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ABSTRACT

A hybrid automaton is one of the most popular formal models
for hybrid system specification. The Chi language is a
hybrid formalism for modeling, simulation and verification.

It consists of a number of operators that operate on all
process terms, including differential algebraic equations.
This paper relates the two formalisms by means of a formal
translation from a hybrid automaton model to a Chi model,
and a comparison of the semantics of the two models in
terms of their respective transition systems. The comparison
is illustrated by means of three examples: a thermostat, a
railroad gate controller, and dry friction.

1 INTRODUCTION

A hybrid automaton (Alur et al 1995; Henzinger
2000b; Guéguen and Lefebvre 2001; Johansson £98D8)

is one of the most popular formal models for hybrid system
specification. This paper relates the hybrid automaton of
Henzinger (2000b) to the hybrig (Chi) formalism.

The x formalism was originally designed as a modeling
and simulation language for specification of discrete-event
(DE), continuous time (CT) or combined DE/CT models
(so-called hybrid models). The language and simulator have
been successfully applied to a large number of industrial
cases, such as an integrated circuit manufacturing plant, a
brewery, and process industry plants (van Beek, van den
Ham, and Rooda 2002).

One of the goals of our research is the development
of a hybrid verification formalism / modeling and simula-
tion language with associated verification and simulation
tools. The recent formalization of the language, includ-
ing the continuous part, resulted in thg, process algebra
(Schiffelers et al2003a) and in a more elegaptmodeling
language. Thex language now has the same operators,
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with the same semantics, as thg, formal language. The

x modeling language extendgg,, with, among others, pa-
rameterized process and experiment definitions, and with
instantiations of the defined processes and experiments. A
straightforward syntactical translation gf to x, is de-
scribed in (Schiffelers et ak003b). The relation between

x and xs, is illustrated in Figure 1. Ay,, process can

be simulated and properties can be verified.y Aexperi-
ment can also be compiled directly to obtain a simulator.
Reasons for this can be to gain speed, or to make it easier
to provide user friendly error information related to the
specification.

The x language is related both to simulation languages,
see van Beek and Rooda (2000) and to formal languages such
as HyPa (Cuijpers and Reniers 2003), hybrid formalisms
based on CSP (Jifeng 1994, Chaochen, Ji, and Ravn 1996),
hybrid 1/0 automata (Lynch, Segala, and Vaandrager 2003),
hybrid automata (Alur et al1995), and to work derived
from hybrid automata, such as Charon (Alur et 2001)
and Masaccio (Henzinger 2000a). In particular, the
disrupt, choice, recursion, and reinitialization operators are
inspired by HyPA (Cuijpers and Reniers 2003). Overalls
more expressive than other formal languages, see Schiffelers
et al (2003a). It is suited to 1) modeling of a wide range
of control systems, such as regulatory control, sequence
control, scheduling algorithms, hierarchical control, agent

translation

I
compilation |
|
L

-—-- -> verification

Figure 1: Fromy to xe,
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based control; 2) modeling of complex concurrentinteracting
physical systems; and 3) modeling of DAE-based hybrid
phenomena, consistent initialization of higher index systems

translated to a correspondigpgpecification. The translation
is defined as follows:

(Fabian, van Beek, and Rooda 2001), and mode switches proc HybridAutomatonly () =

accompanied by index changes such as treated in Mostermanll cont xq, ...

and Ciolfi (2002).

In Section 2, a general translation scheme from a general

hybrid automaton to a corresponding specification is
presented. Examples of modeling a rail gate controller and
the dry friction phenomenon using both hybrid automata
and x are presented in Section 3 and 4.

2 TRANSLATION

In this section, a general translation scheme from a hybrid
automaton to a correspondingspecification is presented.
The syntax of they language is given in the Appendix.

2.1 Description Hybrid Automaton

A hybrid automaton (Henzinger 2000b) consists of the fol-
lowing components.

« A finite set of (real-valued) variablesY =
{x1, ..., x,}, the setX = (i1, ..., %,} which de-
notes the first derivatives of the variables, and the
set X' = {x], ..., x;} which denotes the primed
variables that represent values at the conclusion of
a discrete change.

« Afinite directed multi-grapRV, E), whereV de-
notes a set of vertices (control modes) &denotes
a set of edges (control switches).

» Three vertex labeling functions init, inv, and flow
that assign to each control mode V a predicate
for initial, invariant and flow conditions, respec-
tively. The free variables of the initial and invariant
predicates are fronX. The free variables of the
flow predicates are fronX U X.

