
Proceedings of the 2003 Winter Simulation Conference 
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds. 
 
 
 

ROBUST HYBRID DESIGNS FOR REAL-TIME SIMULATION TRIALS 
 
 

Russell C.H. Cheng 
Owen D. Jones 

 
Faculty of Mathematical Studies 

University of Southampton 
Southampton, SO17 1BJ, U.K. 

   
   
ABSTRACT 

Real time simulation trials involve people and are particu-
larly subject to a number of natural constraints imposed by 
standard work patterns as well as to the vagaries of the 
availability of individuals and unscheduled upsets. They 
also typically involve many factors. Well thought-out 
simulation experimental design is therefore especially im-
portant if the resulting overall trial is to be efficient and ro-
bust. We propose hybrid experimental designs that com-
bine the safety of matched runs with the efficiency of 
fractional factorial designs. This article describes real ex-
periences in this area and the resulting approach and meth-
odology that has evolved from these and which has proved 
effective in practice. 

1 INTRODUCTION 

This paper describes the design of real-time simulation tri-
als and is based on work carried out for National Air Traf-
fic Services in the UK. Details of the specific work in-
volved and the trials themselves are subject to restrictions 
for reasons of confidentiality, however a number of issues 
arise of general interest. In particular, the design of simula-
tion experiments in this context was of special interest be-
cause it involved real-time simulation studies and the pres-
ence of human operators and controllers. The individual 
runs that together made up the trial as a whole therefore 
had to be arranged to fit within the constraints of normal 
working hours. Also, the overall trial had to be sufficiently 
robust to be able to absorb interruptions and the occasional, 
often random, non-availability of individuals. 

The two main examples, which we present below to il-
lustrate general issues of interest, are based loosely on real 
trials. They are thus reasonably realistic; but we have not 
presented actual data or discussed the real issues that their 
analysis led to. 

Here and in what follows we use the term trial  to mean 
the overall simulation exercise as a whole, and a run to mean 
an individual simulation run, usually made at a given set of 

  

prescribed levels of a number of factors expected to be im-
portant in affecting the outcome of the simulation. 

 

Indeed we will suppose that the objective of a trial is 
typically to study the influence of a number of factors on 
the behaviour of a complex system. The overall experiment 
has therefore to be efficiently planned to enable worth-
while information to be gathered from a relatively small 
number of runs. 

Below we describe the methodology that has evolved 
from the air traffic work, and illustrate its use in the de-
sign of two hypothetical trials, which nevertheless are 
based on real studies. The discussion centres on the gen-
eral design philosophy that was found to work well. Also 
of interest is the type of experimental design that has 
proved robust and flexible. 

This last aspect was especially important to the organis-
ers, as each trial was expensive and elaborate to set up both 
in time and financially. The organisers were therefore par-
ticularly keen to be assured at the outset that there was little 
chance of untoward eventualities seriously disrupting and 
possibly even ruining the usefulness of the trial as a whole. 

The general philosophy of simulation experimental de-
sign is well enunciated by Barton (2002) which draws on 
many earlier discussions including Kleijnen (1987), Barton 
(1999) and Sanchez (2000). More general discussions, but 
still in a simulation context appear in Banks (1998) and 
Law and Kelton (2000). 

The design of experiments in a general statistical con-
text, but where the discussion has a focus that is especially 
appropriate to our simulation viewpoint, can be found in 
McLean and Anderson (1984), Montgomery (1997) and 
Wu and Hamada (2000). 

We draw on the general ideas of the above references. 
Indeed we assume a basic knowledge of fractional factorial 
design in what follows. However our discussion has a 
much more specific focus. We shall discuss particular 
types of design that seem especially useful in the real-time 
simulation context. The background and rationale govern-
ing such designs are discussed in the next two Sections. 
We then describe two examples in particular detail to illus-



Cheng and Jones 

 
trate the design issues involved. In Sections 6 and 7 we 
suggest a regression viewpoint involving a stronger focus 
on estimation which avoids some of the practical difficul-
ties evident in the ANOVA approach of the two examples. 

2 BACKGROUND CONTEXT 

The basic length of a run was one hour. This might appear 
arbitrary, but a little thought indicates that for real-time 
simulation work such a run-length will be a useful one to 
take in many contexts. It allows the individuals concerned 
to settle into a regular work pattern and be observed, but is 
not so long that fatigue becomes a serious issue. (Obvi-
ously trials studying fatigue itself might need to be handled 
differently, but even then a basic unit of measure of one 
hour might be perfectly justified.) 

