
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

A PORT ONTOLOGY FOR AUTOMATED MODEL COMPOSITION

Vei-Chung Liang

Institute for Complex Engineered Systems
Carnegie Mellon University

Pittsburgh, PA 15232, U.S.A.

 Christiaan J.J. Paredis

Systems Realization Laboratory
G.W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.

ABSTRACT

We study the concept of ports and we define an ontology
for representing them. Ports define the locations of interac-
tion at the boundaries of components or sub-systems; they
can be used across different disciplines for both product
modeling and simulation. They are therefore a convenient
abstraction that allows simulation modelers to modularize
and encapsulate their system descriptions such that con-
figurations of port-based product models can be used to
generate multiple simulation models at different levels of
abstraction. However, to combine system models effec-
tively across different disciplines, the representation of the
ports needs to be unambiguous yet flexible, so that it can
accommodate the differences in vocabulary and approach
of all the disciplines. We provide an overview of how a
port ontology, defined in the web ontology language,
OWL, can capture both syntactic and semantic information
such that automated modelers can reason about the system
configuration and corresponding simulation models.

1 PORTS FOR AUTOMATED
MODEL COMPOSITION

1.1 Ports

Ports constitute the interface that defines the boundary of
components or sub-systems in a system configuration. As
illustrated in Figure 1, a system can be represented as a
configuration of components or sub-systems that are con-
nected to each other through well-defined interfaces. The
configuration interface of a component object consists of
ports, which define the intended interaction between a
component and its environment; interactions consist of the
exchange of energy, matter, or signals (information). For
instance, the configuration interface of the motor in
Figure 1 has ports for the stator, the shaft of the rotor, and
the electrical connectors.

It is through its ports that a component (sub-system)
interacts with other components (sub-systems), as is indi-

Controller

Switch Ports = locations of
intended interactions

wipers

windshield

Windshield Wiper Example

Figure 1: A System Configuration of
Configuration Interfaces

cated in the graph by the connection between ports. The
fact that these interactions have been abstracted into ports
does not imply that only components with standardized
connectors can be defined in this fashion. When interfaces
are not completely standardized (e.g. a weld between two
structural elements), the interaction can still be abstracted
into one of a relatively small set of general interactions
types (e.g. a rigid mechanical connection).

1.2 Association Models

Let us now take a look at how the configuration interfaces
can be useful beyond just representing the system architec-
ture. Assume that each configuration interface is linked to
an association model that establishes the relationships be-
tween geometric, functional, and behavioral models, as is
illustrated in Figure 2. An association model may contain
multiple simulation models at different levels of detail or
from different disciplinary perspectives. For instance, a
solar panel on a satellite can be modeled as a source of
electrical energy, as flexible mechanical inertia, or both,
depending on the analysis for which the simulation will be
used. Regardless of the choice of model, however, the sys-
tem configuration (the location and type of connection be-
tween the solar panel and the rest of the satellite system)
remains the same.

Liang and Paredis

Shaft-Pulley
Interaction

Bolt_4

Component Configuration
M

od
el

s

AC
Motor

Wire_1
Wire_2

B
olt_1

Bolt_3
Bolt_2

Shaft
Port

Belt
Port

Stator Port

Rotor
Port

110V AC
Port

AC Motor

Stator PortC
on

fig
ur

at
io

n

Pulley

Pulley

Figure 2: An Association Model Contains a
Configuration Interface and Models with Dif-
ferent Product Perspectives

 In addition to simulation and geometry models, the in-
tegrated component representations or association models
also include the relationships between the configuration
interface and the models. The relationship between the
ports of the configuration interface and the ports in the be-
havioral interface is often, but not always, a one-to-one
mapping. For instance, the shaft of the AC motor corre-
sponds to a single mechanical energy port, but the AC plug
configuration port is modeled as two electrical ports, one
for each pin.

1.3 Model Composition

As a result of the mapping between configuration interfaces
and the corresponding simulation models, the definition of a
system architecture as a composition of component objects
allows us to create a composition of simulation models that
constitute the corresponding system-level model. As is
shown in Figure 2, the design configuration consisting of the
pulley mounted onto the motor shaft can be represented by
connecting the shaft port of the pulley to the rotor port of the
motor. The corresponding simulation model is obtained by
connecting the simulation models of the motor and pulley
through the corresponding ports. The ports in this scenario
play an important role of providing and specifying interac-
tion constraints between artifacts (shaft and pulley) and
among representations (configuration interfaces, simulation
models, and CAD models).

