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ABSTRACT

We present ComputerAutomated Multi-Paradigm Modellin
(CAMPaM) (Mosterman and Vangheluwe 2002) for Mode
Driven Development based on Meta-Modelling and Gra
Transformation. The syntax of a class of models of intere
is graphically meta-modelled in an appropriate formalis
such as Entity-Relationship Diagrams. From this descr
tion of abstract syntax, augmented with concrete (visu
syntax information, an interactive, visual modelling env
ronment is automatically generated. As the abstract syn
of models, irrespective of the formalism they are describ
in, is graph-like, graph rewriting can be used to perfor
model transformation. Graph Grammar models thus allo
for model transformation specification. The Graph Gramm
formalism can be meta-modelled in its own right and henc
visual environment for manipulating transformation mode
can also be automatically generated. Graph rewriting p
vides a rigourous basis for specifying and analyzing mod
transformations such as simplification, simulation, and co
generation. In this article, we introduce AToM3, A Tool
for Multi-formalism and Meta-Modelling. We present th
meta-modelling and graph transformation concepts throu
a simple reactive system example: a Timed Automata mo
of a traffic light. Meta-modelling Timed Automata, gen
erating the visual modelling environment, and modellin
transformations as graph grammers, as well as execu
them, are all performed in the AToM3 environment. The
model transformations include simulation, transformatio
into Timed Transition Petri Nets, and code generation.

1 INTRODUCTION

Computer Automated Multi-Paradigm Modelling (CAM
PaM) aims to simplify the modelling of complex system
by combining three different directions of research:

• Meta-Modelling, which is the process of modelling
formalisms.
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• Model Abstraction, concerned with the relationship
between models at different levels of abstractio

• Multi-Formalism modelling, concerned with the
coupling of and transformation between mode
described in different formalisms.

In the sequel, we will focus on meta-modelling and o
graph grammars to model transformations needed for mo
abstraction and multi-formalism modelling.

Meta-modelling can help in defining high abstractio
level notations. With meta-modelling, we can describ
using a high-level, graphical notation, the (possibly grap
ical) syntax of languages for particular needs (i.e., Dom
Specific Visual Languages). Such descriptions are ca
meta-models. Some languages – such as the UML –
rigourously defined through meta-modelling. But met
modelling the syntax of a language is only one side of
coin. One needs to formally specify the semantics o
language. For example, we may be interested in defin
a language’soperational semantics(how models described
in the language are going to be executed), itsdenotational
semantics(defining a mapping onto another well-define
language; this may include code generation when mapp
onto a virtual machine), oroptimizing(reducing the com-
plexity without removing salient features) the models. A
models, meta-models and meta-metamodels can all be
scribed as attributed, typed graphs, in this paper we pre
a formal, graphical and high-level notation to specify mod
manipulations: graph grammars (Ehrig et al. 1999). In
graph grammar formalism, computations on models can
explicitly modelled.

We implemented these concepts in a tool called AToM3,
A Tool for Multi-formalism and Meta-Modelling. AToM3’s
design has been previously described in de Lara
Vangheluwe (2002a) and de Lara et al. (2002). We follo
the maximeverything is a model. That is, not only for-
malisms and computations are modelled explicitly, but a
composite types and the user interfaces of the gener
tools. The tool was bootstrapped from a small kernel w
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code-generating capabilities, and from models for vario
parts of AToM3.

In the rest of the paper, we will clarify the meta
modelling and graph transformation concepts through
example: (meta-)modelling theTimed Automataformal-
ism and defining different kinds of transformations, includ
ing simulation, transformation into Timed Transition Pet
Nets (Peterson 1981) for subsequent analysis, and c
generation for a particular application. We present a sm
traffic light example. The traffic light is initially in the
flashing yellow mode. A policeman interrupt brings th
system in the yellow (not flashing) mode. From there, t
system cycles through the modes red, green, and yell
Upon entering each of these modes, the traffic light displa
the appropriate colour. The system stays in each of th
modes for 5, 20, and 35 seconds respectively. From e
of these modes, a policeman interrupt brings the syst
back in the flashing mode. In the green mode, a pedestr
interrupt will instantly bring the system in the yellow mod
(thus shortening the time a pedestrian needs to wait).
other modes ignore the pedestrian interrupt.

