
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

RELATING CHI TO HYBRID AUTOMATA

Bert van Beek
Niek G. Jansen
Koos E. Rooda

Ramon R.H. Schiffelers

Department of Mechanical Engineering
Eindhoven University of Technology

P.O.Box 513
5600 MB, Eindhoven, THE NETHERLANDS

Ka L. Man
Michel A. Reniers

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O.Box 513
5600 MB, Eindhoven, THE NETHERLANDS

els
a

n.
al

ns.
a

el,
in

so
t,

m
o

g
en
ls
ave
ria
t,

den

en
-

ion

rs,

ith
s. A

or.
sier

es,
such
ms
96),
3),

are

lers
e
nce
nt
ABSTRACT

A hybrid automaton is one of the most popular formal mod
for hybrid system specification. The Chi language is
hybrid formalism for modeling, simulation and verificatio
It consists of a number of operators that operate on
process terms, including differential algebraic equatio
This paper relates the two formalisms by means of a form
translation from a hybrid automaton model to a Chi mod
and a comparison of the semantics of the two models
terms of their respective transition systems. The compari
is illustrated by means of three examples: a thermosta
railroad gate controller, and dry friction.

1 INTRODUCTION

A hybrid automaton (Alur et al. 1995; Henzinger
2000b; Guéguen and Lefebvre 2001; Johansson et al. 1999)
is one of the most popular formal models for hybrid syste
specification. This paper relates the hybrid automaton
Henzinger (2000b) to the hybridχ (Chi) formalism.

Theχ formalism was originally designed as a modelin
and simulation language for specification of discrete-ev
(DE), continuous time (CT) or combined DE/CT mode
(so-called hybrid models). The language and simulator h
been successfully applied to a large number of indust
cases, such as an integrated circuit manufacturing plan
brewery, and process industry plants (van Beek, van
Ham, and Rooda 2002).

One of the goals of our research is the developm
of a hybrid verification formalism / modeling and simula
tion language with associated verification and simulat
tools. The recent formalization of theχ language, includ-
ing the continuous part, resulted in theχσh process algebra
(Schiffelers et al. 2003a) and in a more elegantχ modeling
language. Theχ language now has the same operato
l

l

n
a

f

t

l
a

t

with the same semantics, as theχσh formal language. The
χ modeling language extendsχσh with, among others, pa-
rameterized process and experiment definitions, and w
instantiations of the defined processes and experiment
straightforward syntactical translation ofχ to χσh is de-
scribed in (Schiffelers et al. 2003b). The relation between
χ and χσh is illustrated in Figure 1. Aχσh process can
be simulated and properties can be verified. Aχ experi-
ment can also be compiled directly to obtain a simulat
Reasons for this can be to gain speed, or to make it ea
to provide user friendly error information related to theχ
specification.

Theχ language is related both to simulation languag
see van Beek and Rooda (2000) and to formal languages
as HyPa (Cuijpers and Reniers 2003), hybrid formalis
based on CSP (Jifeng 1994, Chaochen, Ji, and Ravn 19
hybrid I/O automata (Lynch, Segala, and Vaandrager 200
hybrid automata (Alur et al. 1995), and to work derived
from hybrid automata, such as Charon (Alur et al. 2001)
and Masaccio (Henzinger 2000a). In particular, theχ
disrupt, choice, recursion, and reinitialization operators
inspired by HyPA (Cuijpers and Reniers 2003). Overall,χ is
more expressive than other formal languages, see Schiffe
et al. (2003a). It is suited to 1) modeling of a wide rang
of control systems, such as regulatory control, seque
control, scheduling algorithms, hierarchical control, age

χ exp. χσh process

compilation

simulation verification

translation

Figure 1: Fromχ to χσh

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

s

a

a

d

d

:

le
e-
n
s
re

s

e

-

n

f
f
of
to
r.
g

-

based control; 2) modeling of complex concurrent interacting
physical systems; and 3) modeling of DAE-based hybrid
phenomena, consistent initialization of higher index system
(Fábián, van Beek, and Rooda 2001), and mode switche
accompanied by index changes such as treated in Mosterm
and Ciolfi (2002).

In Section 2, a general translation scheme from a gener
hybrid automaton to a correspondingχ specification is
presented. Examples of modeling a rail gate controller an
the dry friction phenomenon using both hybrid automata
andχ are presented in Section 3 and 4.

2 TRANSLATION

In this section, a general translation scheme from a hybri
automaton to a correspondingχ specification is presented.
The syntax of theχ language is given in the Appendix.

2.1 Description Hybrid Automaton

A hybrid automaton (Henzinger 2000b) consists of the fol-
lowing components.

• A finite set of (real-valued) variablesX =
{x1, . . . , xn}, the setẊ = {ẋ1, . . . , ẋn} which de-
notes the first derivatives of the variables, and the
setX′ = {x′1, . . . , x′n} which denotes the primed
variables that represent values at the conclusion o
a discrete change.

