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ABSTRACT

We consider optimizing a stochastic system, given onl
simulation model that is parameterized by continuous d
sion variables. The model is assumed to produce unbi
point estimates of the system performance measure(s),w
must be expected values. The performance measures
appear in the objective function and/or in the constrai
We develop a family of retrospective-optimization (RO
algorithms based on a sequence of sample-path approx
tions to the original problem with increasing sample siz
Each approximation problem is obtained by substitut
point estimators for each performance measure and u
common random numbers over all values of the decis
variables. We assume that these approximation probl
can be deterministically solved to within a specified er
in the decision variables, and that this error is decrea
to zero. The computational efficiency of RO arises fro
being able to solve the next approximation problem e
ciently based on knowledge gained from the earlier, ea
approximation problems.

1 INTRODUCTION

In many practical situations one is required to optimize
stochastic system where some functions of the system
not available analytically, but can be estimated via Mo
Carlo simulation. We focus on a retrospective appro
to such problems, and apply it to the following class
problems.

minimize f0(x) = IE{y0(x,ω)},
(P0) subject to f j (x) = IE{yj (x,ω)}

= 0, j = 1, ..., p < d,

f j (x) = IE{yj (x,ω)}
≥ 0, j = p+ 1, ..., p+ q,

x ∈ XX ⊂ IRd,
a
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where yj (x,ω), j = 0, ..., p + q, are the scalar sample
performances driven by a stochastic effectω ∈ � defined
with respect to the underlying probability space(�,F , P).
The decision-variable vectorx is selected from a variable
set XX, a closed compact subset ofIRd. The functions
f j (x), j = 0, ..., p+ q, are the expectations ofyj (x,ω),
j = 0, ..., p+q, with respect to the probability measureP,
respectively. We assume thatp < d; p = d, no optimization
problem exists in general and the optimumx∗ is determined
directly from the simultaneous solution of the system o
equations f j (x) = IE{yj (x,ω)} = 0, j = 1, ..., d. The
optimumx∗ is assumed to exist and to be unique.

In many realistic applications, and especially whe
the stochastic effectω has a large dimensionality, it is
typically impossible to calculate the expected values f
f j (x), j = 0, ..., p+q, in closed form, or to obtain them via
quadrature. Hence, numerical approximations are requir
to estimate the expected-value functions, and problem P0 is
solved by using only the estimators off j(x), j = 0, ..., p+q.
This paper is to develop methodologies and algorithms
solve this class of stochastic optimization problems.

The remainder of this paper is organized as follow
In Section 2 we introduce a simulation-based sample-pa
approximation approach to estimate problem P0. Next we
propose a family of retrospective optimization algorithm
based on Monte Carlo simulation techniques to solve pro
lem P0 in Section 3. We then discuss general guidelines f
the algorithm implementation in Section 4. A concludin
remark along with a future research area is given in Secti
5.

2 THE SIMULATION-BASED SAMPLE-PATH
APPROXIMATION APPROACH

This section is concerned with estimating of the expectatio
of sample performancesyj (x,ω), j = 0, ..., p+ q, using
simulation techniques. After discussing a simulation-bas
sample-path approximation approach to estimate proble
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P0, a simple example is given to help the reader understan
the discussion.

2.1 The Sample-Path Approximation of ProblemP0

The simulation-based sample-path approximation approac
to problem P0 is based on Monte Carlo simulation tech-
niques. The basic idea is that common random effectsζ

are used to estimatef (x) for all x ∈ XX. More specifically,
let y(x,ω1), ..., y(x,ωm) be a series of random samples
obtained by simulatingm (usually independent) stochastic
effectsζ = {ω1,ω2, ...,ωm} with respect to the underlying
probability space(�,F , P), and consequently the expected-
value function f (x) = IE{y(x,ω)} is approximated by the
sample average function

ȳ(x, ζ ) =
∑m

t=1 y(x,ωt )

m
. (1)

Furthermore, the sample-path approximation problem P co
responding to problem P0 is

minimize ȳ0(x, ζ ),

(P) subject to ȳ j (x, ζ ) = 0, j = 1, ..., p < d,

ȳ j (x, ζ ) ≥ 0, j = p+ 1, ..., p+ q,

x ∈ XX ⊂ IRd .

The sample-path approximationsȳ j (x, ζ ), j = 0, ..., p+q,
are functions of the decision-parameter vectorx and the
stochastic effectsζ . We let X∗(ζ ) denote the sample-path
optimum of problem P. The sample-path optimumX∗(ζ )

is random, depending upon the random effectsζ .