2 META-MODELLING

When modelling complex physical or logical systems it
desirable to use the most appropriate formalism to optima
describe different aspects or components of the system
this case, one has to solve the problem of building a
interconnecting a plethora of different tools, each one es
cially built for each formalism.Meta-Modellingalleviates
these problems. By means of meta-modelling one c
describe, usually using graphical, high-level modelling n
tations –meta-formalisms– such as UML class diagrams
Entity-Relationship Diagrams, the family of models one
interested in processing. This description of the forma
ism’s syntax is called ameta-model. Similarly, a model of
a meta-formalism is called ameta-meta-model, and a model
built using a formalism is simply called amodel.

To be able to fully specify modelling formalisms, th
meta-formalism may have to be extended with the ability
express constraints. For example, when modellingDeter-
ministic Finite state Automata, different transitions leaving
a given state must have distinct labels. This cannot be
pressed using Entity-Relationship Diagrams alone. Expre
ing constraints becomes possible by adding a constraint l
guage (usually with a textual syntax) to the meta-formalis
(usually with a graphical syntax). Some systems (Sz
panovits et al. 1995) use the Object Constraint Langua
OCL used in the UML. As AToM3 is implemented in the
scripting language Python, arbitrary Python code may a
be used.

The advantage of meta-modelling is that it dramatica
enhances the productivity in creating custom modelling e
vironments (domain-specific tools). On one hand, on
e
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the meta-model is defined, meta-modelling tools are ab
to automatically produce a modelling tool for the defined
formalism. On the other hand, once the meta-model
defined, it is easy to make small modifications to obtai
customized variations of the modelling formalism for spe
cific user groups.

As an example, we demonstrate how to build a meta
model for the Timed Automata formalism with AToM3. In
AToM3, the default meta-formalism is Entity-Relationship
Diagrams. To define the meta-model, one has to provid
abstract syntax (denoting entities of the formalism, the
attributes, relationships and constraints) as well as concre
graphical syntax (how the entities and relationships should b
rendered in a visual interactive tool, and possible graphic
constraints) information. Once the formalism is modelled
AToM3 generates Python code that can be loaded by th
AToM3 kernel. Then the tool accepts valid models accordin
to the compiled formalism definition. Using AToM3, the
effort to produce a customized visual modelling tool may
be reduced to just a few hours for typical formalisms.

The meta-model for Timed Automata is shown in the
upper-left window in Figure 1.

Note how a Timed Automata model is composed o
states (which have a name) and transitions between the
We have defined two kinds of transitions. We use the firs
kind (namedTATimedTransition) to specify a delay as the
only condition for state change. We use the second kin
(namedTATransition) to specify that a certain input must
be present for a state change to occur. This input mu
occurbeforethe minimum delay that triggers a state chang
has occurred. We have included an entity calledTACurrent
which points to the initial state by means of the relationshi
TAPointsTo. During the simulation of a model, this points to
the current state. This entity also has attributes which sto
the current simulation time and the last time a transitio
occurred. For simulation purposes, we include a sequen
of scheduled (input) events in the model. We represent th
input as a linked list ofTAinputentities, whose first element
is linked to theTACurrententity. Inputs are provided with a
value and a time stamp reflecting the time at which they a
scheduled to occur. The input with the special valueEnd
denotes the end of the list. A time stamp -1.0 inEnddenotes
plus infinity. Any non-negative time inEnd specifies when
to halt the simulation.

We also define the graphical appearance of these entit
and relationships, declare global attributes (such as the mo
name, author, input alphabet, etc.) as well as constrain
We must for example specify that exactly oneTACurrent
entity is allowed in a model and that each state has at mo
one outgoing timed transition.

