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ABSTRACT whereyj(x,®), j = 0,..., p+ g, are the scalar sample
performances driven by a stochastic efface © defined
We consider optimizing a stochastic system, given only a with respect to the underlying probability spage, 7, P).
simulation model that is parameterized by continuous deci- The decision-variable vector is selected from a variable
sion variables. The model is assumed to produce unbiasedset X, a closed compact subset #%. The functions
point estimates of the system performance measure(s), which fj(x), j = 0, ..., p+ g, are the expectations ofj (X, w),
must be expected values. The performance measures mayj = 0, ..., p+(, with respect to the probability measupe
appear in the objective function and/or in the constraints. respectively. We assume that d; p = d, no optimization
We develop a family of retrospective-optimization (RO) problem exists in general and the optimuinis determined
algorithms based on a sequence of sample-path approxima-directly from the simultaneous solution of the system of
tions to the original problem with increasing sample sizes. equationsfj(x) = E{yjX,®)} =0, j = 1,...,d. The
Each approximation problem is obtained by substituting optimumx* is assumed to exist and to be unique.
point estimators for each performance measure and using In many realistic applications, and especially when
common random numbers over all values of the decision the stochastic effectv has a large dimensionality, it is
variables. We assume that these approximation problems typically impossible to calculate the expected values for
can be deterministically solved to within a specified error fj(x), j =0, ..., p+q, in closed form, or to obtain them via
in the decision variables, and that this error is decreasing quadrature. Hence, nhumerical approximations are required
to zero. The computational efficiency of RO arises from to estimate the expected-value functions, and probleis P

being able to solve the next approximation problem effi- solved by using only the estimatorsfgix), j =0, ..., p+q.
ciently based on knowledge gained from the earlier, easier This paper is to develop methodologies and algorithms to
approximation problems. solve this class of stochastic optimization problems.

The remainder of this paper is organized as follows.
1 INTRODUCTION In Section 2 we introduce a simulation-based sample-path

approximation approach to estimate problem Rext we
In many practical situations one is required to optimize a propose a family of retrospective optimization algorithms
stochastic system where some functions of the system are based on Monte Carlo simulation techniques to solve prob-
not available analytically, but can be estimated via Monte lem R in Section 3. We then discuss general guidelines for
Carlo simulation. We focus on a retrospective approach the algorithm implementation in Section 4. A concluding
to such problems, and apply it to the following class of remark along with a future research area is given in Section
problems. 5.

2 THE SIMULATION-BASED SAMPLE-PATH

minimize  fo(X) = E{yo(X, ®)}, APPROXIMATION APPROACH
(Po) subjectto fj(x) =E{yjX, w)}
=0, j=1..p<d, This section is concerned with estimating of the expectations
fi0 = E{yjx o)} of sample performanceg (x, w), j = 0, ..., p+ g, using
>0, j=p+1l..p+aq, simulation techniques. After discussing a simulation-based
xeXcRY, sample-path approximation approach to estimate problem
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Po, a simple example is given to help the reader understand
the discussion.

2.1 The Sample-Path Approximation of ProblemPq

The simulation-based sample-path approximation approach
to problem B is based on Monte Carlo simulation tech-
niques. The basic idea is that common random effects
are used to estimaté(x) for all x € X. More specifically,

let y(X, w1), ..., Y(X, wm) be a series of random samples
obtained by simulatingn (usually independent) stochastic
effects¢ = {w1, w2, ..., wm} With respect to the underlying
probability spacé<2, 7, P), and consequently the expected-
value functionf (x) = E{y(X, w)} is approximated by the
sample average function

Z{n:l y(X, (Ot)
7m .

yx. ¢) = )

Furthermore, the sample-path approximation problem P cor-
responding to problemdAs

minimize  Yo(X, ¢),

(P) subjectto yj(x,8)=0, j=1,..,p<d,
¥ix,¢) =0, j=p+1..,p+q,
xe X c RY.