• A finite directed multi-graph(V ,E), whereV de-
notes a set of vertices (control modes) andE denotes
a set of edges (control switches).

• Three vertex labeling functions init, inv, and flow
that assign to each control modev ∈ V a predicate
for initial, invariant and flow conditions, respec-
tively. The free variables of the initial and invariant
predicates are fromX. The free variables of the
flow predicates are fromX ∪ Ẋ.

• An edge labeling function jump, that assigns to
each edgee ∈ E, a jump condition which is a
predicate whose free variables are fromX ∪X′.

• A finite set 6 of events, and an edge labeling
function event: E→ 6 that assigns to each edge
an event.

In order to translate a hybrid automaton toχ , two
additional functions are defined on a hybrid automaton
Function edges∈ V → P(E) returns a set of outgoing
edges for a location, and function target∈ E→ V returns
the target vertex of an edge.

2.2 Translation Scheme

Consider a hybrid automaton model withn variables (X =
{x1, . . . , xn}) andk control modes (V = {v1, . . . , vk}) to be
s
n

l

f

translated to a correspondingχ specification. The translation
is defined as follows:

proc HybridAutomatonInχ () =
|[cont x1, . . . , xn : real
, {v1 7→ (inv(v1) ‖ flow(v1))�

(⊕e:e∈edges(v1) T (jump(e))�
inv(target(e))→ skip ; target(e))

...

,vk 7→ (inv(vk) ‖ flow(vk))�
(⊕e:e∈edges(vk) T (jump(e))�
inv(target(e))→ skip ; target(e))

}
| init(v1)� v1⊕ . . .⊕ init(vk)� vk
]|

A vertexvi of the hybrid automaton model is translated
using a corresponding recursion variablevi in theχ model.
The process term associated with this recursion variab
consists of the process term describing the continuous b
havior of the vertex, disrupted by the choice compositio
of all individual process terms of the outgoing edges of thi
vertex. Below, these process terms are explained in mo
detail.

The continuous behavior of a vertexvi is translated to
the parallel composition of its invariant and flow predicate
(inv(vi) ‖ flow(vi)).

For each outgoing edge, the jump predicate of that edg
is translated to a reinitialization predicate (T (jump(e))),
where functionT renames variables occurring with a prime
“ ′” superscript in a jump predicate to variables with super
script “+”. E.g. T (x′ − y′ = z) becomesx+ − y+ = z.
Here,x+ and y+ refer to the values ofx and y after the
discrete jump that is equivalent to the notationx′ used in
Henzinger (2000b).

The event label of the edge is translated to theskip
process term. This translation implies an event abstractio
which is explained in more detail in Section 2.3.

The semantics of hybrid automata contain a kind o
look-ahead such that after a control switch the invariant o
the target vertex of an edge must hold (using the values
the variables as defined after the reinitialization according
the jump conditions), otherwise the transition cannot occu
Usingχ , this look-ahead is modeled by means of guardin
the skip process term with the invariant predicate of its
target vertex (inv(target(e))).

After the transition, the behavior is specified by the re
cursion variable associated with the target vertex (target(e)).

The choice operator (⊕) is used to combine the indi-
vidual process terms of the outgoing edges.

Note that for edges(vi) = {e1, . . . , ek}, no-
tation (⊕e:e∈edges(vi)(T (jump(e)) � inv(target(e)) →
skip ; target(e)), denotes the process termT (jump(e1))�

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

n
l
rid

s

c-

in
ll
t

s
to

n
te

b)
:
d

in
a

rs,

he
n
nt
n
e
e
n

d
el

s
.
a

t
ch
s

s
te
l

the
he

ion
hy-

u-

the

m
m

m
on

his

of

to
at.
es

),
the
ete.
ent
en
inv(target(e1))→ skip ; target(e1)⊕. . .⊕ T (jump(ek))�
inv(target(ek))→ skip ; target(ek)) .

The straightforward translation of a hybrid automato
to a χ model shows thatχ is expressive enough to mode
phenomena that are usually studied by means of a hyb
automaton. The translation from aχ model to a hybrid
automaton is more difficult sinceχ has a richer set of
operators, especially for specification of discrete-event sy
tems. Also,χ has more support for DAE-based modeling
of hybrid phenomena, such as mentioned in the introdu
tion. The translation from parallel composition of hybrid
automata to parallel composition ofχ process terms and
vice versa is further complicated because of differences
synchronization behavior of the two languages. Where a
hybrid automata that share the same event are forced
synchronize, inχ , synchronization between process term
that share communication channels is always on a point
point basis, between exactly two processes.

2.3 Semantical Comparison

Previously, a translation of a hybrid automaton to aχ process
has been described at the syntactical level. In this sectio
the relation between a hybrid automaton and its associa
χ process is discussed on the semantical level.