* An edge labeling function jump, that assigns to
each edger € E, a jump condition which is a
predicate whose free variables are frafiu X'.

A finite set ¥ of events, and an edge labeling
function event E — X that assigns to each edge
an event.

In order to translate a hybrid automaton #q two
additional functions are defined on a hybrid automaton:
Function edges V — P(E) returns a set of outgoing
edges for a location, and function targefz — V returns
the target vertex of an edge.

2.2 Translation Scheme

Consider a hybrid automaton model withvariables & =
{x1,...,x,}) andk control modesV¥ = {v1, ..., vt}) to be
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, {vy = (inv(vy) | flow(vy))>
(®e:eeedge$v1) T (jump(e)) >
inv(targete)) — skip ;targete))

g > (inv(vy) | flow(ug))>
(@e:eeedgesvk) T (ump(e)) >
inv(targete)) — skip ;targete))

}

[init(vy) > v1 & ... @ init(v) > vg
]

A vertexv; of the hybrid automaton model is translated
using a corresponding recursion variabjén the x model.

The process term associated with this recursion variable
consists of the process term describing the continuous be-
havior of the vertex, disrupted by the choice composition
of all individual process terms of the outgoing edges of this
vertex. Below, these process terms are explained in more
detail.

The continuous behavior of a vertexis translated to
the parallel composition of its invariant and flow predicates
(inv(v;) || flow(v;)).

For each outgoing edge, the jump predicate of that edge
is translated to a reinitialization predicat@& (fump(e))),
where functiorf/ renames variables occurring with a prime
“" superscript in a jump predicate to variables with super-
script “t”. E.g. T(x' —y = z) becomesxt — y* = z.
Here,x™ and y™ refer to the values of andy after the
discrete jump that is equivalent to the notatignused in
Henzinger (2000b).

The event label of the edge is translated to $hip
process term. This translation implies an event abstraction
which is explained in more detail in Section 2.3.

The semantics of hybrid automata contain a kind of
look-ahead such that after a control switch the invariant of
the target vertex of an edge must hold (using the values of
the variables as defined after the reinitialization according to
the jump conditions), otherwise the transition cannot occur.
Using y, this look-ahead is modeled by means of guarding
the skip process term with the invariant predicate of its
target vertex (ingtargete))).

After the transition, the behavior is specified by the re-
cursion variable associated with the target vertex (téegpet

The choice operatord) is used to combine the indi-
vidual process terms of the outgoing edges.

Note that for edgds;) = {e1, ..., ex}, ho-
tation (@e:eeedgesvi)(T(jump(e)) > inV(targete)) -
skip ;targete)), denotes the process teffjump(er)) >
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inv(targeter)) — skip ;targete1)®...® 7 (jumpler)) >
inv(targeter)) — skip ;targetey)) .

The straightforward translation of a hybrid automaton
to a x model shows thaj is expressive enough to model
phenomena that are usually studied by means of a hybrid
automaton. The translation from ja model to a hybrid
automaton is more difficult sincg has a richer set of
operators, especially for specification of discrete-event sys-
tems. Also,x has more support for DAE-based modeling
of hybrid phenomena, such as mentioned in the introduc-
tion. The translation from parallel composition of hybrid
automata to parallel composition gf process terms and
vice versa is further complicated because of differences in
synchronization behavior of the two languages. Where all
hybrid automata that share the same event are forced to
synchronize, iny, synchronization between process terms
that share communication channels is always on a point to
point basis, between exactly two processes.

2.3 Semantical Comparison

Previously, a translation of a hybrid automaton jorocess

has been described at the syntactical level. In this section,
the relation between a hybrid automaton and its associated
x process is discussed on the semantical level.

The semantics of a hybrid automaton (Henzinger 2000b)
is a timed transition system with two types of transitions:
action transitions (corresponding to control switches) and
time transitions (corresponding to continuous behavior in
a control mode). On the other hand, the semantics of a
Xx process is a hybrid transition system (Cuijpers, Reniers,
and Heemels 2002; Schiffelers et 2003a) which also has
these two types of transitions.

The main difference between these semantics is in the

Finally, the translation presented before shows that the
events of the control switches are all translated into the
process ternmskip . So, in the timed transition system
associated with a hybrid automaton a wide range of action
labels representing events may occur, whereas in the hy-
brid transition system of the correspondiggorocess only
internal transitions (denoteg) occur. Thus, the translation
abstracts from the names of the events.