We see therefore that a typical trial cannot have more 
than an absolute maximum of 40 runs per week. A more 
realistic upper limit is nearer thirty or so runs each week, 
bearing in mind that debriefing and initial training sessions 
will often be required. 

Moreover there is a typical natural length to a trial. Al-
most any sort of real-time trial will require physical re-
sources, both space and hardware with their attendant costs. 
The financial implication of this is that a trial will typically 
be at most one or two weeks in length. For this reason we 
shall confine our discussion to trials where no more than 30 
to 60 runs each of length one hour are to be made. 

In the air traffic control context and in other complex 
systems, there will be many factors that will influence the 
outcome which itself is almost certainly multidimensional 
in its own right. The natural experimental formats to use 
are therefore factorial experiments. We shall only consider 
factors with two, three or four levels. 

The main steps in the design process are set out in 
Table 1. 
 

Table 1: Trial Design 
Step Action 

1. Identify Factors and Levels 
2. Produce Approximate Initial Design 
3. Adjust design 

to meet special conditions 
4. Test Robustness of Design 

3 DESIGN RATIONALE 

The maximum number of runs possible places a clear re-
striction on how many factors can sensibly be studied. Ta-
ble 2 gives the number of main effects and first order inter-
actions corresponding to different numbers of factors. If 
therefore the maximum number of runs available is 40 then 
one cannot have more than 8-10 factors if all main effects 
and first order interactions are to be estimated. 

 

Table 2: Number of Main Effects and First Order 
Interactions 

Number of 
Factors 

Main Effects First Order 
Interactions 

5 5 10 
6 6 15 
7 7 21 
8 8 28 
9 9 36 

10 10 45 
11 11 55 
12 12 66 

 
The number of factors can be increased if it is possible 

to eliminate a sufficient number of interactions as being 
negligibly small. Care has obviously to be exercised in se-
lecting a design that ensures all interactions that are likely 
to be non-negligible can be estimated. 

We shall assume in what follows that our main interest 
is in the estimation of main effects and some or all first or-
der interactions. We allow the possibility that some inter-
actions can, a priori, be assumed to be zero. We shall as-
sume that interactions of order higher than the first can be 
neglected, or at least treated as part of the unexplained ‘er-
ror’, in the ANOVA sense. 

Even with this last assumption, it will still be neces-
sary to employ a fractional factorial design, relying on cor-
rect design to avoid the usual difficulties of aliasing and 
confounding. The selection of suitable designs is the main 
focus of the remainder of the paper. 

A particular format of special interest is where the trial 
is intended to compare two systems of operation. Typically 
one system, which we call the base system, is the existing 
one. The other is a new alternative, which we shall refer to 
as the  new system. The obvious way of handling this is to 
treat the system being studied as being a factor, where 
there are two levels corresponding to whether it is the base 
or the new system that is being used in the run. We shall 
call this the system factor. 

There are two things of note both of which lead us into 
wishing to treat the system factor in a special way rather 
than as being an ordinary factor. 

Firstly, the new system is usually being considered as 
a candidate replacement for the existing old system. How-
ever rather less is known about it than the base system. It is 
therefore desirable or even necessary to explore its likely 
behaviour more fully than that of the base, which is usually 
already better understood. This makes it desirable to make 
more runs using the new, than the base system. 

The second thing is to do with the use of fractional 
factorial designs. These designs make use of assumptions 
about interaction effects to reduce the total number of runs 
from that of a full factorial whilst still allowing all non 
negligible effects and interactions of interest to be esti-
mated. However there is a danger that, if the assumptions 
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turn out to be unjustified, then this can render suspect the 
subsequent analysis in the fractional factorial trial. 

Use of matched pairs of runs is a much more robust 
procedure, but is conservative in that it provides a less full 
exploration of the effect of different factor combinations 
than that provided by a fractional factorial design, when 
the latter works properly. 

We therefore consider hybrid designs. These are where 
the total number of runs is divided into three. One set of 
runs uses the base system. The other two use the new sys-
tem. In one set the runs are matched runs with the same set 
of combinations of levels of factors, other than the system 
factor, used as for the set of runs using the base system. 
The other set of runs using the new system has combina-
tions of other factor level settings chosen to form a frac-
tional factorial design when taken with the first set of runs 
where the base system is used. 

The hybrid design is a trade-off. It retains the robust-
ness of matched pairs but gives some of the efficiency of 
fractional factorials in exploring the factor space. 