Through this mechanism, we could define a system (a
configuration of component objects) and automatically
compose the corresponding simulation model. This is al-
ready common practice in electrical CAD software (Mentor
Graphics 2000); when creating a chip layout, the instantia-
tion of a transistor or logic gate defines the geometry for the
silicon layers as well as the corresponding simulation model.
Similarly, Zeigler, Praehofer et al. (2000) has introduced a
modular, hierarchical, port-based representation for discrete
event simulation. These DEVS models can be associated
with entity structures in the System Entity Structure/Model
Base Framework, allowing for composition at the structural
level. In mechanical CAD, the integration between design
and simulation is not as common. For purely mechanical
systems, most mechanical CAD packages do provide an op-
tional module for multi-body simulation (Duckering 2000),
but these modules do not support port-based configuration
and lack sufficient support for multi-disciplinary systems.
Our research aims to extend these ideas to simulation-based
design of multidisciplinary systems.

To support automating the modeling and simulation
process, it is essential that the relationships between the
different aspects and perspectives of a component are rep-
resented explicitly. To determine which interaction models
and corresponding simulation models need to be used for
the simulation of a particular system, information is needed
beyond what is contained in the configuration interfaces
and simulation models themselves. This paper introduces
representations for ports that form the bridge between
component configuration and composition of the underly-
ing models. To support automating the composition proc-
ess, these representations need to be unambiguous, com-
puter interpretable, and sufficiently broad so that they can
provide access not only to configuration and simulation in-
formation, but also to function and form.

Our approach is based on semantically rich product
models that include not only simulation models, but also
function and geometry models. The approach takes advan-
tage of recent developments in Information Technology,
including semantic data formats, ontologies, and knowl-
edge repositories. This is part of a general trend to move
from data-centric to knowledge-centric representations, a
trend that has been the focus of several ongoing research
efforts related to engineering design (Eastman and
Fereshetian 1994; Wood and Agogino 1996; Counsell, Por-
ter et al. 1999; Susca, Mandorli et al. 2000; Szykman,
Sriram et al. 2000), but could also benefit the simulation
area. A good overview is provided in (Benson and Ter-
penny 2001). Unfortunately, the representation of ports
has received little or no attention in this context.

2 WHY A PORT ONTOLOGY?

In order for product models to be useful for knowledge
representation, the information encoded in product models
needs to be unambiguously understood by all analysts, in-
dependent of their perspectives, physical locations, and
times. Ambiguity may arise when multiple terms are used
to mean the same thing, or when one term is used with
multiple meanings. For example, a design concept may
have multiple descriptions: a hinge can also be called a ro-
tary joint or a groove can also be called a notch.

There are two general approaches to support unambigu-
ous computable representations: labels and metadata. Giving
a port a unique label or a name is a common implementation

Liang and Paredis

in computer aided design applications. The benefit of using
labels is that it is easy to create by designers. However, the
label approach requires extra effort to effectively sort and
retrieve synonyms and maintain relations among the same
terms used for different design concepts.

On the other hand, the metadata approach assigns
primitive and compound attributes to the terms used to de-
fine concepts. For example, a hinge can be defined as a
connection that cannot resist the external moment around
the hinge axis. If a rotary joint is defined with the same de-
gree of freedom attribute, then a computer application or
engineer can infer that a hinge is also a rotary joint. The
metadata approach is superior to the label approach since it
compares not only the syntax but also the semantics.

However, the implementation of the metadata ap-
proach is not straightforward. The definition language must
have the capability to define not only the syntax produc-
tions but also the semantic rules for the design concepts.
Defining a port taxonomy in the Extensible Markup Lan-
guage (XML) (Bray, Paoli et al. 2000) has been proposed
by Sinha, Paredis et al. (2001). XML is similar to the Hy-
pertext Markup Language (HTML), but allows user-
defined tags and various types of references. Its simplicity
and flexibility has led to widespread adoption in the Infor-
mation Technology world. While it provides an important
solution for making Internet information computer inter-
pretable, XML by itself has a limited expressiveness for
describing the relationships (schemas or semantics) be-
tween concepts. XML regulates only syntactic and struc-
tural relationships among tags. Most of the semantics of
the tags (other than “has-a” and “one-of” relations) have to
be hard coded within the parsing modules of the applica-
tions. It would be good if one could incorporate the seman-
tics in the representation itself. Our approach for providing
such representations is based on ontologies. An ontology
can be informally defined as a description of concepts and
relationships that are used in a specific knowledge domain.

3 RELATED WORK ON ONTOLOGIES

Ontology representations convey and encapsulate both syn-
tax and semantics, allowing computer programs to share,
exchange, extend, reuse and translate information. The
representations can be based on either frame-based logic or
description logic (Fensel 2000). In the frame-based lan-
guage, Ontolingua (Farquhar, Fikes et al. 1997), the
knowledge domain is described using frames and slots. On
the other hand, the description logic languages provide de-
clarative statements to describe the relations between con-
cepts and relations. These statements are collected and
processed later by the reasoner to create a complete termi-
nology network. Representative description logic systems
includes CLASSIC (Borgida, Brachman et al. 1989), FaCT
(Horrocks 1998), and RACER (Haarslev and Moller 2001).
Two ontology languages, the DARPA Agent Markup
Language (DAML) (Hendler and McGuinness 2000) and
DAML+OIL (Ontology Inference Layer) (Fensel, Hor-
rocks et al. 2001; Fensel, van Harmelen et al. 2003) have
recently been merged and extended into the Web Ontology
Language (OWL) as a W3C working draft (Dean, Con-
nolly et al. 2002). Both frame-based logic and description
logic reasoners can be used to handle OWL.