In order to describe the relation between a hybrid au-
tomaton and itsy-‘equivalent’ more precisely, first some
abstraction mechanisms are introduced to overcome the
above-mentioned differences.

Let 2 be a mapping that maps a hybrid transition system
onto a timed transition system by removing valuations from
action transitions and trajectories from time transitions.

Let: be a mapping that maps a timed transition system
onto a timed transition system where all labels of action
transitions are replaced by the lalzebnd where all zero-
duration transitions are removed.

Let A be a hybrid automaton and lg®@ be the x
process associated to it by the translation defined in this
paper. Furthermore, lef and H be the semantics oft
and P, respectively.

Then, there exists a (strong-)bisimulation relatica()
between the states afT) and the states ofi(H) (see
Figure 2) such that any transition from an initial state of
T can be simulated by the initial state bfH) and each
transition from the initial state ofi(H) is simulated by
some initial state off".

2.4 A Thermostat

This example shows the translation of a hybrid automaton to
x. The hybrid automaton of Figure 3 models a thermostat.

labeling of the action and time transitions. Intimedtransition Variable x represents the temperature. The control modes
systems the labels of action transitions are simply the events areOn andOff. Figure 3 is taken from Henzinger (2000b),
of the hybrid automaton, whereas the labels of the action where the usual informal notation is used: events on the
transitions of a hybrid transition system also contain the edges are ignored, and the jump conditions are incomplete.
valuation of the model variables. For time transitions, the In particular, in Figure 3 both edges should have an event
labels in a timed transition system contain only the duration label, the jump conditions of the edges should have been
of the time transition whereas time transitions in hybrid x < 19A x’ = x andx > 21 A x’ = x, respectively. In
transition systems also have the trajectory of the model

variables as a label. semantics event

A second difference is the existence of time transitions abstraction uT)
with a duration of zero in the timed transition systems.
Each state in the semantics of a hybrid automaton has a translation =
zero-duration time transition to itself. Between different _ _
states there never is a zero-duration time transition. Such semantics variable h(H)
transitions are not present in the hybrid transition systems abstraction

associated tge processes.

A timed transition system can have many initial states
whereas a hybrid transition system has only one initial state.
This one initial state captures the behavior of all the initial
states of the timed transition system.

Figure 2: The Bisimulation Relation Be-
tween the States affT) and the States of
h(H)

634



van Beek, Jansen, Rooda, Schiffelers, Man, and Reniers

Figure 3: A Hybrid Automaton Model of a Thermostat

this paper we use the same informal notation for the hybrid
automata in the examples, to improve readability. he
specifications, however are formal.

Initially, the temperature equals 20 degrees, and the
heater is off (control mod®ff). The temperature falls
according to the flow condition = —0.1x. According to
the jump conditiork < 19, the heater may go on as soon as
the temperature falls below 19 degrees. Due to the invariant
conditionx > 18, at the latest the heater will go on when
the temperature equals 18 degrees. In the control mode
On, the heater is on, and the temperature rises according
to the flow conditiont = 5 — 0.1x. When the temperature
rises above 21 degrees, the heater may turn off. Due to the
invariant conditionx < 22, at the latest the heater will turn
off when the temperature equals 22 degrees.

Using yx, processThermostatconsists of a continuous
variablex which represents the temperature, and two recur-
sion variableOn andOff which refer to the control modes
On and Off of the hybrid automaton model, respectively.
Initially the heater is off and the temperature is 20 degrees.
The modeOff can delay as long as> 18. The temperature
decreases at a rate of= —0.1x. When the guard < 19
on the right hand side of the disrupt operaterbecomes
true, and the guardre(< 22) of theskip process term is
true, theskip process term can take over the delay by
means of performing a action. After that, the recursion
variable On takes over. The mod®n can delay as long
asx < 22. When the guard > 21 becomes trueskip
can perform a action and the recursion variablBdf takes
over.

proc Thermostat() =
Il cont x :real
, {Off >(x > 18] x = —0.10)>
(x <19>» x <22— skip ;On)
,0n >(x <22|x=5-01)>
(x > 21> x > 18 — skip ; Off)
}
| xT = 20> Off @ false > On
1

Modeling the thermostat directly in leads to the following
specification:

proc Thermostat() =

[ cont x :real= 20

, {Off > (x>18]x =-01x) >(x <19 On)
,0n > (x <22 x =5-0.1x)>(x > 21> Off)
}

| Off

1
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The hybrid transition system of this specification contains
only time transitions, i.e. there are no action transitions due
to switching from one control mode into another.