The sample-path approximatiopg(x, ¢), j =0, ..., p+d,
are functions of the decision-parameter vectoand the
stochastic effectg. We let X*(¢) denote the sample-path
optimum of problem P. The sample-path optimXi(¢)

is random, depending upon the random effects

2.2 A Simple Bus-Scheduling Example

In a bus station, passengers arrive and wait for buses. For
the sake of simplicity, we assume infinite bus capacity such
that when a bus arrives, it takes all the passengers who
are waiting in the station. Figure 1 depicts the passenger
arrival process. Time starts at zero. The station is empty.
(There would be a bus that left at time zero and took away
all passengers). We Iéfk, k = 1,2, ..., denote thekth
passenger arrival timeAy, k = 1, 2, ..., denote the time
between the arrivals of thgk — 1)th passenger and theh
passenger, wherd; is the time until the first passenger
arrival. The distribution functionga,, k = 1,2,..., of
interarrival times are known. Originally, there is only one
bus, which leaves at tim&. To better serve the customers,

Figure 1: Passenger Arrival Process

A mathematical formulation corresponding to the prob-
lem is
minimize  Eyp(X, ®)},

subject to x € [0, T], @)

whereyp(X, @) is a sample performance measure of total wait
time of all passengers in tim@, T] driven by a stochastic
effectw. Let Wk(X, w) denote theékth passenger wait time.
Thenyp(X, w) can be written as

yox, @) = Y Wk(X, o) (Tk(@) < T).
k=1

3

The indicator functionl (Tk(w) < T) =1 for Tk(w) < T
and | (Tk(w) < T) = 0 for Tk(w) > T. It implies that the
total wait timeyp(X, @) counts only those passengers who
arrive before timél'. Thekth passenger wait timék (X, )

is defined as

X — Tk(w)
T — Tk(w)

if Tk(w) <x
if Tk(w) > X

Wik(X, @) = { 4)

Furthermore, it is easy to see from Figure 1 that kitte
passenger arrival timé&(w) is

k
Tk(@) = Y Aj(@), (5)

j=1
where the interarrival time#y(w), k =1, 2, ..., have the

distribution functiondp,, k = 1, 2, .. ., respectively, which
are given.

This is a one-dimensional stochastic optimization prob-
lem with one explicit deterministic constraint. Because (in
the general case) the objective functiofiyl{x, @)} is not
closed form, an estimate of problem 2 is used. In the rest of
this section we illustrate the simulation-based sample-path
approximation approach to estimate Problem 2.

In the simulation-based sample-path approximation ap-
proach to problem 2, each stochastic effedés a sequence
of random-number seeds used for simulating a passenger
arrival process, and sample performangéx, ») depends
on the passenger arrival process driven by the sequence of
random-number seeds. Following is a summary of the

X (0 < x <T). The goal is to determine when the second
bus should leave the station so as to minimize the expected
total wait time of all passengers in tinié, T].
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1. Generate a sequence of uniform random variables
U(w1), U(w2), ... by a sequence of random number

seedsw = (w1, w2, .. .).
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2. Calculate Ax = FgKl(u(wk)) fork = 1,2,..., seeded replications of problem P, and during each deter-
where F, ! is the inverse function ofa, . Note ministic search for a realization &f*(¢), manyx’s may be
K explored and eack must be evaluaterh times. Therefore

" wn, therefore ar ~Lig, . . .
that Fa,'s are known, therefore are tHéAK S the computational effort can be substantial, especially when

3. CalculateTk(w) = Y1 Aj@) fork=12,... the starting point is not accurate.
until Ty(w) > T. ) Chen (1994) proposes a retrospective approximation
4. CalculateWk(x, ), fork = 1,2, ..., by Equation (RA) algorithm to solve a one-dimensional stochastic root
(4). ) finding problem. RA iteratively solves a sequence of deter-
5. Calculateyo(x, @) by Equation (3). o ministic sample-path equations for a sequence of retrospec-
Repeat the above simulation experiment usimgnde- tive roots, with increasing sample sizes. A final estimate
pendent random-number seed sequenggs. ., @m, and of the true root is computed from those solutions. Shapiro
obtain m sample performancego(x, 1), - . ., Yo(X, ©m). (1996) discusses the analogous idea for continuous-variable
Then a sample-path approximation of Problem 2 is optimization. This analogy is the basis for our family of
S _ m algorithms.
minimize  Yo(X, &) = Y {1 Yo(X, @)/ m, (6) Instead of finding independent realizations of the

