w
is

ew

-
to
-
ct
is
ke
s,
th
y

or
ur
o

rs
t
to

-
/E
p

xt
g

nd
he
in
ble
n
le
er

t
s
-

r

g
e

er

d
t

ne
re
e

s
at
d,
nt
or
a
ts

e
l
elf

is
ly
e

ng
that lookups are performed in parallel, this event is st
needed to ensure that packets appear in the buffer in
correct order.

Each time an event that writes a packet to the buff
is executed, a buffer element is added to a FIFO que
This element represents the message in the buffer. Bef
attempting to place a new element into the buffer, all eleme
representing packets already sent are removed. At this po
the actual amount of space available in the buffer at th
time is known. If there is not enough space for the ne
packet, this packet is dropped. Otherwise a new event
generated to deliver packet to its destination and a n
placeholder element added to the FIFO queue.

The nolist_opt buffer object is similar to the stan
dard_opt buffer object, except that it uses a fluid flow
model the draining of packets from the buffer. This elim
inates the need for the FIFO queue of placeholder obje
at the cost of a small loss of modelling accuracy. In th
case rather than knowing the exact time that each pac
leaves the buffer, as in the other buffer implementation
a continuous model is used to represent bytes leaving
buffer. In many simulations the small amount of inaccurac
is unlikely to be an issue, though this may not be good f
some simulations such as studies of subtle TCP behavio
over congested networks. For that reason, the standard_
buffer objects are instantiated by default in IP-TN. Use
have to explicitly request nolist_opt in the simulation inpu
file if they require extra performance and are prepared
accept the small loss in accuracy.

4.2 Preemptive Buffers

In keeping with the way that preemptive queuing is imple
mented in Cisco routers, the preemptive buffers in IP-TN
are implemented as a set of FIFO queues, with preem
tion occurring by selecting which FIFO to remove the ne
packet from. A representation of a preemptive queuin
buffer is shown in Figure 2. The decision of which FIFO
to place a packet in is determined by its DSCP value a
a configurable PHB map associated with the buffer. T
number and size of FIFO queues employed, and mapp
from DSCP value to each of the queues are all configura
using the simulation input file. The user can specify a
arbitrary number of queues, though there would be litt
point in specifying more than 64 since that is the numb
of possible bit patterns in the DSCP field.
e
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e

t

s

t

e

s
pt
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g

Incoming Packets
Classify Schedule

FIFO queues

Output
Interface

Figure 2: Congestion Management

4.2.1 Priority Queuing

For most experiments TeleSim will perform on SuperNe
using priority queuing, four queues will be used since thi
is the number used by the Cisco Priority Queuing imple
mentation.

For testing purposes two types of priority queue buffe
are currently available,ds_priority and ds_priority_opt.
These both provide the same functionality, but keepin
both enables validation and makes it possible for the th
utility of any performance optimisations performed on the
latter to be assessed.

With the ds_priority buffers, when an arrival event oc-
curs a BI event is created and scheduled for the actual buff
insertion time. When the BI event is delivered the DSCP
value in the packet is examined and a lookup performe
in the PHB table to determine into which queue the packe
should be placed. Then a variable is checked to determi
if there are packets in any of the FIFO queues. If there a
none, this packet can be sent immediately. Otherwise th
packet is placed into the appropriate FIFO. If the buffer wa
empty a CQ event is generated timestamped at the time th
the packet has left the buffer. When a CQ event is receive
the length of the packet that was dispatched when this eve
was generated is subtracted from the used byte count f
the particular FIFO queue that the packet traversed. Also
check is made to determine if there are any more packe
waiting to be sent. If there are, the first packet from th
highest priority non-empty FIFO is selected. An arriva
event scheduled at the destination host and a new CQ s
event are generated.

The ds_priority_opt network buffer is currently quite
similar to ds_priority except that for any packet that would
be placed in the high priority queue, as long as there
space in the buffer, an arrival event is scheduled immediate
for this packet. This means that events representing som
packets can be sent to their destination sooner thus providi
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additional lookahead. Note that CQ self events are st
required.

4.2.2 Custom Queuing

As is the case of priority queuing, two custom queuin
implementations are currently available which both produc
the same simulation results. Theds_custombuffer provides
a simple implementation while theds_custom_opttype adds
a lookahead optimisation.

In the case of custom queuing the modeller specifie
the number of bytes that are serviced for each of the FIF
queues. The scheduler for the buffer will continue to sen
packets from the current queue until the queue is empty
until the number of bytes sent exceeds the allocated servi
At this point the scheduler moves on to service the ne
queue.