2.2 A Simple Bus-Scheduling Example

In a bus station, passengers arrive and wait for buses. F
the sake of simplicity, we assume infinite bus capacity suc
that when a bus arrives, it takes all the passengers wh
are waiting in the station. Figure 1 depicts the passenge
arrival process. Time starts at zero. The station is empty
(There would be a bus that left at time zero and took awa
all passengers). We letTk, k = 1, 2, . . ., denote thekth
passenger arrival time,Ak, k = 1, 2, . . ., denote the time
between the arrivals of the(k− 1)th passenger and thekth
passenger, whereA1 is the time until the first passenger
arrival. The distribution functionsFAk , k = 1, 2, . . ., of
interarrival times are known. Originally, there is only one
bus, which leaves at timeT . To better serve the customers,
the second bus is added to the schedule and leaves at tim
x (0≤ x ≤ T). The goal is to determine when the second
bus should leave the station so as to minimize the expecte
total wait time of all passengers in time[0, T].
d
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Figure 1: Passenger Arrival Process

A mathematical formulation corresponding to the prob-
lem is

minimize IE{y0(x,ω)},
subject to x ∈ [0, T], (2)

wherey0(x,ω) is a sample performance measure of total wai
time of all passengers in time[0, T] driven by a stochastic
effectω. Let Wk(x,ω) denote thekth passenger wait time.
Then y0(x,ω) can be written as

y0(x,ω) =
∞∑

k=1

Wk(x,ω)I (Tk(ω) ≤ T). (3)

The indicator functionI (Tk(ω) ≤ T) = 1 for Tk(ω) ≤ T
and I (Tk(ω) ≤ T) = 0 for Tk(ω) > T . It implies that the
total wait timey0(x,ω) counts only those passengers who
arrive before timeT . Thekth passenger wait timeWk(x,ω)

is defined as

Wk(x,ω) =
{

x − Tk(ω) if Tk(ω) ≤ x
T − Tk(ω) if Tk(ω) > x

. (4)

Furthermore, it is easy to see from Figure 1 that thekth
passenger arrival timeTk(ω) is

Tk(ω) =
k∑

j=1

Aj (ω), (5)

where the interarrival timesAk(ω), k = 1, 2, . . ., have the
distribution functionsFAk , k = 1, 2, . . ., respectively, which
are given.

This is a one-dimensional stochastic optimization prob
lem with one explicit deterministic constraint. Because (in
the general case) the objective function IE{y0(x,ω)} is not
closed form, an estimate of problem 2 is used. In the rest o
this section we illustrate the simulation-based sample-pat
approximation approach to estimate Problem 2.

In the simulation-based sample-path approximation ap
proach to problem 2, each stochastic effectω is a sequence
of random-number seeds used for simulating a passeng
arrival process, and sample performancey0(x,ω) depends
on the passenger arrival process driven by the sequence
random-number seedsω. Following is a summary of the
procedure to compute a sample performancey0(x,ω).

1. Generate a sequence of uniform random variable
u(ω1), u(ω2), . . . by a sequence of random number
seedsω = (ω1, ω2, . . .).
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2. Calculate Ak = F−1
AK

(u(ωk)) for k = 1, 2, . . .,

where F−1
AK

is the inverse function ofFAK . Note

that FAK ’s are known, therefore are theF−1
AK

’s.

3. CalculateTk(ω) = ∑k
j=1 Aj (ω) for k = 1, 2, . . .

until Tk(ω) > T .
4. CalculateWk(x,ω), for k = 1, 2, . . ., by Equation

(4).
5. Calculatey0(x,ω) by Equation (3).
Repeat the above simulation experiment usingm inde-

pendent random-number seed sequencesω1, . . . ,ωm, and
obtain m sample performancesy0(x,ω1), . . . , y0(x,ωm).
Then a sample-path approximation of Problem 2 is

minimize ȳ0(x, ζ ) =∑m
t=1 y0(x,ωt )/m,

subject to x ∈ XX = [0, T]. (6)

3 A FAMILY OF RETROSPECTIVE
OPTIMIZATION ALGORITHMS

A retrospective technique is different from a prospectiv
technique, in which a fixed set of feasible values ofx is
explored to look for the solution, much like a prospecto
searches for gold: a spot is chosen for exploration becau
good results are foreseen. A retrospective technique, on
other hand, determines the solution after all uncertainti
have been known. In the real world it is rare for a retro
spective technique to have the luxury of hindsight or th
task of simply predicting the past. We do however have th
benefit of hindsight in a simulated system performance. T
basic philosophy of the retrospective approach to optimi
simulated system is due to Schruben (1991). The notion
to observe the output from a simulation retrospectively
generate optimal solutions as if the outcomes of all unce
tainties were known in advance. The retrospective conce
has previously been employed independently in Rubinste
(1991) and Healy (1992).