The semantics of a hybrid automaton (Henzinger 2000
is a timed transition system with two types of transitions
action transitions (corresponding to control switches) an
time transitions (corresponding to continuous behavior
a control mode). On the other hand, the semantics of
χ process is a hybrid transition system (Cuijpers, Renie
and Heemels 2002; Schiffelers et al. 2003a) which also has
these two types of transitions.

The main difference between these semantics is in t
labeling of the action and time transitions. In timed transitio
systems the labels of action transitions are simply the eve
of the hybrid automaton, whereas the labels of the actio
transitions of a hybrid transition system also contain th
valuation of the model variables. For time transitions, th
labels in a timed transition system contain only the duratio
of the time transition whereas time transitions in hybri
transition systems also have the trajectory of the mod
variables as a label.

A second difference is the existence of time transition
with a duration of zero in the timed transition systems
Each state in the semantics of a hybrid automaton has
zero-duration time transition to itself. Between differen
states there never is a zero-duration time transition. Su
transitions are not present in the hybrid transition system
associated toχ processes.

A timed transition system can have many initial state
whereas a hybrid transition system has only one initial sta
This one initial state captures the behavior of all the initia
states of the timed transition system.
-

o

,
d

s

.

Finally, the translation presented before shows that
events of the control switches are all translated into t
process termskip . So, in the timed transition system
associated with a hybrid automaton a wide range of act
labels representing events may occur, whereas in the
brid transition system of the correspondingχ process only
internal transitions (denotedτ) occur. Thus, the translation
abstracts from the names of the events.

In order to describe the relation between a hybrid a
tomaton and itsχ -‘equivalent’ more precisely, first some
abstraction mechanisms are introduced to overcome
above-mentioned differences.

Let~ be a mapping that maps a hybrid transition syste
onto a timed transition system by removing valuations fro
action transitions and trajectories from time transitions.

Let ι be a mapping that maps a timed transition syste
onto a timed transition system where all labels of acti
transitions are replaced by the labelτ and where all zero-
duration transitions are removed.

Let A be a hybrid automaton and letP be the χ
process associated to it by the translation defined in t
paper. Furthermore, letT andH be the semantics ofA
andP , respectively.

Then, there exists a (strong-)bisimulation relation (↔)
between the states ofι(T) and the states of~(H) (see
Figure 2) such that any transition from an initial state
T can be simulated by the initial state of~(H) and each
transition from the initial state of~(H) is simulated by
some initial state ofT .

2.4 A Thermostat

This example shows the translation of a hybrid automaton
χ . The hybrid automaton of Figure 3 models a thermost
Variable x represents the temperature. The control mod
areOn andOff . Figure 3 is taken from Henzinger (2000b
where the usual informal notation is used: events on
edges are ignored, and the jump conditions are incompl
In particular, in Figure 3 both edges should have an ev
label, the jump conditions of the edges should have be
x < 19∧ x′ = x and x > 21∧ x′ = x, respectively. In

A

P

T

H

event

abstraction

variable

semantics

~(H)

ι(T)
abstraction

semantics

translation ↔

Figure 2: The Bisimulation Relation Be-
tween the States ofι(T) and the States of
~(H)

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

d

e

n

g

r-

s

s
e

n
n
.
a
ler
y
e
el

e

e
s
r

te
nt

d

g
at
e
d

Off

x ≥ 18
ẋ = −0.1x

x > 21

x < 19

On

ẋ = 5− 0.1x
x ≤ 22

x = 20

Figure 3: A Hybrid Automaton Model of a Thermostat

this paper we use the same informal notation for the hybri
automata in the examples, to improve readability. Theχ

specifications, however are formal.
Initially, the temperature equals 20 degrees, and th

heater is off (control modeOff). The temperature falls
according to the flow conditioṅx = −0.1x. According to
the jump conditionx < 19, the heater may go on as soon as
the temperature falls below 19 degrees. Due to the invaria
conditionx ≥ 18, at the latest the heater will go on when
the temperature equals 18 degrees. In the control mod
On, the heater is on, and the temperature rises accordin
to the flow conditionẋ = 5− 0.1x. When the temperature
rises above 21 degrees, the heater may turn off. Due to th
invariant conditionx ≤ 22, at the latest the heater will turn
off when the temperature equals 22 degrees.