When an arrival event occurs, a BI self event is gene
ated. When the BI event arrives the queue that the pack
should be mapped to is obtained from the PHB table. If th
entire buffer is empty (i.e., there are no packet containe
in any of the FIFO queues) the packet is sent immediate
and a CQ event generated. Otherwise the packet is plac
into the appropriate FIFO, or dropped if there is not enoug
room in this queue. When a CQ event occurs, the que
scheduler determines which queue it should currently b
servicing. If there is a packet in this queue, this packe
is sent. Otherwise the queue scheduler moves to the n
non-empty FIFO and sends a packet from this queue.

The operation of ds_custom_opt buffers differs from
that of ds_custom buffers in that when an a BI event occur
if the queue scheduler is currently working on the queu
the packet should be inserted into, the packet can be s
immediately. This provides additional lookahead.

5 PERFORMANCE RESULTS

This section provides performance results for IP-TN simu
lations using different buffer implementations. It starts b
comparing the performance of the four buffer types: stan
dard_opt, nolist_opt, ds_priority_opt and ds_custom_opt
the performance of simple_no_opt. Then results for ex
periments that compare the performance of the optimis
DiffServ buffers to the unoptimised versions for traffic with
various mixtures of DSCP values are presented.

The results of experiments show that many factors e
fect the performance of simulations using different buffe
implementations. One factor is the number of events r
quired to model the passage of a packet from the poi
that it arrives at a router to the time that the packet a
rives at the next host or router. Other involves lookahea
which is the amount of time into the future that the oc
currence of events at an LP can be predicted. One for
of lookahead in a network model is the propagation dela
.

t

d

t

,

t

of a link; i.e., how long it takes for one byte of data to
pass along the link. Lookahead optimisations attempt
dynamically discover more lookahead during runtime. Th
buffers of types standard_opt, nolist_opt, ds_priority_o
and ds_custom_opt all use dynamic lookahead optimisat
to send the packet arrival event to the next destination h
as soon as possible, thus increasing the destination ho
knowledge of the future thus possibly increasing the si
of its current, or next execution window.

To take any advantage of dynamic lookahead in the sim
ulation using priority queuing buffers, there must be packe
logically in the highest priority queue. These packets ma
only be logically there since in the optimised implementa
tion these packets can be sent to their destination hos
the point when they are written into the network buffer. I
the custom queuing case, there must be packets logica
in the buffer’s current service window.

It should be noted that simply comparing the runtim
performance of buffers implementing different strategie
fails in many cases. In particular if one buffering strateg
leads to more packets being dropped than another strate
then the overall number of events in the simulation run w
be different. By dropping a packet on one link the even
that would have carried the packet on to its destination a
not required. In the case of closed loop traffic stream su
as TCP, extra events may be required to carry packets t
are resent.

The amount of advantage gained by using a dynam
lookahead optimisation depends on the amount of sta
lookahead available. For example if there is a large pro
agation delay on the network link the advantage gained
the extra lookahead from the optimisation is small.

The results presented in this section use the netwo
model shown in Figure 3. This consists of two LANs
each with four hosts connected to a router using 10Mb
Ethernet. The two routers are connected by a 10Mb/s lin
Although this is network is relatively small, it can be use
to demonstrate the performance properties of the vario
buffer implementations. For all the experiments, all netwo
buffers are of type standard_opt apart from the buffers
the link between the two routers. Traffic is routed betwee

R2R1

H3

H4

H3

H4

H2

H1

N1 N2

H2

H1

Figure 3: Network Model
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pairs of hosts, with traffic on host Hi on LAN N1 being
sent to host Hi on LAN N2 and vice versa. All the tests
for which results are presented were performed using tw
processors of a Compaq AlphaServer ES40 with 833MH
Alpha Ev68 processors, 4GB of RAM, running the Tru6
Unix operating system.

Figure 4 compares the performance of simulations u
ing different network buffer types on the router interface
As already stated it is a little dangerous to compare the p
formance of buffers implementing different policies sinc
these policies have additional performance related effe
on the simulation run. However, these results show i
teresting properties of the various implementations. The
results should be considered preliminary in the sense t
testing of many more simulation models are required
fully explore the performance implications of using buffer
implementing different policies and different optimisations

The results in Figure 4 are normalised to the perfo
mance of simulations where the simple_no_opt buffers we
employed on the router links. Experiments were perform
with the propagation delay between the two routers set
values between 10E-7 and 10E-1 seconds. For this se
experiments the performance of standard_opt and nolist_
were similar showing that the amount of work done calc
lating the buffer usage for nolist_opt was similar to the wor
done maintaining the placeholder list in standard_opt. T
performance of nolist_opt has been seen to be better in ot
simulation studies. The fact that the simulation model us
required considerably less than the 8MB of cache availab
on each of the Ev68 processors may have resulted in
memory operations required for standard_opt buffers b
ing very inexpensive. Further experimentation with larg
models will be required to fully understand this.