3 RAILROAD GATE CONTROL

In Section 2, a general translation from a hybrid automaton
to x is defined. This section shows that modeling directly in
X, and usingy’'s expressivity, leads to more elegant models.
Consider a train on a circular track, a gate and a
controller. When the train approaches the gate, the controller
must lower the gate. The controller has a reaction delay
of u time units. After the train has passed the gate the
controller must raise the gate. The purpose of the model
is to determine the value of, such that the gate is always
fully lowered when the train is at a certain distance from
the gate.
Figure 4 shows the hybrid automaton model of the
railroad gate controller as defined in Henzinger (2000b).
The x model takes into account that there is only one
train on the circular track, which implies that the transitions
of the self loops of the controller automaton can never
occur. Figure 5 shows the iconic model of the railroad gate
controller. The dashed lines with arrow heads represent
synchronization channel@pproach exit, raise, lower).
ProcessRail is a formal specification of the informal
iconic model from Figure 5. Channedpproach exit, raise
andlower are of type void, which means that they are used
for pure synchronization, no data is communicated.
proc Rail(u : real) =
[ chan approach exit, raise lower : void
, cont x : real, cont y : real= 90
| Train(x, approach exit) | Gatd(y, raise, lower)
| C(approach exit, raise lower, i)
]
Atrainis modeled by process definitidrain, which consists
of a reinitializationx™ < 5000 followed by an infinite
loop(x(...)). The velocity of the train can be any function of
time between-50 and—40. The process waits until the train
has reached positian= 1000 and then synchronizes with
the controllersw (approach!). Maximal progress operator
7 enforces the synchronizatioapproach! to take place
immediately, without delay. The train is now approaching
the gate. If the train has reached the exit position, such that
x = —100, the process synchronizes with the controller, the
positionx of the train is reset to a value between 1900 and
4900, and the loop is re-executed.

proc Train(ext x : real, approach exit: !void) =
[ xT <5000
#( (=50<x < —40[ Vx > 1000; z(approach)
; (=50=<x <-30[] vx < -100
: 1900< x1 < 4900>> 7 (exit!)
)
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Train

x < 5000
—-50<x% <—-40

—-50<x<-30

x>0

approach

x =-100—

x:€[19004900 | ©Xit

—50<x<-30
x > —100

Gate {

raise Move up

y=9
y <90

lower
lower Move down

y=-9
y=0

Controller

lower

approach

About to
lower

About to
raise

i=1Au=0 i=1Au=0

approach

Z=<u z<u

. exit
exit

Figure 4: Railroad Gate Control Automaton

A gate is modeled by process definitiGate which consists

of a parallel composition of an equatiost £ »n) and an
infinite loop. The infinite loop is an alternative composition
of four process terms. The first process term waits until the
gate is loweredy( = 0) and then stops the gate. The second
process term waits until the gate is raised= 90). The
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Figure 5: Iconic Model of the Rail-
road Gate Controller

third and fourth process term wait for synchronization with
the controller in order to raise or lower the gataige?
and lower? respectively). The four process terms delay
in parallel until one of the four eventsvy y <0, Vy >

90, raise?, lower?) takes place.

proc Gateglext y : real, raise lower : ? void) =
[ var n : nat=0
| y=n|*(n<0—->vVvy=<0;n:=0
In>0—->vVy=>90, n:=0
[] raise?; n:=9
[l lower?; n:= -9

)

A controller is modeled by process definiti@which
consists of an infinite loop of three alternatives. It waits
in parallel for one of the following events to occur: an
approaching traingpproach?), a leaving train €xit?), or
if atr is true, the end of the reaction delay ¢ > skip )
that precedes raising of the gate. Parametés used to
model the reaction delay in the controller. Process term
A u terminates aften units of time, and process term
Au > skip terminates after any interval between 0 and
units of time, because thekip internal action can take
over the delay at any point in time. Boolean variable
is true if and only if the hybrid automaton that models the
controller is in control mode (vertex) ‘About to raise’.

proc C( approach exit: ? void
, raise lower : !void, u : real
)=
[ var atr : bool = false
| *( approach?; atr .= false (A u>skip ); w(lower!)
[] exit?; atr := true
[ atr - (Aur>skip ); atr := false m(raise!)
)
1

4 DRY FRICTION PHENOMENON

Figure 6 shows a driving forcEy applied to a body on a flat
surface with frictional forcef;. When the body is moving
with positive velocity v, the frictional force is given by
Fi = uFn, whereFy = mg. When the velocity of the body
is zero and—uoFN < Fq < noFn (o > w), the frictional
force neutralizes the applied driving force.
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Figure 6: Dry Friction

In this section, the dry friction phenomenon is modeled
using x. Furthermore, it is shown that an attempt to model
this phenomenon using hybrid automata as defined in Section
2.1 failed.