Usingχ , processThermostatconsists of a continuous
variablex which represents the temperature, and two recu
sion variablesOn andOff which refer to the control modes
On and Off of the hybrid automaton model, respectively.
Initially the heater is off and the temperature is 20 degree
The modeOff can delay as long asx ≥ 18. The temperature
decreases at a rate ofẋ = −0.1x. When the guardx < 19
on the right hand side of the disrupt operator� becomes
true, and the guard (x ≤ 22) of theskip process term is
true, theskip process term can take over the delay by
means of performing aτ action. After that, the recursion
variableOn takes over. The modeOn can delay as long
as x ≤ 22. When the guardx > 21 becomes true,skip
can perform aτ action and the recursion variableOff takes
over.

proc Thermostat() =
|[cont x : real
, {Off 7→(x ≥ 18‖ ẋ = −0.1x)�

(x < 19� x ≤ 22→ skip ;On)
,On 7→(x ≤ 22‖ ẋ = 5− 0.1x)�

(x > 21� x ≥ 18→ skip ;Off)
}
| x+ = 20� Off ⊕ false� On
]|
Modeling the thermostat directly inχ leads to the following
specification:

proc Thermostat() =
|[cont x : real= 20
, {Off 7→ (x ≥ 18‖ ẋ = −0.1x) �(x < 19� On)
,On 7→ (x ≤ 22‖ ẋ = 5− 0.1x)�(x > 21� Off)
}
| Off
]|
t

e

e

.

The hybrid transition system of this specification contain
only time transitions, i.e. there are no action transitions du
to switching from one control mode into another.

3 RAILROAD GATE CONTROL

In Section 2, a general translation from a hybrid automato
toχ is defined. This section shows that modeling directly i
χ , and usingχ ’s expressivity, leads to more elegant models

Consider a train on a circular track, a gate and
controller. When the train approaches the gate, the control
must lower the gate. The controller has a reaction dela
of u time units. After the train has passed the gate th
controller must raise the gate. The purpose of the mod
is to determine the value ofu, such that the gate is always
fully lowered when the train is at a certain distance from
the gate.

Figure 4 shows the hybrid automaton model of th
railroad gate controller as defined in Henzinger (2000b).

Theχ model takes into account that there is only on
train on the circular track, which implies that the transition
of the self loops of the controller automaton can neve
occur. Figure 5 shows the iconic model of the railroad ga
controller. The dashed lines with arrow heads represe
synchronization channels(approach, exit, raise, lower).

ProcessRail is a formal specification of the informal
iconic model from Figure 5. Channelsapproach, exit, raise
andlower are of type void, which means that they are use
for pure synchronization, no data is communicated.

proc Rail(u : real) =
|[chan approach,exit, raise, lower : void
, cont x : real, cont y : real= 90
| Train(x,approach,exit) || Gate(y, raise, lower)
|| C(approach,exit, raise, lower, u)
]|
A train is modeled by process definitionTrain, which consists
of a reinitializationx+ ≤ 5000� followed by an infinite
loop(∗(. . .)). The velocity of the train can be any function of
time between−50 and−40. The process waits until the train
has reached positionx = 1000 and then synchronizes with
the controllerπ(approach!). Maximal progress operator
π enforces the synchronizationapproach! to take place
immediately, without delay. The train is now approachin
the gate. If the train has reached the exit position, such th
x =−100, the process synchronizes with the controller, th
positionx of the train is reset to a value between 1900 an
4900, and the loop is re-executed.

proc Train(ext x : real, approach,exit : ! void) =
|[x+ ≤ 5000�
∗((−50≤ ẋ ≤ −40 [] ∇ x ≥ 1000); π(approach!)
; (−50≤ ẋ ≤ −30 [] ∇ x ≤ −100)
; 1900≤ x+ ≤ 4900� π(exit !)
)

]|

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

e

h

y

s

m

e

x = 1000

x = 0

Train

NearFar

Past

approach

Gate

y = 90

y = 0

Idle

z′ = 0

exit

x :∈ [1900,4900]
x = −100−→

Move up Open

Controller

About to
lower

About to
raise

ż = 1∧ u̇ = 0

Closed

x ≤ 5000

exit

raise raise

lower

raise

lower

lower lower

lower

approach
approach

raise

exit

exit

approach

Move down

raise

z′ = 0

−50≤ ẋ ≤ −30

x ≥ −100

ẏ = 9

y ≤ 90

ẏ = 0

y = 0

ẏ = −9

y ≥ 0

ż = 1∧ u̇ = 0

z ≤ u
ż = 1∧ u̇ = 0

z ≤ u

x ≥ 1000

−50≤ ẋ ≤ −40

x ≥ 0

−50≤ ẋ ≤ −30

ẏ = 0

y = 90

Figure 4: Railroad Gate Control Automaton

A gate is modeled by process definitionGate, which consists
of a parallel composition of an equation (ẏ = n) and an
infinite loop. The infinite loop is an alternative composition
of four process terms. The first process term waits until th
gate is lowered (y = 0) and then stops the gate. The second
process term waits until the gate is raised(y = 90). The
Gate Train
raise exit

approachlower C

Figure 5: Iconic Model of the Rail-
road Gate Controller

third and fourth process term wait for synchronization wit
the controller in order to raise or lower the gate (raise?
and lower? respectively). The four process terms dela
in parallel until one of the four events(∇ y ≤ 0, ∇ y ≥
90, raise?, lower?) takes place.

proc Gate(ext y : real, raise, lower : ? void) =
|[var n : nat= 0
| ẏ = n || ∗(n < 0→ ∇ y ≤ 0; n := 0