AToM3 compiles the meta-model. After loading this
compiled meta-model, AToM3 only accepts syntactically
correct models in the Timed Automata formalism. The
right window in Figure 1 shows a model built using this
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Figure 1: Meta-Modelling Timed Automata with AToM3
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formalism. Note how the column of buttons on the le
has changed compared to ones that appear when the En
Relationship Diagrams formalism is loaded. The butto
available in the user interface are described in theButtons
formalism. This model is generated by AToM3 based on the
entities and relationships in a formalism’s meta-model. T
user may customize this model. In this example, we ha
modified the model, deleting buttons to create transitio
(as we can create them implicitly by connecting states) a
added some other buttons to execute graph grammar mo
on the current model (to simulate, transform into Petri Ne
and generate code). This is explained in the next sectio

3 GRAPH TRANSFORMATION

Thetransformationof models is a crucial element in model
based endeavours. As models, meta-models and meta-m
models are all in essence attributed, typed graphs, we
transform them by means of graph rewriting. The rewritin
is specified in the form of graph grammar (Ehrig et al. 199
models. These are a generalization, for graphs, of Chom
-

ls
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grammars. They are composed of rules. Each rule cons
of left hand side (LHS) and right hand side (RHS) graph
Rules are evaluated against an input graph, called the h
graph. If a matching is found between the LHS of a rule a
a sub-graph of the host graph, then the rule can be appl
When a rule is applied, the matching subgraph of the h
graph is replaced by the RHS of the rule. Rules can ha
applicability conditions, as well as actions to be performe
when the rule is applied. Some graph rewriting system
have control mechanisms to determine the order in whi
rules are checked. In AToM3, rules are ordered according
to a user-assigned priority, and are checked from high
to lower priority. After a rule matching and subsequen
application, the graph rewriting system starts the sear
again. The graph grammar execution ends when no m
matching rules are found.

We are interested in three kinds of transformations
our example model. The first is model execution (definin
the operational semantics of the formalism). The seco
is model transformation into another formalism (expressi
the semantics of models in one formalism by mapping onto
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known formalism). A special case of this is when the targe
formalism is textual. In this case it is possible to describe b
means of meta-modelling, theAbstract Syntax Graphof the
textual formalism (that is, the intermediary representation
used be compilers once they parse a program in text form
in such a way that models in textual formalisms can then b
processed as graphs. The third one is model optimizatio
for example reducing its complexity (maintaining pertinent
invariants however).

On one hand, graph grammars have some advantag
over specifying the computation to be done in the grap
using a traditional programming language. Graph gramma
are a natural, formal, visual, declarative and high-leve
representation of the computation. Computations are thu
specified by means of high-level models, expressed in th
graph grammar formalism. The theoretical foundations o
graph rewriting systems may assist in proving correctnes
and convergence properties of the transformation tool. O
the other hand, the use of graph grammars is constrained
efficiency. In the most general case, subgraph isomorphis
testing is NP-complete. However, the use of small subgraph
on the LHS of graph grammar rules, as well as using node an
edge types and attributes can greatly reduce the search spa
This is the case with the vast majority of formalisms we are
interested in. It is noted that a possible performance penal
is a small price to pay for explicit, reusable, easy to maintai
models of transformation. In cases where performance
a real bottleneck, graph grammars can still be used as
executable specification to be used as the starting point f
a manual implementation.

3.1 Simulating Timed Automata

As an example, Figure 2 shows a graph grammar whic
models a simulator for the Timed Automata formalism de
fined before. The grammar is composed of four rules. Th
first changes the current state due to a timed transition
the actual time plus the transition delay is less than the tim
at which the first event in the scheduled event list occurs
Note how nodes and connections in LHSs and RHSs a
identified by means of labels (numbers). If a number ap
pears on both the LHS and the RHS of a rule, the nod
or connection is retained when the rule is applied. If the
number appears only in the LHS, the node or connectio
is deleted when the rule is applied. Finally, if the numbe
appears only in the RHS, the node or connection is create
when the rule is applied. Node and connection attribute
in LHSs must be provided with attribute values which will
be compared with the node and connection attributes of th
host graph during the matching process. These attribut
can be set to<ANY>or have specific values.

