Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

QUEUEING-NETWORK STABILITY: SIMULATION-BASED CHECKING

Jamie R. Wieland
Raghu Pasupathy
Bruce W. Schmeiser

School of Industrial Engineering
Purdue University
West Lafayette, IN 47907, U.S.A.

ABSTRACT

simulation run were underestimated—or to conclude that
the network is not as intended and is in fact unstable—

Queueing networks are either stable or unstable, with stable possibly due to coding error or parameter misspecification.
networks having finite performance measures and unstable When a long-run simulation ends without error, a stability
networks having asymptotically many customers as time check could alert the practitioner if the network appears to
goes to infinity. Stochastic simulation methods for es- be unstable.

timating steady-state performance measures often assume Inthe second context, probability researchers have been
that the network is stable. Here, we discuss the problem active during the last decade in studying necessary and suf-
of checking whether a given network is stable when the ficient conditions for network stability. This research has
stability-checking algorithm is allowed only to view arrivals ~ flourished since the discovery that a network can be un-
and departures from the network. stable even though every station has instantaneous arrival
rate less than instantaneous service rate (traffic intensity
less than one). Having a simulation-based algorithm would
improve the efficiency of analyzing networks, because sim-

1 THE STABILITY-CHECKING PROBLEM

Given only simulation code of a queueing-network model,
we consider the problem of developing a statistical algorithm
to check whether the network g&able Informally, stable
means that the network behavior does not explode in the
limit as time goes to infinity. Note that this problem is about
long-run network equilibrium, not initial-transient bias of
point estimators.

1.1 Motivation

The need for checking network stability using simulation
arises in two contexts. In the first context, the network

ulation experimentation can provide empirical insight and
conjectures.

Dai and Meyn (1995), Banks and Dai (1997), and
Sharifnia (1997) simulate networks to develop conjectures
about the stability of multiclass queueing networks, but
they do not develop statistical decision rules for classifying
networks as stable or unstable. Banks and Dai plot the
expected customer time in the network and show that it is
increasing linearly over time. Sharifnia plots the average
number of jobs in the network, and also shows that it
increases linearly over time. Dai and Meyn plot the average
queue lengths at each station and show that they oscillate

is being simulated to estimate time-average performance with increasing magnitude.

measures. In the second context, the network is being
probabilistically analyzed to determine whether stability
exists, and simulation is used as an empirical guide to
obtain insight.

In the first context, simulation practitioners often as-
sume that the network is stable. Here, the purpose of a
stability-checking algorithm is to protect the practitioner
when stability is not present. When a simulation run un-

1.2 Organization

This paper is organized as follows. In this section, terms and
notation are defined, followed by five criteria for comparing
stability-checking algorithms and a discussion about the
definition of network stability. Section 2 covers issues that
make determining stability difficult. Section 3 containsthree

expectedly ends with an ‘out-of-memory’ error message, properties that are fundamental to all queueing networks
the practitioner needs to decide whether to provide more and therefore might form the basis for a stability-checking
memory—perhaps the computational requirements for the algorithm. Section 4 compares simulation and mathematical

520

Wieland, Pasupathy, and Schmeiser

analysis for checking stability. Section 5 contains some
thoughts about algorithm design. Section 6 presents an
example stability-checking algorithm based on batching data
from a long-run simulation experiment. Section 7 contains
conclusions and thoughts about future research.

1.3 Terms and Notation

A queueing-network model has, by definition, customers
arriving and departing across a boundary that separates the
network from the outside world. For every non-negative
time t, let A(t) denote the number of customer arrivals,
D(t) denote the number of customer departures. From these
fundamental counting processes, and the initial number of
customeraN(0), at any timet the number of customers in
the network

N(t) = N(0) + A(t) — D(t)

can be computed, as can the utilizatid(t) = | (N(t) > 0),
wherel is the indicator function.

We assume that, from the given simulation code, there
is available a realization of these output-data processes for
any interval of time[O,], wheret is the simulation run
length. Based on this one realization, our problem is to
check whether the network is stable.

Several stability-checking problem instances can co-
exist in a single network model and a single simulation run.
All of these output-data processes can be indexed by cus-
tomer type and network boundary. In this case, each choice
of customer and each choice of network boundary leads to
a different problem instance. For example, the number of
priority customers might be stable despite the number of
other customers being unstable. Similarly, the first server
might be stable despite other servers being unstable. We
write as if there is only one problem instance; nevertheless,
having the simulation collect output data for each problem
instance allows individual, although dependent, conclusions
for each instance.

1.4 Criteria for Comparing Algorithms

Given the simulation code for a network model, from which
output-data processes(t), D(t), N(t), andU(t) can be
obtained for the time intervdl0,], we wish to develop
algorithm(s) to check whether the network is stable. The
fundamental output of the algorithm is binary; we arbitrarily
say the output i€ = 0 if the algorithm chooses stable and
C =1 if the algorithm chooses unstable.
We consider the following five criteria for comparing
stability-checking algorithms.
1. Applicable to many network models. Ideally, the
algorithm performs well regardless of network
specifics.