[] n > 0→ ∇ y ≥ 90; n := 0
[] raise?; n := 9
[] lower?; n := −9
)

]|

A controller is modeled by process definitionC which
consists of an infinite loop of three alternatives. It wait
in parallel for one of the following events to occur: an
approaching train (approach?), a leaving train (exit?), or
if atr is true, the end of the reaction delay (1u� skip)
that precedes raising of the gate. Parameteru is used to
model the reaction delay in the controller. Process ter
1 u terminates afteru units of time, and process term
1u� skip terminates after any interval between 0 andu
units of time, because theskip internal action can take
over the delay at any point in time. Boolean variableatr
is true if and only if the hybrid automaton that models th
controller is in control mode (vertex) ‘About to raise’.

proc C(approach,exit : ? void
, raise, lower : ! void, u : real
)=

|[var atr : bool= false
| ∗(approach?; atr := false; (1u� skip); π(lower !)
[] exit?; atr := true
[] atr → (1u� skip); atr := false; π(raise!)
)

]|

4 DRY FRICTION PHENOMENON

Figure 6 shows a driving forceFd applied to a body on a flat
surface with frictional forceFf . When the body is moving
with positive velocityv, the frictional force is given by
Ff = µFN, whereFN =mg. When the velocity of the body
is zero and−µ0FN ≤ Fd ≤ µ0FN (µ0 > µ), the frictional
force neutralizes the applied driving force.

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

d

io

,

e

e

o
.

tl
e

e
s

e

es

n

e

y
is

n

t

:

n

e

g

Fd

FN

Ff

Figure 6: Dry Friction

In this section, the dry friction phenomenon is modele
usingχ . Furthermore, it is shown that an attempt to mode
this phenomenon using hybrid automata as defined in Sect
2.1 failed.

4.1 χ Specification of Dry Friction

In the χ specification of the dry friction phenomenon
recursion variables are used to specify the modes “neg
“stop”, and “pos”. The mode “stop” requires thatv is initially
0. The mode “stop” is maintained for as long as the parall
composition(v = 0→ v = 0 ‖ − µ0FN ≤ Fd ≤ µ0FN)

can delay. Otherwise the process term(Fd ≤ −µ0FN →
neg⊕ Fd ≥ µ0FN → pos) after the disrupt operator�
takes over. The choice operator⊕ specifies that either
process termFd ≤ −µ0FN→ neg orFd ≥ µ0FN→ pos is
executed. Therefore, depending on the value ofFd, either
the process term specified by recursion variable (mod
“neg” or “pos” is executed. The mode “pos” (“neg”) is
maintained until conditionv≤ 0∧Fd<µ0FN (v≥ 0∧Fd>

−µ0FN) becomes true. Using the maximal progress operat
π , action transitions have priority over time transitions
Therefore, whenv ≤ 0 andFd < µ0FN, the empty action
skip is enabled and immediately executed. Subsequen
the mode “stop” is executed again. Initially either the mod
“neg”, “stop” or “pos” is chosen (neg⊕ stop⊕ pos), based
on the initial values ofv andFd. Fd equals the sine function
of t ; m, FN , µ0, µ are constants.

proc Dryfriction(m, FN , µ0, µ : real)=
|[cont x, v, Fd, t : real
, { stop 7→ (v = 0→ v = 0 || −µ0FN ≤ Fd ≤ µ0FN)

�(Fd ≤ −µ0FN→ neg
⊕ Fd ≥ µ0FN → pos
)

, pos 7→ (mv̇ = Fd − µFN || v ≥ 0)
�(v ≤ 0∧ Fd < µ0FN → skip ; stop)

, neg 7→ (mv̇ = Fd + µFN || v ≤ 0)
�(v ≥ 0∧ Fd > −µ0FN → skip ; stop)

}
| ṫ = 1 || Fd = sin(t) || ẋ = v || π(neg⊕ stop⊕ pos)
]|

4.2 No Hybrid Automaton for Dry Friction?

The hybrid automaton specification in Figure 7 has thre
locations “neg”, “stop”, and “pos”. These locations/mode
correspond with the invariantsv ≤ 0, v = 0, andv ≥ 0,
respectively. In the mode “stop”, the friction forceFf
neutralizes the applied driving forceFd and the velocityv
l
n

”,

l

)

r

y

equals 0. The mode “stop” is maintained for as long as th
driving force satisfies the condition−µ0FN ≤Fd≤µ0FN. If
this condition can no longer be satisfied, the mode becom
“pos” or “neg”, respectively. The conditionFd < µ0FN
(Fd>−µ0FN) prevents the automaton to go back to locatio
“stop” immediately after a transition from mode “stop” to
“pos” (“neg”).

pos neg

v = 0∧
Fd > −µ0FN

v = 0∧
stop

Fd < µ0FN

ṫ = 1
ẋ = v

Fd = sin(t)
mv̇ = Fd − µFN

v ≥ 0

ṫ = 1
ẋ = v

Fd = sin(t)
mv̇ = Fd + µFN

v ≤ 0

ṫ = 1
ẋ = v

Fd = sin(t)

v = 0
Fd ≥ −µ0FN

Fd ≤ µ0FN

Fd ≥ µ0FN
Fd ≤ −µ0FN

Figure 7: (Incorrect) Dry Friction Automaton

The mode “pos”, is maintained for as long as th
condition v ≥ 0 is satisfied. In this mode, frictional force
Ff equalsµFN. When this condition can no longer be
satisfied, the mode becomes “stop”.