The simplest designs are those where each factor is 
held at two levels. A factor, A say, with four levels can of-
ten be dealt with by using two pseudofactors, A1 and A2 
say, each at two levels. The four levels of A can then be 
identified with the four combinations of A1 and A2 levels. 
The analysis is done using A1 and A2, with a reinterpreta-
tion of the results at the end in terms of A. 

There is one aspect involving the design of an experi-
ment that should be borne in mind. The usual way that 
fractional factorial designs are presented in standard texts 
is through tabled appendices including detailed aliasing 
properties. This is very convenient for standard designs 
like those of Resolution III and IV whose properties can be 
succinctly summarized in terms of aliasing characteristics 
of all interactions of a given order. However such tabula-
tions tend to be less convenient to use in the grey area 
where we are limited by the number of trials into having to 
consider designs which may not have the full resolution 
that we should like. Thus for example it may be that we 
expect some but not all first order interactions to be impor-
tant, but we are not able to use a design that allows all first 
order interactions to be estimated. However we may be 
fairly sure that certain interactions will not be present; per-
haps because we know that the interactions of a certain fac-
tor are unlikely. Then we can estimate any interaction that 
is aliased only with these interactions, and it may be that 
such a design exists. However the process of identifying 
such a design is often not straightforward and requires ei-
ther expert knowledge or else an assiduous search of tabu-
lations in the hope of finding one with the right aliasing 
structure for our purpose. 

An alternative approach is to write down a parsimoni-
ous model, including those effects and interactions that 
might be present, but which explicitly excludes those that 
we think will be negligible. We can then construct a design 
usually without having to be dictated by laudable but po-
tentially awkward design principles. The only requirement 
is estimability: does the design that we have constructed 
allow us to estimate all the effects and interactions in-
cluded in our model? 

This is easily tested by checking if the least squares es-
timator is computable or not. Explicitly the key question is: 
If X is the design matrix, then is XTX invertible? 

There is of course widespread recognition that both 
ANOVA and regression are both manifestations of the lin-
ear model, however the development of each approach 
tends to follow rather different paths, with usually rela-
tively little discussion of the equivalence of the two. 

The main emphasis in the literature on ANOVA is on 
the construction of the ANOVA table and the construction 
of sums of squares. There is relatively less emphasis on the 
design matrix as such. Estimability is viewed very much 
from the approach of aliasing and confounding. 

In contrast (multiple linear) regression analysis tends to 
focus much more on the estimation of coefficients in the re-
gression model, and so there is a much more direct focus on 
estimability, and on the properties of the design matrix itself. 

We feel that there is much to commend an approach to 
design of simulation experiments using the regression 
viewpoint. 

In the next two sections we consider two explicit ex-
amples. The first, ‘ZIP’ trial, example is an illustration of a 
2k design where k = 11. 

The second example is what is called a mixed-level de-
sign. It only has five factors. However though four of the 
factors are 2-level, the fifth is a 3-level factor. The full de-
sign is thus 24.3. 

4 EXAMPLE OF A 2K HYBRID DESIGN 

Our first example is of a 2k hybrid design. It is a typical ex-
ample of experimental design in that, despite the tabulation 
of very many fractional factorial 2k designs, we nevertheless 
cannot simply take one ‘off the shelf’, but have to adjust and 
manipulate such a known design to get what we want. Thus 
in producing the final design we will make use of: 

(i)  Pseudofactors 
(ii)  Examples of Resolution III and Resolution IV de-

signs  
(iii)  The foldover principle 
(iv)  Hybrid Construction 

 We shall suppose that a special concern of the trial is 
to investigate an augmented method of system operation, 
which we shall call ‘with ZIP’. Thus a major requirement 
was to make at least some of the runs in matched pairs with 
one run in each pair conducted ‘with ZIP’, and the other 
‘without ZIP’. The runs were to investigate the effect of 
the following factors. 

• General Factors 
− At 2 levels: 
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¾ System (ZIP, the main factor under in-
vestigation) 

¾ Weather Factor1 (D) 
¾ Weather Factor2 (W) 

− At 4 levels:  
¾ Controller Position (C) 
¾ Traffic Sample (T) 

• ZIP only Factors 
− At 2 levels: 
¾ H-Factor (H) 
¾ A-Factor (A) 
¾ S-Factor (S) 
¾ P-Factor (P) 

4.1 Constraint Requirement 

For organisational reasons the ‘with ZIP’ runs had to be 
carried out in pairs. This imposed the constraint that, in 
each pair of runs, all the ZIP only factors had to be held at 
the same level throughout. 