subject to x € X = [0, T]. sample-path optimunX*(¢) from independently seeded

replications of a single sample-path approximation problem
3 A FAMILY OF RETROSPECTIVE P, we extend the general idea of RA to problegdnd
OPTIMIZATION ALGORITHMS propose a family of retrospective optimization (RO) algo-
rithms. RO iteratively solves a sequence of sample-path
A retrospective technique is different from a prospective approximation problems;Pi = 1,2, ...,
technique, in which a fixed set of feasible valuesxois

explored to look for the solution, much like a prospector minimize  yo(X, &;),

searches for gold: a spot is chosen for exploration because (Pj) subjectto yj(x,¢j) =0, j=1..,p<d,
good results are foreseen. A retrospective technique, on the yix,¢)) =0, j=p+1..,p+q,
other hand, determines the solution after all uncertainties xeXcIRY,

have been known. In the real world it is rare for a retro-
spective technique to have the luxury of hindsight or the wherey; (x, ¢;) = Z[":il yiX,o)/mi, j =0,1,2, ..., p+
task of simply predicting the past. We do however have the q, and¢; = {1, ..., wom } iS generated independently for
benefit of hindsight in a simulated system performance. The eachi. The sample-size sequencg, i = 1, 2, ..., strictly
basic philosophy of the retrospective approach to optimize increases. At each iteration, sample-path approximation
simulated system is due to Schruben (1991). The notion is problem R is retrospectively solved within an error tolerance
to observe the output from a simulation retrospectively to ¢;. Theerrortolerancg,i = 1, 2, ..., is a positive sequence,
generate optimal solutions as if the outcomes of all uncer- decreasing to zero. LeX*(¢;) be theith sample-path
tainties were known in advance. The retrospective concept optimumof problem R, X(¢;) theith retrospective solution
has previously been employed independently in Rubinstein obtained by deterministically solving sample-path problem
(1991) and Healy (1992). P within € such that||X(¢;) — X*(&;)| < €, where]|| - ||

In this paper, we explore the retrospective philoso- denotes the distance betweXig;) andX*(¢;), andi the
phy to problem B, and use the sample-path approximation retrospective iteration numberAfter theith retrospective
described in Section 2 to estimate problegn Phe sample- iteration x* is approximated by thigh retrospective estimate
path approximation problem P is obtained by simulating X;, a function ofX(¢), ..., X(¢;j). More specifically, RO
the stochastic effects. Once thew;'s are fixed, solving works as follows.
problem P becomes a deterministic optimization problem.
A realization of the optimumX*(¢) is obtained by ret- 3.1 A Family of RO Algorithms
rospectively solving a deterministic optimization problem

with respect to the sample-path approximation problem P 1. Initialize the retrospective iteration numbes 1,

as if the outcomes of all uncertainties have been known. the sample sizeny, the error tolerance; and the

Note that the sample-path optimufi(¢) may not exist or initial point Xo.

may not be unique for a finite sample size. 2. Generatet; = (w1, ..., om) independently of
A natural estimate of the optimurt of problem R is 1,82, 8i_1

the average oh independent realizations of the optimum 3. Deterministically solve sample-path approximation

X*(¢) obtained from independently seeded replications of problem R, in which the information obtained in

problem P. To obtaim independent realizations & (¢), previous(i — 1) retrospective iterations such as

this method requires retrospectively to sahiedependently
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\/E{H)_(i_l — X*(¢j)||12} andX;_1 are used in the
ith deterministic search. Return any one solution
X(g;) satisfying[X(£;) — X*(@&)ll < €.
ComputeX; from X(&q), ..., X(&;).
Stop? If yes, returij. Otherwise, computa; ;1
andej 1, leti < i +1, and go to step 2.

The decreasing toleranegand increasing sample size
m; are used to ensure that the algorithms converge. Whenthe
sample-size sequenog, i = 1, 2, ..., strictly increases, the
sample-path approximation problem ébnverges to prob-
lem Ry, and the sample-path optimuXt(¢;) converges to
x*. Whenmy is large, the sample-path optimuXf(¢;) is a
better estimate of the optimuri because the sample-path
approximation problem jPmimics problem B well. Fur-
thermore, if the error toleraneg is small, the retrospective
solution X (¢;) is close toX*(¢;), and hence close to*.