However, this hybrid automaton does not model the dr
friction phenomenon correctly. Suppose, the automaton
in the mode “pos”,Fd > µFN, v > 0, and the driving force
Fd decreases. WhenFd < µFN, the velocity decreases,
and eventuallyv = 0. Now, the transition to mode “stop”
has to be taken, although the invariantv ≥ 0 still holds.
If this transition would not be taken, andFd = µFN, the
automaton would remain in mode “pos”. When the driving
force would increase, the body would start moving whe
Fd≥µFN instead ofFd≥µ0FN. It is not possible to enforce
the transition by removing the equal sign of the invarian
v ≥ 0 in mode “pos”. This would disable the transition,
because zero would then become an accumulation pointv

would approach 0 infinitely close, butv would not become
equal to zero. Furthermore, it would disable the transitio
from mode “stop” to mode “pos”.

Due to the maximal progress operator inχ , the transition
to mode “stop” is taken, even though the equations in mod
“pos” still can perform delay transitions.

The dry friction phenomenon could be modeled usin
a “hybrid automaton” if the transition with guardv = 0
(andFd < µ0FN, or Fd > −µ0FN) would be taken as soon
as its guard became true.

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

t

s

s

e

s

n

.
sly
rm

er
-

to
ed
-
by

s

ari-
er

ent

its

ss
r

5 CONCLUSIONS

The translation of a single hybrid automaton toχ has been
shown to be straightforward. In general, hybrid automata
should not be translated directly toχ . Modeling directly
in χ , and thus usingχ ’s expressive power, leads to more
elegant models. The formal semantics, theχ simulator
(Fábián 1999) and the model checker for the discrete-even
part ofχ (Bos and Kleijn 2002) are the basis of the newχ
simulation andχσh verification tools that will be developed.

APPENDIX: SYNTAX DEFINITION OF χ

In this section, a subset of the syntax of theχ language is
introduced in an extended BNF-like notation, where brackets
‘[’ and ‘]’ enclose optional items. A process definition has
syntax

PD ::= proc pi ‘(’ [Df] ‘)’ = ‘ |[’ [D [‘ ,’ ‘{’ R ‘}’] ‘ |’]P ‘]|’

wherepi denotes a process identifier,Df andD denote
declarations,R denotes a parameterless recursive proces
definition, andP denotes a process term.

The declaration of the formal parametersDf of a process
definition has the following syntax, wherevis is a comma
separated list of variable identifiers,cis is a comma separated
list of channel identifiers, andt is a type.

Df ::= vis ‘ :’ t | cis ‘ : !’ t | cis ‘ : ?’ t
| ext vis ‘ :’ t | Df ‘ ,’ Df

The declarationvis : t denotes the declaration of variables of
typet ; cis : !t andcis : ?t denote the declaration of channels
cis of type t used for sending or receiving, respectively;
and ext vis : t declaresvis as external (shared) variables
of type t .

The declaration of variables and channels in a proces
definitionD has the following syntax. These variables and
channels are by definition local, and cannot be used outsid
the process in which they are declared:

D ::= var vis ‘ :’ t [‘=’ c] | cont vis ‘ :’ t [‘=’ c]
| chan cis ‘ :’ t | D ‘ ,’ D

R ::= ri ‘ 7→’ P | R ‘ ,’ R

wherec is a constant expression,ri a recursion variable,
andR a recursive process definition, i.e. a partial function
from recursion variables to process terms. The declaration
var vis : t , cont vis : t , andchan cis : t denote the
declaration of discrete variables, continuous variables, and
channels of typet respectively. Optionally, variables can
be initialized at their declaration ([‘=’ c]).
er
Process termP is built from atomic process terms
(statements)AP, using operators for combining them:

AP ::= skip | x ‘ :=’ e | m ‘ !’ e | m ‘?’ x
| u | ‘1’ en | ‘∇ ’ bn

P ::= AP | X | i ‘�’ P | b ‘→’ P
| P ‘ ;’ P | P ‘�’ P | P ‘⊕’ P
| P ‘ []’ P | P ‘ ‖ ’ P | ‘∗’ P
| pi ‘(’da‘)’ | π(P)

An informal (concise) explanation of this syntax is give
below.