A possible way of handling the factors, C and T with 4 
levels each, is to use a pair of 2-level pseudofactors to model 
each. Thus C is treated as (CA, CB) with CA and CB each 
taking two levels. The four possible combinations of CA and 
CB levels then represent the four original C levels. 

Using the hybrid principle we might consider a 48 run 
trial, with 32 combinations of ‘with ZIP’ runs and 16 
‘without ZIP’ runs. 

We consider possible trial designs based on 2(k-p) frac-
tional factorial designs, where k is the number of factors 
(including pseudofactors) and 1/p is the fraction of a full 
(2**k) factorial design used. 

One possible way of meeting the Constraint Require-
ment is to take a 24 = 16 run design for the ‘without ZIP’ 
runs. The factors here are then TA, TB, D, W, CA, CB 
making k = 6 and p = 2. One can have a 2(6-2) design of 
resolution IV using the generators 5=123 and 6=234. 

To handle the ‘with ZIP’ runs, we note that here the 
factors are TA, TB, D, W, CA, CB, augmented by H, A, S 
and P. This makes k = 10. But we have to satisfy the Con-
straint Requirement on H, A, S and P. We can do this sim-
ply by using a pair of replicated 16 run designs each ex-
actly the same as the ‘without ZIP’ 16 run design. Each 16 
run design is a 2(10-6) design using 5=123, 6=234, as before, 
and taking 7=134, 8=124, 9=1234, (10)=12. This 2(10-6) de-
sign is of resolution III. 

Thus, as far as the unconstrained factors TA, TB, D, W, 
CA, CB are concerned, these are handled in exactly the same 
way in each of the 16 run sets, ‘with ZIP’ or ‘without ZIP’. 

The advantage of this design is that we can estimate 
‘pure error’ from the two ‘with ZIP’ replications. Its disad-
vantage is that the ‘with ZIP’ design has resolution III only. 

We could instead obtain a resolution IV design for the 
‘with ZIP’ set of runs that satisfies the Constraint Re-
quirement. We start with a 9-factor, 16 run, 2(9-5) of resolu-
• 

• 

tion III. Such a design exists; it is precisely our previous 
2(10-6) design but simply omitting the (10)th factor. Thus we 
generate the fifth to ninth factor level settings using: 
5=123, 6=234, 7=134, 8=124, 9=1234. We choose our nine 
factors and their order as follows. Let H, A, S be the first 
three factors, and the fourth be one of the unconstrained 2 
level factors, D, say. 

Let the fifth, sixth, seventh, eighth, and ninth factors 
be the remaining unconstrained factors: TA, TB, W, CA, 
CB. The point of this arrangement is that the runs will be 
in pairs where all the first three factors will be at the same 
level. Thus each pair can be one of the paired runs. 

Now we use the technique of ‘foldover’. First add an 
extra 2 level factor, in our case the remaining constrained 
factor P, taking its level as -1 throughout all 16 runs. We 
now simply copy the entire 16 run design, except that the 
level of each factor is interchanged for its other level (i.e. a 
+1 becomes a -1, and a -1 becomes a +1). This creates a 
2(10-5) design of resolution IV. By construction the Con-
straint Requirement is met for all four constrained factors. 

For the ‘without ZIP’ set of runs we simply take the 
initial 9-factor, 16 run, 2(9-5) design of resolution III and ig-
nore the first three (constrained) factors used. The remain-
ing design with the six factors D, TA, TB, W, CA, CB is a 
2(6-2) design. It is only of resolution III however. 

We do not know whether it is possible to produce 
resolution IV designs for both the ‘with ZIP’ and the ‘with-
out ZIP’ set of experiments that both satisfies the Con-
straint Requirement and also that produces a subset of 16 
runs within the full set of 32 runs of the ‘with ZIP’ set 
matched to the 16 of the ‘without ZIP’ set. We suspect not, 
but would be happy to stand corrected. 

On balance we think the first design, using replica-
tions, is preferable.  

5 A MIXED LEVEL DESIGN 

The second example is one involving a mixed level design. 
The trial involved the following factors and was to be con-
ducted over two weeks. 

At 2 levels: 
− System (S, The main factor under investiga-

tion) 
− Weather Factor1 (D) 
− Weather Factor2 (W) 
− Controller Factor1 (A) 
At 3 levels: 
− Controller Factor2 (R) 

5.1 Constraint Requirement  

The factor A concerned the availability of controllers. Only 
one level of A could be used in a given week. 
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The base level of factor S was 0, the new level corre-
sponded to level 1. A hybrid design with twice the number 
of level S1 runs as S0 runs was proposed. 