So far, these languages have been used to build on-
tologies mostly in the areas of computer science and social
sciences. We propose to study the applicability of these on-
tology tools for product representations in the context of
system simulation and design. Our work will focus on the
representation of engineering ports, which has not yet been
addressed in the ontology literature. A few other research
efforts are underway towards ontologies: the PHYSSYS
engineering ontologies for engineering modeling, simula-
tion and design (Borst, Akkermans et al. 1997), the Col-
laborative Device Modeling Environment (CDME) devel-
oped by Iwasaki, Farquhar et al. (1997), a LEGO assembly
ontology (Kopena, Peysakhov et al. 2002), and taxonomies
for function representations (Szykman, Racz et al. 1999;
Stone and Wood 2000; Hirtz, Stone et al. 2001).

4 OWL CLASSES AND PROPERTIES

In this section, we explain the principles and OWL con-
structs needed to design and define the port ontology. For
a more in-depth overview of the OWL language, refer to
(Dean, Connolly et al. 2002).

Ontologies in OWL consist of concepts and relations.
The concepts of the knowledge domain are defined as
OWL classes, while the relations are defined as properties.
For instance, a generic port is defined by the OWL class
expression:

<owl:Class rdf:ID=“port”/>

Several other OWL constructs are provided to define

necessary and/or sufficient axioms for a class. For instance,
we can define a LEGO-port subclass using the “subClas-
sOf” axiom:

<owl:Class rdf:ID=“LEGO-port”>
 <rdfs:subClassOf rdf:resource=“#port”/>
</owl:Class>

Similarly, the “equivalentClass” and “unionOf” axi-

oms can be used to express that a LEGO-male-port is the
union of a stud port and a pin port:

<owl:Class rdf:ID=“LEGO-male-port”>
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf df:parseType=“Collection”>
 <owl:Class rdf:ID=“#LEGO-stud-port”/>
 <owl:Class rdf:ID=“#LEGO-pin-port”/>

Liang and Paredis

 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID=“LEGO-stud-port”>
 <rdfs:subClassOf
 rdf:resource=“#LEGO-male-port”/>
</owl:Class>

A third way to describe a class uses the “disjointWith”

axiom to disallow, for instance, a port instance to belong
to both the pin and stud classes simultaneously:

<owl:Class rdf:ID=“LEGO-pin-port”>
 <rdfs:subClassOf
 rdf:resource=“#LEGO-male-port”/>
 <owl:disjointWith
 rdf:resource=“#LEGO-stud-port”/>
</owl:Class>

Once the classes are defined, the corresponding port

instances are instantiated as follows:

<LEGO-stud-port rdf:ID=“stport1”/>
<LEGO-pin-port rdf:ID=“pinport2”/>

In addition to concepts defined as classes, OWL in-

cludes properties that describe relationships between con-
cepts. One can think of properties as directed links between
concept nodes. The starting node is the domain element;
the ending node is the range element. For instance, a port
(domain) may be related to a feature (range) through the
property “hasFeature.”

There are two types of properties: object properties
and datatype properties. For object properties, the range
element is an instance of a class, while for datatype proper-
ties, the range element is a primitive data type such as a
byte, date, or number:

<owl:ObjectProperty
rdf:ID=“hasFeature”/>
<owl:DataTypeProperty
rdf:ID=“ManufactureDate”/>

To impose constraints on the types of classes that can

be related by a particular property, one can use the “do-
main” and “range” constructs:

<owl:ObjectProperty rdf:ID=“hasFeature”>
 <rdfs:domain rdf:resource=“#port” />
 <rdfs:range rdf:resource=“#feature” />
</owl:FunctionalProperty>
<owl:DatatypeProperty
 rdf:about=“#manufacturDate”>
 <rdfs:domain rdf:resource=“#artifact”/>
 <rdf:range rdf:resource=“&xsd;dateTime”/>
</owl:DatatypeProperty>

In this example, we specify that the range element of

the Datatype property, “manufactureDate,” is the XML
schema “dateTime” type. Once we add these constraints,
the “hasFeature” property can only relate features to ports,
while the “manufactureDate” property is limited to relating
“dateTime” instances to artifacts.