In the first rule, we have set all the attributes of the node
and connections to<ANY>. In the RHS, we can specify
changed attribute values for the nodes that also appear
,
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the LHS. Obviously, we must specify the attribute value
of the newly created nodes or connections. In AToM3, we
can either copy the value of the attributes of the LHS (th
appears asCOPIED in the figure), specify a new value,
or associate arbitrary Python code to compute the attribu
value, possibly based on other nodes’ attributes. The seco
rule is similar to the first one, but handles the case wh
the timed transition departs from and arrives at the sam
state. The third rule deals with the case of transitions d
to input (and not due to a time delay). In this case, th
input is consumed (note how node 6 and connection 9
not appear in the RHS) and the current state is chang
The last rule is similar to the previous one, but deals wi
the case of a transition which departs from and arrives
the same state.

A snapshot of the simulation is shown in the sma
window of AToM3 pointed to by the arrowSimulationin
Figure 1. In Figure 3, a trace of a typical simulation i
shown in detail. The initial time is0.0 and the automaton
is in the flash state. The time-ordered list on the bot
tom right shows the scheduled inputs. At time5.0 , the
policeman interrupt event brings the automaton in th
yellow state. From now on, the system is in autonomou
mode and makes a transition to thered stateafter 5.0 ,
i.e., at time10.0 . After another20.0 , at time30.0 , the
automaton is brought in stategreen . The next autonomous
transition would occur35.00 later, but is pre-empted by
the externalpedestrian interrupt at time35.0 , bringing
the automaton in stateyellow at time35.0 . From there,
the autonomous behaviour (theyellow, red, green
cycle) resumes.

3.2 Transformation for Analysis

In the real-time application which will ultimately be gener
ated from our model, it is possible for the user to genera
at any time, any of the model’s possible input events. Th
is in contrast with the single specific list of scheduled inpu
events used for simulation. A symbolic analysis of mod
properties such as reachability of certain states may thus
useful. To get insight into those properties of our mode
we transform it into a Timed Transition Petri Nets. Th
transformation is again specified using a graph gramm
model. It converts states into places, with a token in th
initial state, input events into places, and transitions in
Petri Net transitions as described in Murata (1989). Th
transformation is a variant of the more general transform
tion of Statecharts into Petri Nets described in de Lara a
Vangheluwe (2002b). Once the model is transformed into
Timed Transition Petri Net, we can use the available ana
sis and simulation techniques (Peterson 1981), such as
ones based on the matrix of equations, structural properti
or the reachability graph. This last technique allows u
to investigate whether the system may deadlock, reache
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::=

::=

::=

::=

TA_MoveTimeTrans Priority 1

TA_MoveTimeTransSelf Priority 2

TA_MoveTrans Priority 3

TA_MoveTransSelf Priority 4

CONDITION: node(6).ArrivalTime >
           node(4).Time + node(3).Time

TIME += node(3).Time
Last Trans = TIME

CONDITION: node(5).ArrivalTime >
           node(3).Time + node(2).Time TIME += node(2).Time

Last Trans = TIME

CONDITION: node(6).Value == node(3).Value

CONDITION: node(5).Value == node(2).Value

TIME = node(6).ArrivalTime
Last Trans = TIME

TIME = node(5).ArrivalTime
Last Trans = TIME

Figure 2: A Graph Grammar Model of a Timed Automata Simulator
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Figure 3: A Simulation Trace
certain state or whether the number of tokens (which mig
represent resources in a system) remains bounded. T
generated Timed Transition Petri Net of the Traffic Ligh
in Figure 1 is shown in the small window in the lower lef
corner, pointed to by the arrowTransformation.