A full trial would require 24.3 = 48 combinations, with 
6 main effects and 15 first order interactions. Connor and 
Young (1961) discuss the construction of mixed two and 
three level designs where all main effects and two-factor 
interations can be estimated. The article is reproduced in 
McLean and Anderson (1984 Appendix 1). 

The 3-level R factor places a severe constraint on con-
struction of a design. The best that seems possible is a ¾ 
fractional design with 36 runs. This requires three sets T1, 
T2, T3 of factor combinations for the four 2-level factors. 
Each has to be combined with the full T’ set of factor com-
binations (ie the full replicate) of the 3-level factor. The 
overall design is {T1T’, T2T’, T3T’}. In this design all main 
effects and first-order interactions are estimable. 

This design requires modification to meet the Con-
straint Requirement. As things stand each set Ti requires 
both levels of each two-level factor to be used. If we take 
A to be the first factor in the Table 3 then we can arrange 
the table in the form of Table 4. 

In Table 4 all the runs of T’1 have factor A at setting 
zero, whilst those of T’2 have factor A at setting 1. 

 
Table 3: 2-level Factor Combina-
tions of the 24.31 Design 

T1 T2 T3 
0000 0001 0011 
1100 0110 0100 
0111 1010 1000 
1011 1101 1111 

 
Table 4: 2-Level Factor Combina-
tions of the 2431 Design 

Run T’1 T’2 
1 0100 1100 
2 0000 1000 
3 0111 1111 
4 0011 1011 
5 0001 1010 
6 0110 1101 

 
Note that, in both T’1 and T’2, Runs 1 and 2 and also 

Runs 3 and 4 form matched pairs with regard to the second 
factor. Thus if the second factor is taken to be S, the main 
system factor, then this modified design {T’1T’, T’2T’} al-
ready automatically incorporates 12 pairs of matched runs. 

The design is readily extended to include additional 
matched pairs. For example additional runs, 0010 and 
1001, matched to Runs 6 in T’1 and T’2 can be added. 
Combined with T’ this gives an additional six runs. 

Alternatively the design can be extended to include 
additional runs with the system factor setting at level S2. 
For example additional runs, 0101 and 1110, can be added, 
which combined with T’ gives six additional runs. This lat-
ter scheme has the advantage of yielding runs matched to 
the Runs 5 in T’1 and T’2 thereby increasing the number of 
matched pairs to a total of 18. 

Wu and Hamada (2000, Chapter 7) discuss the con-
struction of mixed level designs. They give a number of 
Orthogonal Array (OA) designs. If only main effects are of 
interest then the OA(12, 24.3) design is a very useful par-
simonious design that could be used as a basis for this par-
ticular example. This design provides a very efficient core 
of runs from which fuller designs can be formed. 

An alternative approach (see Montgomery, 1997) is to 
use two 2-level pseudofactors, R1 and R2 say,  to model the 
3-level factor R. Thus the combination R1R2 = 00 can repre-
sent R = 0, both combinations R1R2 = 10 and R1R2 = 01 can 
represent R = 1 and R1R2 = 11 can represent R = 2. Thus we 
are modelling 24.3 as being an embedded subset of 26. 

A little care is needed in using this technique as the in-
teraction between R1 and R2 is being treated as a main ef-
fect of R, thus a fractional design of 26 has to be selected to 
ensure that the effects associated with all levels of R can be 
estimated. The quarter replicate 26-1 using the generator 
6=12345 has resolution VI, and this allows all the main ef-
fects to be estimated. 

6 REGRESSION APPROACH  
AND ESTIMABILITY 

As remarked in the introduction, the approach of selecting, 
from known designs, one with all the properties that are 
required by the experimental setup, can be one fraught with 
pitfalls. It often requires perusing extensive tabulations, 
especially to check the properties of aliasing, to ensure that 
all effects and interactions that might be important in the 
trial are not confounded. 
 An alternative is to focus much more specifically on 
the estimation issue. It is then much more natural to use the 
regression modelling approach, and to write down the sta-
tistical model with all the effects and interactions that are 
deemed important represented by parameters. The design 
can then be progressively built up to ensure that all the pa-
rameters of the model can be estimated. One can of course 
utilise good design principles and methods, like orthogo-
nality, and balanced designs, and efficient fractional de-
signs. However this can be done in a flexible way. If use of 
a good design principle cannot, for whatever reason, be 
easily adhered to, then some slippage from the ideal can 
however be tolerated. 
 The key requirement of a workable design is es-
timability. 
 This can be directly checked. Barton (2002) points out 
that this can easily be done by compiling some artificial 
data from the model, and then running this simulated data 
through a statistical package to see if it encounters any dif-
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ficulties. In fact there is no need even to produce any simu-
lated data, for the following reason. 
 The linear model has the form 