Similar to the “subClassOf” axiom, OWL also pro-
vides the “subPropertOf” axiom. For example:

<owl:ObjectProperty
 rdf:about=“conveyMechanicalEnergy”>
 <rdfs:subPropertyOf
 rdf:resource=“#conveyEnergy”/>
 <rdfs:domain rdf:resource=“#port”/>
 <rdfs:range rdf:resource=“#mechanical”/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about=“conveyEnergy”>
 <rdfs:domain rdf:resource=“#port”/>
 <rdfs:range rdf:resource=“#energy”/>
</owl:ObjectProperty>

Here we define the “conveyMechanicalEnergy” prop-

erty as a sub-property of “conveyEnergy”. This states that
any port conveying mechanical energy can be treated as a
port conveying energy. If we want to search for all the
ports conveying energy, then the inference engine will re-
turn all the port instances that have relations with either
energy or mecahnical energy.

OWL also provides the “inverseOf “ axiom that allows
instances to be associated with each other. For example:

<owl:ObjectProperty rdf:ID=“hasArtifact”>
 <owl:inverseOf
 rdf:resource=“#hasInterface”/>
</owl:ObjectProperty>

When a “hasArtifact” property individual <interface1,

artifact1> is instantiated, a reversed instance pair <arti-
fact1, interface1> will also be instantiated and added as a
property individual of the “hasInterface” property.

To improve the readability of the ontology statements,
we will henceforth use a graphical representation rather
than OWL statements, as shown in Figure 3, where nodes
represent classes or individuals and directed labeled links
represent properties.

Interface1Artifact1

hasArtifact

hasInterface
Figure 3: The Graphical Representation of OWL State-
ments

5 DESIGN AND DEFINITION OF
THE PORT ONTOLOGY

As pointed out in the previous section, an ontology consists
of classes and properties. In the port ontology, the classes

Liang and Paredis

include the ports themselves as well as the attributes that
allow us to define the ports. These classes are a subset of
the artifact ontology, which can not only describe the inter-
face but also the internal characteristics of components and
sub-systems.

5.1 Attribute Classes

The attributes are lower-level concepts for defining ports.
We have divided the attributes into three main categories:
form, function and behavior. The form attributes describe
the structural, geometrical, topological, and part-whole in-
formation of an artifact. In this context, attributes are often
referred to as features. There exists already a large number
of concepts for defining form from which we can borrow
(ISO 1994). However, it is often useful to introduce new
form attribute classes for specific standardized port geome-
try. For example, rather than defining the detailed form
features of an RJ-45 connector every time one is used, one
could refer to the entire geometric specification for such a
connector with one label, for instance, RJ-45-male. In the
next section, we will use the same approach for standard-
ized LEGO features.

In addition to form, ports are defined by function at-
tributes. These attributes describe the intended use of the
port. Artifact functions have also been researched exten-
sively, and here also, we will leverage the concepts defined
by others (Hirtz, Stone et al. 2001). Since ports, by defini-
tion, refer to locations of intended interaction, the functions
that can apply to ports are limited to different types of in-
teraction, such as:

•
•
•

transfer (of energy, material, or signals)
connect (fasten or attach)
support (secure and position).

Finally, ports are characterized by behavioral attrib-
utes. Again due to limited range of functions that can be
performed by ports, their behavioral attributes are also lim-
ited to characterizations of energy flow, material flow, or
signal flow. For example, a port that is intended to estab-
lish a rigid connection with another port can be character-
ized by vectors for position and orientation combined with
vectors for forces and torques. For the definition of behav-
ioral attributes, we build on the Modelica simulation lan-
guage (Elmqvist and Mattsson 1997).

5.2 Port-Attribute Properties

The relationships between ports and attributes are ex-
pressed as properties in OWL. In general, the relationship
can be expressed as:

<owl:ObjectProperty
 rdf:about=“#has-attribute”>
 <rdfs:domain rdf:resource=“#port”/>
 <rdfs:range rdf:resource=“#attribute”/>
</owl:ObjectProperty>
However, it would be confusing to use the same OWL
property, “has-attribute,” to define the relationships be-
tween all possible ports and attributes. Instead, we use
OWL sub-properties to define specific categories of rela-
tionships such as has-function, has-form-feature, and has-
behavior-connection. The general “has-function” property
can then be used to refer to any function attribute or its
sub-classes, for instance, either “transfer”, “transfer-
energy”, or “transfer-signal” (Figure 4). We define the
“transfer” function as a subclass of the function attribute
with two child classes: transfer-signal and transfer-energy.
In addition to these general properties, more specific prop-
erties are defined if the restrictions for a particular relation-
ship are different. OWL allows both restrictions on the
cardinality and the value of a property.

attributeport
has-attribute

transfer

transfer-signal

subClassOf

form-featureport
has-form-feature

functionport
has-funciton

transfer-energy

subClassOf

subClassOf

subPropertyOf

subPropertyOf

Figure 4: Partial Port-Attribute Properties and Attribute
Hierarchy

5.3 Port Classes and Hierarchies

Once the attributes for form, function, and behavior are de-
fined, they can be used to describe all the ports. As with
attributes, ports can be defined at different levels of detail,
in a hierarchical fashion. Although one could describe this
hierarchy explicitly using the “subClassOf” property, such
a representation has the disadvantage that it duplicates the
information that is already captured in the attributes.
Through a process of subsumption, one can consider Class
A to be the child of Class B if A contains all the attributes
of B and possibly more. When adding attributes to a port
class, the class definition becomes more detailed resulting
in a child class. Through the process of subsumption, it is
possible to derive the inheritance relationships from the at-
tributes of the port classes without having to specify the
parent-child relationships explicitly.