4.1 x Specification of Dry Friction

In the x specification of the dry friction phenomenon,
recursion variables are used to specify the modes “neg”,
“stop”, and “pos”. The mode “stop” requires thais initially

0. The mode “stop” is maintained for as long as the parallel
composition(v =0— v =0 — uoFn < Fg < uoFn)

can delay. Otherwise the process tefRy < —uoFn —
neg®d Fyq > noFn — po9 after the disrupt operator
takes over. The choice operatar specifies that either
process ternfy < —uoFn — neg orFy > woFN — POS is
executed. Therefore, depending on the valuggfeither

the process term specified by recursion variable (mode)
“neg” or “pos” is executed. The mode “pos” (“neg”) is
maintained until conditiom < OA Fy < uoFn (v > 0A Fy >
—uoFn) becomestrue. Using the maximal progress operator
mr, action transitions have priority over time transitions.
Therefore, wherny < 0 and Fy < uoFn, the empty action
skip is enabled and immediately executed. Subsequently
the mode “stop” is executed again. Initially either the mode
“neg”, “stop” or “pos” is chosen (neg stopd pos), based
on the initial values of and Fy. Fy equals the sine function
of t; m, Fn, uo, p are constants.

proc Dryfriction( m, Fn, no, 1 : real)=
[ cont x, v, Fy, t: real
, {stop—> (v=0—>v=0] —poFNn < Fd < pofn)
>( Fg < —poFN — neg
® Fq = noFN  — pos
)
, post> (mv = Fg—puFn |l v>0)
>(v <0A Fg < ugFn — skip ; stop)
,neg— (mv=Fy+ufFN | v=<0)
>(v>0A Fg> —ugFn — skip ; stop)
}
| i=1| Fg=sin®t)| £ =v | 7(neg® stop® pos
[

4.2 No Hybrid Automaton for Dry Friction?

The hybrid automaton specification in Figure 7 has three
locations “neg”, “stop”, and “pos”. These locations/modes
correspond with the invariants < 0, v = 0, andv > 0,
respectively. In the mode “stop”, the friction forck

neutralizes the applied driving fordgy and the velocityv
637

equals 0. The mode “stop” is maintained for as long as the
driving force satisfies the conditieRug Fy < Fyq < noFn. If

this condition can no longer be satisfied, the mode becomes
“pos” or “neg”, respectively. The conditioly < woFn

(Fq > —poFn) prevents the automaton to go back to location
“stop” immediately after a transition from mode “stop” to
“pos” (“neg”).

pos
i=1
X=v

Fg = sin(r)

mv = Fq — nFy

neg
i=1
i=v
Fq = sin(r)
mi = Fq + uFy

v>0 v=0

Fdq = nofn
Fg = —nofN

v=0A
Fd < noFN stop
i=
x=v

Fq = sin(r)

Fg = nofy
Fq = —pofN
v=0

Figure 7: (Incorrect) Dry Friction Automaton

The mode “pos”, is maintained for as long as the
conditionv > 0 is satisfied. In this mode, frictional force
F; equalsuFy. When this condition can no longer be
satisfied, the mode becomes “stop”.

However, this hybrid automaton does not model the dry
friction phenomenon correctly. Suppose, the automaton is
in the mode “pos” Fy > uFn, v > 0, and the driving force
Fy decreases. Whetty < wFy, the velocity decreases,
and eventually = 0. Now, the transition to mode “stop”
has to be taken, although the invariant- O still holds.

If this transition would not be taken, anky = uFy, the
automaton would remain in mode “pos”. When the driving
force would increase, the body would start moving when
Fg > wFy instead ofFy > uoFn. Itis not possible to enforce
the transition by removing the equal sign of the invariant
v > 0 in mode “pos”. This would disable the transition,
because zero would then become an accumulation point:
would approach 0 infinitely close, butwould not become
equal to zero. Furthermore, it would disable the transition
from mode “stop” to mode “pos”.