In this paper, we explore the retrospective philoso
phy to problem P0, and use the sample-path approximatio
described in Section 2 to estimate problem P0. The sample-
path approximation problem P is obtained by simulatin
the stochastic effectsζ . Once theωt ’s are fixed, solving
problem P becomes a deterministic optimization problem
A realization of the optimumX∗(ζ ) is obtained by ret-
rospectively solving a deterministic optimization problem
with respect to the sample-path approximation problem
as if the outcomes of all uncertainties have been know
Note that the sample-path optimumX∗(ζ ) may not exist or
may not be unique for a finite sample size.

A natural estimate of the optimumx∗ of problem P0 is
the average ofn independent realizations of the optimum
X∗(ζ ) obtained from independently seeded replications
problem P. To obtainn independent realizations ofX∗(ζ ),
this method requires retrospectively to solven independently
se
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seeded replications of problem P, and during each det
ministic search for a realization ofX∗(ζ ), manyx’s may be
explored and eachx must be evaluatedm times. Therefore
the computational effort can be substantial, especially wh
the starting point is not accurate.

Chen (1994) proposes a retrospective approximatio
(RA) algorithm to solve a one-dimensional stochastic roo
finding problem. RA iteratively solves a sequence of dete
ministic sample-path equations for a sequence of retrosp
tive roots, with increasing sample sizes. A final estimat
of the true root is computed from those solutions. Shapi
(1996) discusses the analogous idea for continuous-varia
optimization. This analogy is the basis for our family o
algorithms.

Instead of finding independent realizations of th
sample-path optimumX∗(ζ ) from independently seeded
replications of a single sample-path approximation proble
P, we extend the general idea of RA to problem P0 and
propose a family of retrospective optimization (RO) algo
rithms. RO iteratively solves a sequence of sample-pa
approximation problems Pi , i = 1, 2, . . .,

minimize ȳ0(x, ζ i ),

(Pi ) subject to ȳ j (x, ζ i ) = 0, j = 1, ..., p < d,

ȳ j (x, ζ i ) ≥ 0, j = p+ 1, ..., p+ q,

x ∈ XX ⊂ IRd,

where ȳ j (x, ζ i ) =
∑mi

t=1 yj (x,ωt )/mi , j = 0, 1, 2, ..., p+
q, and ζ i = {ω1, ...,ωmi } is generated independently for
eachi . The sample-size sequencemi , i = 1, 2, ..., strictly
increases. At each iteration, sample-path approximati
problem Pi is retrospectively solved within an error tolerance
εi . The error toleranceεi , i = 1, 2, ..., is a positive sequence,
decreasing to zero. LetX∗(ζ i ) be the i th sample-path
optimumof problem Pi , X(ζ i ) thei th retrospective solution
obtained by deterministically solving sample-path problem
Pi within εi such that‖X(ζ i )− X∗(ζ i )‖ < εi , where‖ · ‖
denotes the distance betweenX(ζ i ) andX∗(ζ i ), andi the
retrospective iteration number. After the i th retrospective
iteration,x∗ is approximatedby thei th retrospective estimate
X̄ i , a function ofX(ζ1), ..., X(ζ i ). More specifically, RO
works as follows.

3.1 A Family of RO Algorithms

1. Initialize the retrospective iteration numberi = 1,
the sample sizem1, the error toleranceε1 and the
initial point X̄0.

2. Generateζ i = (ω1, ...,ωmi ) independently of
ζ1, ζ 2, . . . , ζ i−1.

3. Deterministically solve sample-path approximatio
problem Pi , in which the information obtained in
previous(i − 1) retrospective iterations such as



Schmeiser

n

t

c

-

h

m

s
u

is

,
re

a
e

t

y

)
y
e

s
-
le

ds

e

s

el
p-

h
rs
e

e
e
e
,
-

Jin and√
ÎE{‖X̄ i−1 − X∗(ζ i )‖2} andX̄ i−1 are used in the

i th deterministic search. Return any one solutio
X(ζ i ) satisfying‖X(ζ i )− X∗(ζ i )‖ < εi .

4. ComputeX̄ i from X(ζ 1), . . . , X(ζ i ).
5. Stop? If yes, return̄X i . Otherwise, computemi+1

andεi+1, let i ← i + 1, and go to step 2.
The decreasing toleranceεi and increasing sample size

mi are used to ensure that the algorithms converge. When
sample-size sequencemi , i = 1, 2, ..., strictly increases, the
sample-path approximation problem Pi converges to prob-
lem P0, and the sample-path optimumX∗(ζ i ) converges to
x∗. Whenmi is large, the sample-path optimumX∗(ζ i ) is a
better estimate of the optimumx∗ because the sample-path
approximation problem Pi mimics problem P0 well. Fur-
thermore, if the error toleranceεi is small, the retrospective
solutionX(ζ i ) is close toX∗(ζ i ), and hence close tox∗.