Liang and Paredis

6 LEGO PORTS: AN EXAMPLE

LEGO Ports are standardized with fixed dimensions and
compatible shapes. We have identified 24 common ports
some of which are illustrated in Figure 5. The circled areas
are the ports on the LEGO parts: (a) rail-port, (b) stud-port,
(c) circular-hole-port, (d) TECHNIC-stud-port, (e)
TECHNIC-tube-port, (f) axle-hole-port, (g) channel-port,
(h) tube-port, (i) friction-pin-port, and (j) axle-port. Most of
them can be connected to each other by snapping together
male and female ports. For example, studs (male ports) at
the top of a LEGO brick snap into tubes (female ports) at the
bottom of another LEGO brick. Some LEGO ports are com-
patible with multiple other ports. For example, a cross-
shaped shaft can fit into a cross-shaped hole, but can also fit
into a circular hole with the same circumscribed radius.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 5: LEGO-Ports

As pointed out earlier, one could represent the hierar-

chy of ports explicitly starting with a top-level generic port
class from which every port class inherits, as is shown in
Figure 6. One could further refine this top-level LEGO-
port into a snapping-port and two disjoint subclasses, male-
port and female-port, followed by a geometric and func-
tional classifications (pin-ports with or without friction).
However, without also defining the attributes of each of
these ports, such an explicit hierarchy is of limited use. By
considering the attributes, one can, through subsumption,
create many different taxonomies based on the order in
which the attributes are considered. For instance, compare
Figure 6 and Figure 7, in which each classifier contains the
unique set of form-feature attributes, which group ports
with similar features together.

7 USE OF THE PORT ONTOLOGY

In this section, we demonstrate the usage of the LEGO port
ontology. We assume that the target users will be system
designers who want to integrate a set of product models
(subsystems). They integrate the subsystems at the product
model level instead of at the behavior model level in order
to make sure that the system satisfies not only behavior
constraints but also function or form constraints. The port

Circular Shape

stud-port

axle-port

cross-hole-port

wired-stud-port

wired-tube-port

LEGO port

ball-port

pin-port

channel-port

rail-port

Cross-shape

Tube-shape

tube-port

friction-pin-port

non-friction-pin-port

Stud-shape

Ball-shape

Rectangular-shape

Figure 6: A Different LEGO Port Taxonomy Obtained
by Using the Subsumption Mechanism

snapping port

stud-port

axle-port

cross-hole-port

wired-stud-port

wired-tube-port

LEGO port

pin-port

hole-port

male-port

female-port

circular-hole-port
tube-port

friction-pin-port

non-friction-pin-port

TECHNIC-tube-port

TECHNIC-stud-port

Figure 7: A Partial View of One of Many Possible LEGO-
port Taxonomies

ontology is used in a design environment to represent the
ports of the product model and to constrain the connections
between ports. The first example shows how one can use
the port ontology to represent and verify compatibility be-
tween the ports in a connection. The second example illus-
trates how one can reason with port ontologies to select in-
teraction models automatically. Both compatibility
checking and interaction model selection are prerequisites
for automated model composition.

Please, note that this is ongoing work. The ideas pre-
sented here are our vision of how the field of simulation
can benefit from semantically-rich port representations.

Liang and Paredis

7.1 Port Compatibility in Connections

A system can be defined as a configuration of components
by connecting the components at their ports. However, to be
connected two ports need to be compatible: a 110V plug
does not fit in a 220V outlet, or a square plug does not fit a
round hole. In this section, we illustrate how a port ontology
can be used to define general rules for port compatibility.

The port ontology that we have defined so far does not
include the concept of compatibility. One could include a
property “is-compatible-with” to identify the port types
that are compatible with each other. In Figure 8, for in-
stance, we define the compatibility for a circular-hole-port
in LEGO. The rule explicitly specifies that only the axle-
port and pin-port can connect to the circular-hole-port.

LEGO-circular-hole-port
is-compatible-with LEGO-axle-port

LEGO-pin-port

unionOf

Figure 8: A Compatibility Rule for Circular-Hole-Ports

This compatibility rule is solely based on port names.

The disadvantage of using only port names is that when a
new port class is added to the port ontology, many com-
patibility rules also need to be updated. Even adding a port
with the exact same usage but a different name will require
updating the compatibility rules.

A more general approach is to use attributes to de-
scribe the compatibility constraints. A circular-hole-port
can be connect to all ports with certain geometric features.
One could express this rule using low-level geometric con-
straints on the type and dimensions of port features. How-
ever, in the case of LEGO, with its standardized port ge-
ometry, we can use the names of form-attributes instead.