There is an obvious trend that the larger the sta
lookahead, i.e., the larger the propagation delay betwe
routers, the less is gained from using a dynamic lookahe
optimisation. With a propagation delay of 10E-5 secon
the optimised buffer versions are running over 2.7 tim
faster than the unoptimised versions. With a propagati
delay of 10E-1 this advantage is down to 1.2 times fast

In this set of experiments, the use of the non-optimis
buffers resulted in the same runtime performance. The use
optimised preemptive buffers resulted in lower performan
than achieved using the optimised non-preemptive buffe
Given the traffic in this set of experiments that was mainl
perhaps unrealistically marked using the EF DSCP, t
ds_priority_opt outperformed ds_custom_opt. The resu
that follow using packets marked with different DSCP value
provides a more thorough comparison of the performan
obtainable using these DiffServ enabled buffers.

The relative performance of ds_priority_opt buffers an
ds_priority buffers is shown in Table 2. The top two row
are for experiments where traffic is flowing in one direction
The second two rows present results where traffic flowin
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in both directions. Results for experiments with inter-rout
propagation delays between 1E-7 seconds and 1E-3 sec
are presented. The five rows headed, T1 through T5
for traffic labelled with different DSCP values as shown
Table 3. Each traffic stream from Hi on N1 to Hi on N2
used the same DSCP value for all its packets.

Table 2: Relative Performance for Priority Queuing

Traffic Delay T1 T2 T3 T4 T5

1-way 1E-3 1.09 0.99 0.99 0.99 0.99
1E-7 2.40 1.40 1.18 1.02 1.00

2-way 1E-3 1.07 0.92 0.93 0.97 0.97
1E-7 1.38 1.14 1.05 0.99 0.99

Table 3: DSCP values for Priority Queuing
Tests

Host T1 T2 T3 T4 T5

H1 EF EF EF EF SBE
H2 EF EF EF SBE SBE
H3 EF EF SBE SBE SBE
H4 EF SBE SBE SBE SBE

The relative performance of ds_custom_opt buffers a
ds_custom buffers is shown in Table 4. This table is la
out in a similar way as Table 2. The DSCP values for traf
used in these experiments is shown in Table 5.

Table 4: Relative Performance for Custom Queuing

Traffic Delay T1 T2 T3 T4 T5

1-way 1E-3 1.01 1.03 1.05 1.01 1.04
1E-7 1.60 1.38 1.72 1.22 1.69

2-way 1E-3 1.02 0.99 0.98 0.99 1.03
1E-7 1.25 1.15 1.25 1.06 1.26

Table 5: DSCP values for Custom Queuing
Tests

Host T1 T2 T3 T4 T5

H1 EF EF EF EF EF
H2 EF EF EF AF41 AF41
H3 EF AF41 AF41 AF41 AF31
H4 EF AF41 AF31 AF31 AF21

For Priority Queuing the lookahead optimisation work
when there is enough traffic mapped to the highest prior
queue. For Custom Queuing, the lookahead optimisation
possible when traffic arrives in the service window of th
queue currently being serviced. If only one queue is be
serviced (i.e., all DSCPs mapped to one queue) then
lookahead optimisation can be beneficial whenever th
are packets buffered. With an equal amount of each DS
marked traffic performance is also good since there is a go
chance of being able to take advantage of the lookah
optimisation for each queue serviced. For cases where
traffic is mapped to different buffers the performance is le
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good due to the having some FIFOs for which there is little
opportunity to take advantage of the optimisation.

6 SUMMARY

This paper described issues encountered adding DiffServ t
an IP level network simulator using a channel based para
lel discrete event simulation kernel. In particular it showed
some of the difficulties in implementing the preemptive
network buffers required by DiffServ. Optimisations that
reduce the number of events required to simulate the move
ment of packets through non-preemptive buffers are difficult
and sometimes impossible for preemptive buffers. Optimi-
sations that improve the level of dynamic lookahead for
non-preemptive network buffers are more difficult to im-
plement and not able to expose as much lookahead in mo
cases.

Results were presented showing the different perfor
mance levels that can be achieved for simulations usin
different types of non-preemptive and preemptive network
buffers. Experiments show that greater levels of static
lookahead not only limit the benefit achieved using dy-
namic lookahead, but in some cases cause buffers imple
menting dynamic lookahead optimisation to perform worse
than simpler buffer implementations. For cases where dy
namic lookahead was beneficial, performance advantages
up to 2.72 times were shown for optimised non-preemptive
buffers over simpler non-preemptive buffers and up to 2.4
times for optimised preemptive buffers over simpler versions
implementing the same buffer management strategy.
t

f
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