The process termskip represents an internal action
The value of variables can be changed instantaneou
through assignments. An assignment is a process te
of the formx := e with x a variable ande an expression. In
principle, the continuous variables change arbitrarily ov
time. Predicatesu over discrete variables, continuous vari
ables, and the derivatives of continuous variables are used
control these changes. I.e., a predicate restricts the allow
behavior of the continuous variables. More complex pro
cess terms can be obtained by combining process terms
means of among others sequential composition (;), choice
(⊕), alternative composition ([]), parallel composition (‖),
prefixing a processp term by a reinitialization predicate
i: i � p, and guarding a process termp by a boolean
expressionb: b→ p. The process termi � p denotes the
process term that behaves asp starting from the reinitial-
ized state if the reinitialization predicatei can be satisfied
and deadlocks otherwise. The process termb→ p denotes
the process term that behaves as process termp in case
the boolean expressionb evaluates to true and deadlock
otherwise.

Processes interact either through the use of shared v
ables or by synchronous point-to-point communication ov
a channel. By means ofm!e, the value of expressione is
sent over channelm. By means ofm?x a value is received
from channelm in variable x. The acts of sending and
receiving a value have to take place at the same mom
in time.

Some of the atomic process terms inχ are delay-able
(sending and receiving), others are not delay-able (skip ,
assignments). By means of the delay process term1en a
process can be forced to delay for the amount of time un
specified by the value of numerical expressionen. A nabla
process term of the form∇bn, wherebn represents a boolean
variable or a comparison of real-valued expressions using≤,
or≥, terminates by means of an internal action ifbn is true,
and blocks otherwise. By means of the maximal progre
operatorπ , execution of actions can be given priority ove
passage of time.

The disrupt operator (�) is used for describing that
a process is allowed to take over execution from anoth

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

i
r

e

s
ti
a

n
t

e
k
is

f
e
d
d
i

t

r,

y
-

l

c

s

,

.

-

x

r-

ry.
.

d

e

of

r

.

d

.
-

process even if that process is not terminated yet (this
contrast with sequential composition). This is useful fo
describing mode switches and interrupts/disrupts.

In χ , two operators can be used for the purpose of d
scribing alternative behaviors; the choice operator (⊕) and
the alternative composition operator ([]). The choice oper-
ator allows choice between different kinds of continuou
behavior of a process, where the choice depends on the ini
state of the continuous-time or hybrid process. The altern
tive composition operator allows choice between differe
actions/events of a process, usually between time-even
state-events or communication events of a discrete-ev
controller. In such a case, time-passing should not ma
a choice. The choice is delayed until the first action
possible.

A process instantiation,pi(da), wherepi refers to a
process definition, andda denotes a comma separated list o
expressions (actual parameters), is used to instantiate proc
definitions. It is assumed that instantiation is finite an
therefore recursive process instantiations are not allowe

The operators are listed in descending order of the
binding strength as follows{�,→, ; ,�,∗}, {⊕, [], ‖ }. The
operators inside the braces have equal binding strength.
addition, operators of equal binding strength associate
the left, and parentheses may be used to group expressio

REFERENCES

Alur, R., C. Courcoubetis, N. Halbwachs, T. A. Henzinge
P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. 1995. The algorithmic analysis of hybrid
systems. InTheoretical Computer Science, Volume 138,
3–34. Springer-Verlag.

Alur, R., T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Ku-
mar, I. Lee, P. Mishra, G. J. Pappas, and O. Sokolsk
2001. Hierarchical modeling and analysis of embed
ded systems. InFirst Workshop on Embedded Software
EMSOFT’01.

Bos, V., and J. J. T. Kleijn. 2002.Formal Specification and
Analysis of Industrial Systems. Ph. D. thesis, Eindhoven
Univ. of Technology.

Chaochen, Z., W. Ji, and A. P. Ravn. 1996. A forma
description of hybrid systems. InHybrid Systems III -
Verification and Control, ed. R. Alur, T. A. Henzinger,
and E. D. Sonntag, Lecture Notes in Computer Scien
1066, 511–530. Springer-Verlag.

Cuijpers, P. J. L., and M. A. Reniers. 2003. Hybrid proces
algebra. Technical Report CS-Report 03-07, Eindhove
Univ. of Technology, Department of Computer Science
The Netherlands.

Cuijpers, P. J. L., M. A. Reniers, and W. P. M. H. Heemels
2002. Hybrid transition systems. Technical Report CS
Report 02-12, Eindhoven Univ. of Technology, Depart
ment of Computer Science, The Netherlands.
n

-

al
-

t
s,
nt
e

ss

.
r

In
o
ns.

.

e

n

-

Fábián, G. 1999.A Language and Simulator for Hybrid
Systems. Ph. D. thesis, Eindhoven Univ. of Technology.

Fábián, G., D. A. van Beek, and J. E. Rooda. 2001. Inde
reduction and discontinuity handling using substitute
equations.Mathematical and Computer Modelling of
Dynamical Systems7 (2): 173–187.