In Figure 9(a), we restate the compatibility of the cir-
cular-hole-port in terms of form-attributes. Figure 9(b) list
several ports that satisfy the compatibility constraint. The
unlabeled classes in Figure 9(a) are called anonymous
classes; they match any class for which the specified prop-
erties hold. When adding a new port type such as a
LEGO-TECHNIC-pin-port, we only need to specify that it
has a LEGO-pin-shape form-feature to define its compati-
bility properties. Compatibility checking occurs when two
product models are connected. The OWL description of the
ports can be processed by the description logic reasoner.
The reasoner will verify that all the attributes of the two
ports satisfy the compatibility requirements specified in the
port ontology. Consider the example in Figure 9. In a de-
scription logic reasoner, the port definitions and compati-
bility rules are stored in the T-box (Donini, Lenzerini, et al.
1996). The T-box is a collection of axioms describing the
true conditions of the port connection domain. When a port
connection is established, the system queries the reasoner
to verify that the connected port instances satisfy all the
axioms in the T-box. For example, the axiom in Figure 9

LEGO-circular-hole-port

is-compatible-with

LEGO-axle-shapeLEGO-pin-shape

unionOf

has-form-feature

LEGO-pin-port

LEGO-pin-shape

has-form-feature

LEGO-TECHINC-pin-port

LEGO-pin-shape

has-form-feature

LEGO-axle-port

LEGO-axle-shape

has-form-feature

(a) (b)
Figure 9: (a) A Circular-Hole-Port Compatibility Rule and
(b) Three Possibly Satisfied LEGO Ports

expresses that to connect to a LEGO-circular-hole-port, a
LEGO port must have either a pin-shape or an axle-shape
form attribute. Note that this compatibility checking is dif-
ferent from Ptolemy II (Liu 2001), which enforces
compatibility at the behavior model level; ours enforces it
at the product model level.

7.2 Selecting Interaction Models

Ports allow an analyst to define a particular system as a
graph of components or sub-systems connected through
their ports. When generating a corresponding simulation
model for such a component configuration, one needs to
consider not only the simulation models for the individual
components but also the models that capture the dynamics
at the interaction points—the interaction models. For in-
stance, the behavior of a system consisting of a car driving
over a road is determined not only by the behavior of the
car and the road individually, but also by the interaction
model between the tires and the road (i.e. contact friction).

Often the component interaction models are trivial and
correspond to Kirchhoff’s voltage and current laws. For
instance, most electrical connections can be modeled suffi-
ciently accurately by setting the voltages equal
(Kirchhoff’s voltage law) and making the currents add up
to zero (Kirchhoff’s current law). Similarly, a rigid me-
chanical connection can be modeled by setting the veloci-
ties of the components equal and making the forces/torques
add up to zero. In most object-oriented modeling lan-
guages, these trivial interaction models correspond to the
default port-connections and can therefore be omitted
(Mattsson and Elmqvist 1998). However, in general an al-
gebraic or differential algebraic model or even a partial dif-
ferential equation model is needed to describe the physical
phenomena taking place at the point of interaction.

Unlike component models, interaction models have
the property that their parameters cannot be encapsulated.
The models of components depend only on parameters of
the component itself (geometry, material properties, etc.)
but do not depend on any parameters of other components

Liang and Paredis

or systems—all the parameter relationships are internal to
the component object. Component interaction models, on
the other hand, are not tied directly to a physical instantia-
tion from which its parameters can be derived. Instead, the
simulation parameters depend on the physical properties of
the two interacting components. These components may
be different for each instantiation of the interaction model.
For example, a tire component has certain dynamic proper-
ties that depend on the physical parameters of the tire and
the tire only (size, type of rubber, pressure, etc.) However,
when this tire interacts with the road, the interaction model
(friction) depends on the physical parameters of both the
tire and the road surface.

To automate the process of instantiating interaction
models, we somehow need to determine first which set of
parametric models is appropriate for modeling a certain in-
teraction. To establish a this association with an interac-
tion model, we introduce a connection class.

A connection class defines which ports are connected,
the type of the connections, and the possible simulation
models that can be used for modeling such a connection. For
instance, Figure 10 illustrates the definition of a revolute
connection between a circular-hole-port and an axle-port.
The connection specifies the interaction model that can be
used to describe the revolute behavior. Note that this con-
nection class is different from the circular-hole compatibility
rule. The compatibility rule specifies whether the ports are
compatible, while the connection class relates the port con-
nection to the applicable simulation models for the interac-
tion. The Modelica model class in Figure 10 associates the
connection class with the underlying behavior model. The
query and retrieval of interaction models from a model re-
pository are still part of our ongoing research.