 
y = X θ + ε 

 
where y, θ and ε are respectively the vectors of observa-
tions, parameters and errors. The key however is the design 
matrix X. The parameters θ are estimable if and only if the 
corresponding sum of squares matrix, XTX, is invertible. 
This is the only check that is needed. 

Though it is a well known fact, many text books tend 
only to make passing reference to the equivalence of 
ANOVA and regression techniques. An exception is Wu 
and Hamada (2000) which contains some simple examples 
illustrating and highlighting the estimation aspects of 
ANOVA. 

We illustrate this approach for the orthogonal array 
design, OA(12, 24.3), given in Wu and Hamada (2000). 

 
Table 5:  OA(12, 24.3) Design (Columns a, b, c, d, e) 
µ a b c d e1 e1 ab ac ad ae1 ae2

1 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 0 0 0 0 0 0 
1 1 0 1 1 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 1 1 0 0 0 
1 0 0 1 1 1 0 0 0 0 0 0 
1 0 1 1 0 1 0 0 0 0 0 0 
1 1 0 0 1 1 0 0 0 1 1 0 
1 1 1 0 0 1 0 1 0 0 1 0 
1 0 0 1 0 0 1 0 0 0 0 0 
1 0 1 0 1 0 1 0 0 0 0 0 
1 1 0 0 0 0 1 0 0 0 0 1 
1 1 1 1 1 0 1 1 1 1 0 1 

 
The basic design of OA(12, 24.3) is given in Table 5 and is 
defined by a, b, c, and d (level 2 factors) and the two e1 
and e2 columns corresponding to the two degrees of free-
dom of the 3-level factor. Here we have used bold-faced 
symbols to denote the columns of the matrix. If we add the 
column of the general mean µ to these columns then we 
see that the regression model, y = X θ + ε in this case has 
the design matrix: 
 

X0 = [a b c d e1 e2 ] 
 
and that the sum of squares matrix X0

TX0 is non-singular. 
Thus all the main effect parameters are estimable, if there 
are no first order interactions. 
 Suppose now that we are interested in the first order 
interactions AB, AC, AD, AE, AE2 associated with factor 
A. We can do this by adding the corresponding interaction  
 

columns ab, ac, ad, ae1 and ae2 to X0 We find that if we 
exclude just ae2, and take the design matrix to be 
 

X1 = [a b c d e1 e2 ab ac ad ae1 ], 
 
then its sum of squares matrix X1

TX1 is still invertible, in-
dicating that these interactions can also be estimated in the 
design. However, if we include ae2, then 
 

X2 = [a b c d e1 e2 ab ac ad ae1 ae2 ] 
has corresponding X2

TX2 that is not invertible. Thus not all 
the main effects and all first order interactions associated 
with A can be estimated. 

7 SUMMARY AND CONCLUSIONS 

In summary, we have pointed out how the design of real-
time simulation trials is constrained by a certain inherent 
structure dictated by time and space dependent resource 
constraints. Nevertheless it is important to ensure that the 
experimental design is robust against chance variations 
outside the control of the experimenter, and the main ap-
proach suggested is the use of hybrid designs. 
 The example of section 4 illustrates how such a design 
can be constructed starting with a standard design, but 
where this design has to be modified using a number of de-
sign techniques including: (i) fractional factorial design, 
(ii) foldover (iii) pseudofactors. 
 The example of section 5 illustrates how mixed level 
designs are handled in a similar way, and shows how they 
are just as amenable to hybridization. 
 The two examples reinforce the view that practical de-
sign cannot be easily made automatic. However they do 
suggest that a more general and flexible regression ap-
proach can be formulated based on the estimability test of 
the parameters of the regression model. 
 We have not consider the issue of robustness. How-
ever the regression approach indicates that a simple way of 
handling this is to construct simulated data sets which in-
corporate realistic scenarios involving chance variations of 
the selected design and even missing data. The estimability 
test can then be extended into a full analysis of these artifi-
cial data sets to investigate robustness issues. It is hoped to 
discuss this idea more fully elsewhere. 
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