4 GENERAL GUIDELINES FOR THE
IMPLEMENTATION

In implementing the algorithms five decisions that affe
their efficiency must be made:

• Method for deterministically solving the sample
path approximation problem Pi ,

• Rule for initiatingm1, ε1 and X̄0,
• Rule for computing error toleranceεi , for i =

2, 3, . . .,
• Rule for successively increasingmi , for i =

2, 3, . . .,
• Rule for computing thei th retrospective estimate

X̄ i from X(ζ1), . . . , X(ζ i ), for i = 1, 2, . . .,
• Rule for stopping the whole procedure.

First, the error toleranceεi should progressively de-
crease as the sample sizemi increases such that sample-pat
approximationproblem Pi is loosely solved at the early retro-
spective iterations, and more tightly solved only as proble
Pi converges to problem P0. In addition, asi increases,
though more tightly solving problem Pi enlarges the compu-
tational effort, the knowledge gained from solving previou
retrospective iterations could help in reducing the comp
tational effort. For example, the(i − 1)th retrospective

estimateX̄ i−1 and
√

ÎE{‖X̄ i−1 − X∗(ζ i )‖2} have provided
a better starting point and information about possible d
tance between starting pointX̄ i−1 and thei th sample-path
optimumX∗(ζ i ) in the i th deterministic search. Therefore
the overall computational effort required in the procedu
is reduced.

Second, the sample-size sequencemi , i = 1, 2, ..., and
the stopping rule should be considered together. The r
of increasingmi has a tradeoff: quick increase makes th
sample-path approximation problems converge to proble
P0 fast, but also enlarges the computational effort fas
he

t

-

-

te

m
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The stopping rule of the whole procedure, i.e., the rule
for determining which problem Pi to stop at, compromises
between simulation run length and the quality (accurac
and precision) of the retrospective estimateX̄ i .

Third, the rule for computing thei th retrospec-
tive estimate X̄ i from all previous retrospective solu-
tions X(ζ1), . . . , X(ζ i ) should depend on the sample sizes
m1, . . . , mi , since the retrospective solutionX(ζ i ) comes
closer and closer tox∗ as the sample sizemi increases and the
error toleranceεi decreases. A typical function form would
be a sample-size weighted average ofX(ζ1), . . . , X(ζ i ),
that is

X̄ i =
∑i

h=1 mhX(ζ h)∑i
h=1 mh

. (7)

Fourth, the method for deterministically solving prob-
lem Pi should be efficient. One of choices is to use the
flexible-tolerance method described in Himmelblau (1972
to implement the deterministic search because it is ver
efficient. The flexible-tolerance method improves the valu
of the objective function by using information provided
by feasible points, as well as certain nonfeasible point
termed near-feasible points. Many constrained program
ming methods, on the other hand, spend a considerab
portion of the computational effort to satisfy rather rigor-
ous feasibility requirements. This is inefficient, especially
when the constraints of problem Pi do not mimic those of
problem P0 well with small sample sizemi . In the flexible-
tolerance method, the near-feasibility limit is progressively
made more restrictive as the deterministic search procee
toward the optimumX∗(ζ i ), until in the limit a retrospective
solutionX(ζ i ) is found satisfying‖X(ζ i )− X∗(ζ i )‖ < εi .
Furthermore, if the error toleranceεi goes to zero, the near-
feasibility limit can be made even more restrictive until
in the limit only feasible points are accepted. Hence, th
constraints are loosely satisfied when the sample sizemi

is small, and more tightly satisfied only as the constraint
mimic those in problem P0 well.

5 CONCLUSIONS

In this article, we introduce a family of RO algorithms to
optimize a stochastic system where only a simulation mod
is given. RO are based on a sequence of sample-path a
proximations to the original problem. Each approximation
problem is obtained by substituting point estimators for eac
performance measure and using common random numbe
over all values of the decision variables. The sequenc
of approximation problems is obtained by increasing th
number of simulation replications. We assume that thes
approximation problems, which are deterministic, can b
solved to within a specified error in the decision variables
and that this error is decreasing to zero. The computa
tional efficiently of RO arises from being able to solve the
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next approximation problem efficiently based on knowledg
gained from the earlier, easier approximation problem.

The discussion of the convergence and the impleme
tation guidelines in this article is the intuitive outlines to
deal with RO. Further research on the statistical propertie
of estimates derived from these algorithms, and a proof o
the convergence will be presented in a separated paper.
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