revolute

connection

LEGO-circular-hole-port LEGO-axle-port

connectTo

is-compatible-with

type

revolute-interaction

useModel

MODELICA models

referenceTo

Figure 10: Definition of Revolute Connection Class and
Possible Simulation Models

8 SUMMARY

This paper investigated the concept of ports as useful ab-
stractions for system configuration and simulation. To
take full advantage of ports, we introduced an ontology
that can specify in an unambiguous, computer-interpretable
fashion the attributes of and relationships between ports.
The attributes are divided into three major categories:
form, function, and behavior attributes. By combining
these attributes in integrated port representations, one can
represent and store diverse knowledge about ports in a
knowledge base. This knowledge can then be used to rea-
son about port connections and the corresponding simula-
tion models. We illustrated this with examples for port
compatibility checking and interaction model selection.
This concludes our preliminary investigation of explicitly
representing port concept for system configuration and
simulation. The goal of our current research is to extend
this work towards the automated composition of simulation
models from port-based system configurations.

ACKNOWLEDGMENTS

This research was funded in part by the Pennsylvania In-
frastructure Technology Alliance and by Bombardier
Transportation Systems. Additional support was provided
by the Institute for Complex Engineered Systems at Carne-
gie Mellon University, and the G.W. Woodruff School of
Mechanical Engineering at Georgia Tech.

REFERENCES

Benson, M. and J. P. Terpenny 2001. A Survey of Methods
and Approaches to Knowledge Management in the
Product Development Environment. 21st ASME Inter-
national Computers and Information in Engineering
Conference (CIE), Pittsburgh, ASME.

Borgida, A., R. J. Brachman and D. L. McGuinness 1989.
CLASSIC: A structural Data Model for Objects. ACM
SIGMOD International Conference on Management of
Data, Portland, Oregon.

Borst, P., H. Akkermans and J. Top 1997. Engineering On-
tologies. International Journal of Human-Computer
Studies 46: 365-406.

Bray, T., J. Paoli, C. M. Sperberg-McQueen, et al. 2000. Ex-
tensible Markup Language (XML) 1.0 second edition.
World Wide Web Consortium. <http://www.w3.org/
TR/REC-xml>

Counsell, J., I. Porter, D. Dawson, et al. 1999. Scheme-
builder: Computer Aided Knowledge Based Design of
Mechatronic Systems. Assembly Automation 19(2):
129-144.

Dean, M., D. Connolly, F. van Harmelen, et al. 2002. Web
Ontology Language (OWL) Reference Version 1.0.
W3C. <http://www.w3.org/TR/2002/owl-ref/>

Donini, F. M., M. Lenzerini, D. Nardi, et al. 1996. Reason-
ing in Description Logics, Principles of Knowledge
Representation. G. Brewka. Stanford, CA, CSLI Pub-
lications: 191-236.

Duckering, B. C. 2000. Behavioral Modeling Technology:
Leveraging Engineering Knowledge in CAD Models.
The Fourth IFIP Working Group 52 Workshop on

http://www.w3.org/TR/2002/owl-ref/
http://www.w3.org/TR/2002/owl-ref/

Liang and Paredis

Knowledge Intensive CAD (KIC-4),U. Cugini and M.
Wozny, Parma, Italy.

Eastman, C. M. and N. Fereshetian 1994. Information
Models for Use in Product Design: A Comparison.
Computer Aided Design 26(7): 551-572.

Elmqvist, H. and S. E. Mattsson 1997. An introduction to
the physical modeling language Modelica. European
Simulation Symposium, Passau, Germany, Society for
Computer Simulation.

Farquhar, A., R. Fikes and J. Rice 1997. The Ontolingua
Server: A tool for collaborative ontology Construction.
International Journal of Human-Computer Studies 46:
707-728.

Fensel, D. 2000. Ontologies: silver bullet for knowledge
management and electronic commerce Berlin:
Springer-Verlag.

Fensel, D., I. Horrocks, F. van Harmelen, et al. 2001. OIL:
An Ontology Infrastructure for the Semantic Web.
IEEE Intelligent Systems 16(2): 38-45.

Fensel, D., F. van Harmelen and I. Horrocks (2003). OIL
and DAML+OIL: Ontology Languages for the Seman-
tic Web. Towards the Semantic Web: Ontology-Driven
Knowledge Management. J. Davies, D. Fensel and F.
van Harmelen. Hoboken, NJ, John Wiley & Sons: 5-28.

Haarslev, V. and R. Moller 2001. Description of the
RACER system and its applications. 2001 Interna-
tional Description Logic Workshop (DL2001),D. L.
M. Carole A. Goble, Ralf Möler Peter F. Patel-
Schneider, Stanford, CA.

Hendler, J. and D. L. McGuinness 2000. The DARPA
Agent Markup Language. IEEE Intelligent Systems
15(6): 67-73.

Hirtz, J., R. B. Stone, S. Szykman, et al. 2001. A Func-
tional Basis for Engineering Design: Reconciling and
Evolving Previous Efforts. Research in Engineering
Design 13(2): 65-82.