Guéguen, H., and M. A. Lefebvre. 2001. A comparison
of mixed specification formalisms.APII JESA Journal
Europeen des Systemes Automatises35 (4): 381–394.

Henzinger, T. A. 2000a. Masaccio: A formal model for em-
bedded components. InFirst IFIP International Confer-
ence on Theoretical Computer Science (TCS), Lecture
Notes in Computer Science 1872, 549–563. Springe
Verlag.

Henzinger, T. A. 2000b. The theory of hybrid automata. In
Verification of Digital and Hybrid Systems, ed. M. Inan
and R. Kurshan, Volume 170 ofNATO ASI Series F:
Computer and Systems Science. New York: Springer-
Verlag.

Jifeng, H. 1994. From CSP to hybrid systems. InA Classical
Mind, Essays in Honour of C.A.R. Hoare, ed. A. W.
Roscoe, 171–189. Prentice Hall.

Johansson, K. H., M. Egerstedt, J. Lygeros, and S. Sast
1999. On the regularization of Zeno hybrid automata
Systems-&-Control-Letters38:141–150.

Lynch, N. A., R. Segala, and F. W. Vaandrager. 2003. Hybri
I/O automata. Technical Report MIT-LCS-TR-827d,
MIT Laboratory for Computer Science, Cambridge,
MA 02139. To appear in Information and Computa-
tion.

Mosterman, P. J., and J. E. Ciolfi. 2002. Embedded cod
generation for efficient reinitialization. In15th Trien-
nial World Congress of the International Federation of
Automatic Control. CD-ROM.

Schiffelers, R. R. H., D. A. van Beek, K. L. Man, M. A.
Reniers, and J. E. Rooda. 2003a. Formal semantics
hybrid Chi. In First International Workshop on For-
mal Modeling and Analysis of Timed Systems. To be
published.

Schiffelers, R. R. H., D. A. van Beek, K. L. Man, M. A. Re-
niers, and J. E. Rooda. 2003b. A hybrid language fo
modeling, simulation and verification. InIFAC Con-
ference on Analysis and Design of Hybrid Systems,
ed. S. Engell, H. Guéguen, and J. Zaytoon, 235–240
Saint-Malo, Brittany, France.

van Beek, D. A., and J. E. Rooda. 2000. Languages an
applications in hybrid modelling and simulation: Po-
sitioning of Chi. Control Engineering Practice8 (1):
81–91.

van Beek, D. A., A. van den Ham, and J. E. Rooda. 2002
Modelling and control of process industry batch produc
tion systems. In15th Triennial World Congress of the In-
ternational Federation of Automatic Control. Barcelona.
CD-ROM.

van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

,
-
-

f

-
f

-

t
n

at

i-
-
l-
AUTHOR BIOGRAPHIES

D.A. (BERT) VAN BEEK is lecturer at the Systems En-
gineering Group at the Eindhoven University of Technol-
ogy since 1986. His research interests include modeling
simulation and verification of hybrid systems. He is as
sociate editor of Simulation: Transactions of The Soci
ety for Modeling and Simulation International. He can
be reached at<d.a.v.beek@tue.nl> and at<http:
//se.wtb.tue.nl/˜vanbeek> .

NIEK G. JANSEN graduated in 2003 in Mechanical En-
gineering with respect to the design and formalization o
the χ language.

J.E. (KOOS) ROODA received his Ph.D. degree from
Twente University of Technology, The Netherlands. Since
1985 he is full professor of (Manufacturing) Systems En
gineering at the Department of Mechanical Engineering o
Eindhoven University of Technology. His research fields
of interest are modeling and analysis of manufacturing
systems. His interest is especially in control of manufac
turing lines and in supervisory control of manufacturing
machines. He can be reached at<j.e.rooda@tue.nl>
and at<http://se.wtb.tue.nl/> .

RAMON R.H. SCHIFFELERS is a Ph.D. research assis-
tant in the Department of Mechanical Engineering at the
Eindhoven University of Technology. His research inter-
ests include modeling, simulation and verification of hybrid
systems. He can be reached at<r.r.h.schiffelers@
tue.nl> .

KA L. MAN is a Ph.D. research assistant in the Departmen
of Mathematics and Computer Science at the Eindhove
University of Technology. His research interests focus on
formal analysis of hybrid Systems. He can be reached
<k.l.man@tue.nl> .

MICHEL A. RENIERS is lecturer at the Design and Anal-
ysis of Systems Group from the Department of Math-
ematics and Computer Science at the Eindhoven Un
versity of Technology since 1999. His research inter
ests include formal methods for the specification, ana
ysis and verification of timed and hybrid systems. He
can be reached at<M.A.Reniers@tue.nl> and at
<http://www.win.tue.nl/˜michelr>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 632
	02: 633
	03: 634
	04: 635
	05: 636
	06: 637
	07: 638
	08: 639
	09: 640