4,
5.

4 GENERAL GUIDELINES FOR THE
IMPLEMENTATION

In implementing the algorithms five decisions that affect
their efficiency must be made:

Method for deterministically solving the sample-
path approximation problem; P

Rule for initiatingmy, €1 and X,

Rule for computing error toleranceg, for i
2,3,..,

Rule for successively increasingy, for i
2,3,..,

Rule for computing theth retrospective estimate
Xi from X(&q), ..., X&), fori =1,2,...,

Rule for stopping the whole procedure.

First, the error tolerance; should progressively de-
crease as the sample simgincreases such that sample-path
approximation problemiRs loosely solved at the early retro-
spective iterations, and more tightly solved only as problem
P converges to problemgP In addition, asi increases,
though more tightly solving problem nlarges the compu-
tational effort, the knowledge gained from solving previous
retrospective iterations could help in reducing the compu-
tational effort. For example, thé — 1)th retrospective

estimateX;_; and \/E{H)_(i,l — X*(¢;)|12} have provided
a better starting point and information about possible dis-
tance between starting poiKi_; and theith sample-path
optimumX*(¢&;) in theith deterministic search. Therefore,
the overall computational effort required in the procedure
is reduced.

Second, the sample-size sequengei = 1, 2, ..., and
the stopping rule should be considered together. The rate
of increasingm; has a tradeoff: quick increase makes the
sample-path approximation problems converge to problem
Py fast, but also enlarges the computational effort fast.
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The stopping rule of the whole procedure, i.e., the rule
for determining which problem;Ro stop at, compromises
between simulation run length and the quality (accuracy
and precision) of the retrospective estimXie

Third, the rule for computing theith retrospec-
tive estimate X; from all previous retrospective solu-
tions X(¢1), ..., X(¢&;) should depend on the sample sizes
mi, ..., m;, since the retrospective solutiofi(¢;) comes
closer and closer to* as the sample sizg; increases and the
error tolerance; decreases. A typical function form would
be a sample-size weighted averageXafq), ..., X (&),
that is

_ Thoa MX ()
> h=1h

Fourth, the method for deterministically solving prob-
lem R should be efficient. One of choices is to use the
flexible-tolerance method described in Himmelblau (1972)
to implement the deterministic search because it is very
efficient. The flexible-tolerance method improves the value
of the objective function by using information provided
by feasible points, as well as certain nonfeasible points
termed near-feasible points. Many constrained program-
ming methods, on the other hand, spend a considerable
portion of the computational effort to satisfy rather rigor-
ous feasibility requirements. This is inefficient, especially
when the constraints of problem Bo not mimic those of
problem B well with small sample sizen;. In the flexible-
tolerance method, the near-feasibility limit is progressively
made more restrictive as the deterministic search proceeds
toward the optimurX*(¢;), until in the limit a retrospective
solution X (¢;) is found satisfying|X(¢;) — X*(&i)| < €.
Furthermore, if the error toleraneggoes to zero, the near-
feasibility limit can be made even more restrictive until
in the limit only feasible points are accepted. Hence, the
constraints are loosely satisfied when the sample size
is small, and more tightly satisfied only as the constraints
mimic those in problem gwell.

Xi (7)

5 CONCLUSIONS

In this article, we introduce a family of RO algorithms to
optimize a stochastic system where only a simulation model
is given. RO are based on a sequence of sample-path ap-
proximations to the original problem. Each approximation
problemis obtained by substituting point estimators for each
performance measure and using common random numbers
over all values of the decision variables. The sequence
of approximation problems is obtained by increasing the
number of simulation replications. We assume that these
approximation problems, which are deterministic, can be
solved to within a specified error in the decision variables,
and that this error is decreasing to zero. The computa-
tional efficiently of RO arises from being able to solve the
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next approximation problem efficiently based on knowledge
gained from the earlier, easier approximation problem.
The discussion of the convergence and the implemen-
tation guidelines in this article is the intuitive outlines to
deal with RO. Further research on the statistical properties
of estimates derived from these algorithms, and a proof of
the convergence will be presented in a separated paper.
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