Horrocks, I. 1998. Using an expressive description logic:
FaCT or fiction? Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Sixth Interna-
tional Conference (KR’98),A. G. Cohn, L. Schubert
and S. C. Shapiro, San Francisco, CA, Morgan Kauf-
mann Publishers.

ISO 1994. 10303 Industrial Automation Systems and Inte-
gration - Product Data Representation and Exchange.
International Organization for Standardization.
<www.iso.ch/cate/cat.html>

Iwasaki, Y., A. Farquhar, R. Fikes, et al. 1997. A Web-
Based Compositional Modeling System for Sharing of
Physical Knowledge. KSL-98-17, Stanford, California,
Stanford University.

Kopena, J., M. D. Peysakhov and W. C. Regli 2002. Ex-
tensible Semantics for Representing Electromechani-
cal Assemblies. Philadelphia, PA, Drexel University,
Department of Mathematics and Computer Science.
Liu, J. 2001. Responsible Frameworks for Heterogeneous
Modeling and Design of Embedded Systems. Ph.D.
Thesis, Electrical Engineering and Computer Science,
Berkeley, California, University of California at
Berkeley.

Mattsson, S. E. and H. Elmqvist 1998. An overview of the
modeling language Modelica. Eurosim ‘98 Simulation
congress, Helsinki, Finland.

Mentor Graphics 2000. IC-Design Suite. Wilsonville, OR,
Mentor Graphics.

Sinha, R., C. J. J. Paredis and P. K. Khosla 2001. Interac-
tion modeling in configuration design. 2001 ASME
Design Engineering Technical conferences, Pitts-
burgh, PA, ASME.

Stone, R. B. and K. L. Wood 2000. Development of a
Functional basis for design. Journal of Mechanical
Design 122(4): 359-370.

Susca, L., F. Mandorli, C. Rizzi, et al. 2000. Racing Car
Design Using Knowledge Aided Engineering. Artifi-
cial Intelligence for Engineering Design, Analysis and
Manufacturing (AI EDAM) 14: 235-249.

Szykman, S., J. W. Racz and R. D. Sriram 1999. The Rep-
resentation of Function in Computer-Based Design.
1999 ASME Design Engineering Technical Confer-
ences - Design Theory and Methodology, Las Vegas,
Nevada, ASME.

Szykman, S., R. D. Sriram, C. Bochenek, et al. 2000. De-
sign Repositories: Engineering Design’s New Knowl-
edge Base. IEEE Intelligent Systems 15(3): 48-55.

Wood, W. H. and A. M. Agogino 1996. A Case-based con-
ceptual design information server for concurrent engi-
neering. Computer-Aided Design 28(5): 361-369.

Zeigler, B. P., H. Praehofer and T. G. Kim 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. 2nd. Aca-
demic Press.

AUTHOR BIOGRAPHIES

VEI-CHUNG LIANG is a Ph.D. Candidate in the De-
partment of Civil and Environmental Engineering at Car-
negie Mellon University. In 1992, He graduated from Na-
tional Central University, Taiwan. He received his M.S. in
Structural Engineering from Stanford University in 1996
and went to Carnegie Mellon University where, in 1998, he
received his M.S. in Computer Aided Engineering. His re-
search interests include computer aided engineering and
design, knowledge management in engineering, simula-
tion-based design, and system engineering. <vliang@
cs.cmu.edu>.

CHRISTIAAN J. J. PAREDIS is currently an Assistant
Professor in the School of Mechanical Engineering at
Georgia Tech. He received the M.S. in Mechanical Engi-
neering from the Catholic University of Leuven (Belgium)

http://ww.iso.ch/cate/cat.html>
mailto:<vliang@�cs.cmu.edu>
mailto:<vliang@�cs.cmu.edu>
http://www.iso.ch/cate/cat.html
mailto:vliang@cs.cmu.edu
mailto:vliang@cs.cmu.edu

Liang and Paredis

in 1988, and the M.S. and Ph.D. in Electrical and Com-
puter Engineering from Carnegie Mellon University in
1990 and 1996 respectively. Until 2002 he was research
faculty at the Institute for Complex Engineered Systems at
Carnegie Mellon University. Dr. Paredis has a broad mul-
tidisciplinary background. His research combines aspects
of information technology, simulation, and modularity to
support the design of mechatronic systems. The goal of his
current research is to develop an integrated IT framework
for product development that encompasses both representa-
tions and tools across the different design activities, from
requirements definition and synthesis, to analysis, interpre-
tation, and visualization. He is also still active in the ro-
botics areas in which he did his Ph.D. research.
<chris.paredis@me.gatech.edu>.

mailto:<chris.paredis@me.gatech.edu>
mailto:chris.paredis@me.gatech.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 613
	02: 614
	03: 615
	04: 616
	05: 617
	06: 618
	07: 619
	08: 620
	09: 621
	10: 622