Due to the maximal progress operatoyirthe transition
to mode “stop” is taken, even though the equations in mode
“pos” still can perform delay transitions.

The dry friction phenomenon could be modeled using
a “hybrid automaton” if the transition with guard =0
(and Fy < noFn, or Fg > —uoFn) would be taken as soon
as its guard became true.
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5 CONCLUSIONS Process termP is built from atomic process terms
(statementsAP, using operators for combining them:

The translation of a single hybrid automatonytdias been

shown to be straightforward. In general, hybrid automata AP == skip | x“ = e | m"Ve | m?x

should not be translated directly yp. Modeling directly | u | ‘Aen | V' by

in x, and thus using('s expressive power, leads to more

elegant models. The formal semantics, thesimulator

(Fabian 1999) and the model checker for the discrete-event Pou= AP|X | "> P | b'>"P
part of x (Bos and Kleijn 2002) are the basis of the ngw PP PP PSP
simulation andy,, verification tools that will be developed. | P ’D r | PI"P | * P
| pi'Cda’) | 7w(P)
APPENDIX: SYNTAX DEFINITION OF = x An informal (concise) explanation of this syntax is given

] ] ) below.
In this section, a subset of the syntax of theanguage is The process terrskip represents an internal action.
introduced in an extended BNF-like notation, where brackets The value of variables can be changed instantaneously

‘T and ‘1 enclose optional items. A process definition has

through assignments. An assignment is a process term
syntax

of the formx := e with x a variable an@ an expression. In
principle, the continuous variables change arbitrarily over
time. Predicates over discrete variables, continuous vari-
. . ables, and the derivatives of continuous variables are used to
where pi denotes a process identifief) and D denote control these changes. l.e., a predicate restricts the allowed
declarations,R denotes a parameterless recursive process penavior of the continuous variables. More complex pro-
definition, andP denotes a process term. cess terms can be obtained by combining process terms by
.'Ifhe declaration of thgformal parametgﬁofaprocess means of among others sequential compositipnchoice
definition has the following syntax, whewss is a comma () ajternative composition(Jj, parallel composition | ),
;eparated list ofvarlgple |dent|f'|erss|sacommaseparated prefixing a procesg term by a reinitialization predicate
list of channel identifiers, andis a type. i i > p, and guarding a process termby a boolean
expressiorb: b — p. The process term>>> p denotes the
process term that behaves asstarting from the reinitial-
ized state if the reinitialization predicatecan be satisfied
and deadlocks otherwise. The process térm p denotes
the process term that behaves as process jernm case
the boolean expressian evaluates to true and deadlocks
otherwise.

Processes interact either through the use of shared vari-
ables or by synchronous point-to-point communication over
a channel. By means ofle, the value of expressioa is
sent over channek. By means ofn?x a value is received
from channelm in variablex. The acts of sending and
receiving a value have to take place at the same moment
in time.

PD:=proc pi ‘( [Df]) =“["[DI'{ RTYITIPN

Di = vis'’t | cis': "t | cis': ?'t
| ext vis''t | Df', Dg

The declaratiowis: r denotes the declaration of variables of
typer; cis: !t andcis: ? denote the declaration of channels
cis of type ¢ used for sending or receiving, respectively;
andext vis: r declaresvis as external (shared) variables
of typet.

The declaration of variables and channels in a process
definition D has the following syntax. These variables and
channels are by definition local, and cannot be used outside
the process in which they are declared:

D= \c/ﬁ;nwf:is:‘f EzDC,] ,| Dcont vistr [[="c] Some of the atomic process terms,irare delay-able
| S ’ (sending and receiving), others are not delay-ablap( ,
Rumri‘>" PRV R assignments). By means of the delay process t&em a

process can be forced to delay for the amount of time units
specified by the value of numerical expressign A nabla
process term of the fori¥by,, whereby, represents a boolean
variable or a comparison of real-valued expressions using
or >, terminates by means of an internal actiohjfis true,
and blocks otherwise. By means of the maximal progress
operatorr, execution of actions can be given priority over
passage of time.

The disrupt operator{) is used for describing that
a process is allowed to take over execution from another

wherec is a constant expression; a recursion variable,
and R a recursive process definition, i.e. a partial function
from recursion variables to process terms. The declarations
var vis : ¢, cont vis : ¢, andchan cis : ¢ denote the
declaration of discrete variables, continuous variables, and
channels of type respectively. Optionally, variables can
be initialized at their declaratiori‘'&’ ¢]).
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