Graph grammars for formalism transformation are pa
ticularly useful for the modelling and analysis of comple
systems. Models of such systems consist of many comp
nents or views, possibly at different levels of abstractio
Due to the diversity of these models, we use different fo
malisms to describe each one of them. To analyse the en
system, one cannot look at properties of components
views in isolation, but the system should be understood a
whole. Therefore, inComputer Automated Multi-Paradigm
Modelling (Mosterman and Vangheluwe 2002, Vangheluw
et al. 2002) modelling and simulation, we have propose
to translate each component or view into a single comm
formalism for subsequent analysis and simulation. We ha
previously used these ideas to model, simulate and anal
complex physical as well as logical systems. In de La
et al. (2003a) and de Lara et al. (2003b), we focus on h
brid systems design; in Posse et al. (2002) and Mosterm
and Vangheluwe (2000), we focus on continuous models;
de Lara and Vangheluwe (2002c), AToM3 is used as a meta-
case tool; in de Lara and Vangheluwe (2002d) and Pos
and Bolduc (2003), the visual modelling and simulatio
environments for respectively the discrete-event modellin
formalisms GPSS and DEVS are constructed; and in de La
and Vangheluwe (2002b), the transformation of Statecha
onto behaviourally equivalent Petri Nets is described.

3.3 Code Generation

The State Automaton model of the traffic light behaviour i
Figure 1 is constructed at a suitably high abstraction lev
and in the appropriate formalism. It fosters understandin
maintenance, and reuse. Transformation to the Timed Tra
sition Petri Net formalism and subsequent analysis giv
insight into classes of behaviour and pertinent behaviou
features such as termination and deadlock. Simulation
the model gives detailed insight into the system’s rea
tive behaviour, given a specific initial state and series
input events. The ultimate goal of the modelling effor
remains however the production of reliable and efficie
executable code. Hence, a code generation transforma
produces Python code from the Timed Automata model. F
demonstration purposes (as opposed to production-code
be embedded in appropriate traffic light controller hard
ware), this Python code implements a GUI with buttons
let a user produce the events that may occur in the mod
policemanandpedestrian.

We have manually coded classes specifying the sta
setup of the GUI: the varous widgets (from the Tkinte
package) and their layout. It is noted that this part o
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the application would usually be modelled in UML Class
Diagrams or even more intuitively in a visual editor allowing
the user to interactively place widgets. In either case, the
framework only takes care of static aspects. This mus
be complemented with code generated from our Timed
Automata model of the system’s dynamics.

To match the Tkinter binding mechanism, generated
methods correspond toeventsraised by user clicks on the
policemanand pedestrianbuttons. Other approaches are
possible as described in Horrocks (1999). To simplify the
specification of widget methods to be invoked from the
state automaton, the latter has been augmented with ent
actions. In particular, entering a state will change the traffic
light’s colour in the appropriate canvas widget by calling
the hand-codedshow method.

The graph grammar modelling the code generation is
not presented here as it is trivial. Rather, the structure o
the generated code is given.

Each of the states found in the model is encoded as a
integer for efficiency reasons:

self.red=0
self.yellow=1
self.green=2
self.flash=3

We use Tkinter’s event-scheduling capabilities to schedule
the future invocation of thetimeout callback. The model
gives the system’s initial state. This allows us to set the
currentstate .

self.state=self.red
# entry action for initial state
self.show(self.state)
# schedule timeout from initial state
self.schedule()

Our model contains a list of scheduled input events.
This information will be ignored for code generation as
in the application, these events are externally generated b
the user. Theschedule method checks the current state
and uses Tkinter’safter to schedule the invocation of
the timeout method after the number of milliseconds
(specified in the model in seconds).

def schedule(self):
if (0):

pass
elif (self.state == self.red):

self.timeout_ref=self.after(20000, self.timeout)
elif (self.state == self.yellow):

self.timeout_ref=self.after(5000, self.timeout)
elif (self.state == self.green):

self.timeout_ref=self.after(35000, self.timeout)

The timeout method checks the old state, executes
the new state’s entry methodshow() , sets the current state
to the new state, and schedules the timeout event for th
new state. The new state is obviously found in the mode

def timeout(self):
if (0):

pass
elif (self.state == self.red):

self.show(self.green)
self.state=self.green
self.schedule()

elif (self.state == self.yellow):
self.show(self.red)
self.state=self.red
self.schedule()

...

Handling external interrupts such aspoliceman is
completely analogous.

def policeman(self):
if (0):

pass
elif (self.state == self.red):

self.show(self.flash)
self.state=self.flash
self.schedule()

elif (self.state == self.yellow):
self.show(self.flash)
self.state=self.flash
self.schedule()

...

The application generated from the model of the traffic
light is shown in the small window at the bottom of Figure 1,
pointed to by theCode Gen.arrow. The generated class
TrafficGUI was instantiated three times to demonstrate ho
the code is correctly encapsulated correctly implementin
three concurrent, independent traffic lights.

4 RELATED WORK

Several tools similar to AToM3 exist in the graph grammars
community. Examples are GenGed (Bardohl 2002) an
DiaGen (Minas 2002). In the latter, the user gives a textua
specification of the visual language and obtains a set of Ja
classes which are complemented by a Java library to obta
the visual environment. In AToM3, the specification of the
visual language (the meta-model) is done graphically, an
the generated files are loaded by the AToM3 kernel. There
is no structural difference between the generated edito
(which could be used to generate other ones), and the edi
which generated them. In fact, one of the main difference
of the approach taken in AToM3 with other similar tools
is the concept that (almost) everything in AToM3 has been
defined by a model (under the rules of some appropria
formalism) and can thus be modified by the user.

In the meta-modelling community, tools such as
DoME (Honeywell 1999) or MetaEdit+ (Phjonen and Tolva-
nen 2002) use a textual, low-level language (Alter in the cas
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of DoME) for the definition of the model manipulations. In
contrast, in our approach, the user can define transform
tions as models in the graph grammars formalism. Amo
other advantages (section 3), this frees the user from
need to know too many details of the internals of the too

With the growing importance of the OMG’s Model
Driven Architecture (MDA), tools such as Codagen’
(www.codagen.com ) Architect support the explicit sepa-
ration of Platform Independent Models (PIM) and Platform
Specific Models (PSM). The specification of code gene
ation explicitly describes mapping of UML models onto
code. This specification is reusable, though not a model
its own right.

5 CONCLUSIONS

In this paper, we have presented a framework for mod
based development founded on a combination of me
modelling and graph transformation. By means of met
modelling we graphically specify the syntax of models w
want to deal with. By means of graph transformation w
graphically and rigourously define the kinds of manipula
tions that we can apply to these models. These man
ulations typically include defining operational semantic
transformations into other formalisms, code generation a
optimization. Using graph transformation has the advanta
that computations are explicitely modelled. We have impl
mented these concepts in theMulti-Paradigm tool AToM3

following the everything is a modelphilosophy.
By example, we have shown the definition of the Time

Automata formalism and of model manipulations to simulat
transform into Petri Nets and generate code. This has b
applied to a simple model of a traffic light.

Summarizing, our approach to automating code ge
eration consists of three steps. The first is to define
appropriate visual language powerful enough to repres
the variability of the family of applications. The user
will use this formalism to model the application they wan
to produce. The second step is to code a framework
classes (implementing the parts of the application that do n
change) that will be complemented by the code genera
from the model of the application which the user graphical
specified. Finally, the third step requires the specificatio
of a code generator for the model. In our approach th
transformer too was explicitly modelled using the grap
grammar formalism.

In the future, we will enhance the flexibility of the tool,
by for example extending the scope of theButtonsformalism
in which models of the user interface are generated. T
automatically generated user interface models will be ab
to control more complex behaviours of the tool. We are al
working on the core of meta-modelling and generalizin
common aspects that can be applied to many formalism
Among others, these aspects include inheritance, hierar
-
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and ports. We are also improving the power of our grap
grammar engine allowing more complex pattern-matching
for example allowing negative application conditions an
matching of structural subtypes of the nodes in the LH
(which are found at run-time, that is, the subtyping doe
not need to be declared in the meta-model). Finally, w
are applying these concepts to the verification of UM
models, in the modelling and analysis of complex physic
systems and for educational purposes in several docto
and graduate courses on advanced modelling and simulat
based design.
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