521

2. Easy (or no) algorithm tuning; that is, little (or no)
human effort.

Fast to compute. Simulation requir€gzr) com-
puting. A stability-checking algorithm that is
slower thanO(t) takes additional computing time
that would be better used to produce additional
simulation output data.

High probability of correctly classifying (PCC) the
network; thatis, PC = 0) is high for a stable model
and RC = 1) is high for an unstable model. PCC
depends upon both the given model and run length
7. Whether the algorithm is correct for a particular
practitioner is dependent upon the random-number
seed chosen by the practitioner, but unstable models
that are close to being stable (and vice versa) will
require a long run length. For a model that is
known to be stable, an algorithm developer can
use Monte Carlo simulation estimate PCC with

ernzl Cj
—m

3.

PCC—

where Cj is the value returned by the stability-
checking algorithm for theth simulated practi-
tioner. Similarly, for an unstable model

c Y1 -Cy

m

-

The final criterion is the ability to provide a useful
confidence statement to the practitioner. One ap-
proachisto reporﬁ, an estimated value of PCC
for the given model and output-datarealization. An
algorithm developer can assess the quality of this
confidence statement with the mean squared error
(mse)

E[(PCC-PCO?] = Var[PCQ+biag[PCC PCQ,

which can be estimated by Monte Carlo simulation
with

—

mse= jLi(PCG - PCO?

m
We discuss these criteria in terms of a class of trivial,
and unreasonable, coin-flipping algorithmd¢(«). The
algorithm flips a coin that has probability-1« of head
and« of tail and classifies the given network as stable if
head appears and unstable if tail appearsa K 0 this
always-stable algorithm concludes that the network is stable,
regardless of the given network and realizationy ¥ 1/2,
this fair-coin algorithm concludes that the network is stable
half the time and unstable half the time, again independent
of the network and realization. The always-stable algorithm

Wieland, Pasupathy, and Schmeiser

applies to any model, requires no tuning, and is fast, so the
first three criteria are satisfied. (If the fair-coin algorithm
is viewed as a special case of the class of coin-flipping
algorithms, the value of needs to be determined; this
process of determining the value is algorithm tuning.)
Criterion 4 is more interesting. The fair-coin algorithm
Ac(1/2) has PCC= 1/2 for all models and all realiza-
tions, regardless of run length. The always-stable algorithm
Ac(0) has PCC= 1 for every stable model and PCEO0
for every unstable model, regardless of the model and re-
alization. Figure 1 shows PCC for two algorithms—the
fair-coin algorithm.A4.(1/2) and.A-(0.05—as a function

Various definitions have been used, based on both
sample-path behavior and moment behavior. For time-
homogeneous networks, Dai (1996) has the number of cus-
tomers diverging to infinity with probability one as the
definition of an unstable network. An example definition
for a stable network, used by Dai and Jennings (2003), is
the long-run instantaneous input rate of the network being
equalled by the long-run instantaneous output rate.

As a practical matter, a model that is stable under one
definition is likely to be stable under another definition, but
for many pairs of stability definitions there is a set of models
for which the classification differs. Simulation practitioners

of some change in the model parameter such as the servicewill seldom want to choose their own stability definition,
rate in a time-homogeneous single-server queue. Stable while probabilists may need to be more careful.

networks are on the left and unstable are on the right. The
Ac(0.05) values of PCC are .05 for stable models and
0.05 for unstable models. The fair-coin algorithdg (1/2),

The definition of stability requires some additional con-
sideration when the network input parameters are seasonal.
Lety (t) denote the queueing network input parameters

which is not reasonable, demonstrates that a reasonable al-(e.g., arrival rates, service rates), which is a vector of func-

gorithm has PCC> 1/2 for most models. (A reasonable
algorithm does not, however, need PGC1/2 for every

tions defined for all non-negative timés The parameters
aretime homogeneous$ y (t) is constant over time. The

model, because the cost of classifying an unstable model parameters argeasonalf there is a constant timé so that

as stable might be quite different from classifying a stable

model as unstable.) In general, the higher the PCC curve,

the better the algorithm.

IType I Error

— A .(l-0)

l-a A1)

Probability
=4
W

iy =0 Iy >0
| | |
I I |

Traffic Intensity

Figure 1: PCC Curve for Coin Flip Algorithid

Criterion 5 is not as fundamental as Criterion 4, but
good statistical algorithms provide confidence statements.
Here the fair-coin algorithm is better than the always-stable
algorithm: A, can report, exactly, its PCC value, while
Ags does not know whether its PCC value is zero or one,
since it does not know whether the given network is stable
or unstable.

1.5 Defining Network Stability

When comparing stability-checking algorithmstability
must be defined precisely. With such a definition, a stability-
checking algorithm’s PCC is defined for a given model and
run lengthz.

522

y () = y(t + k3) for every non-negative integée. The
parameters aréme-heterogeneous y (t) is allowed to be
any arbitrary function of.

We do not consider models with time-heterogeneous
input parameters, because if the model parameténscan
change arbitrarily after time, then no finite run length is
sufficient to reach a conclusion about network behavior as
time goes to infinity. The data observed dur{fyz] must
be representative of network behavior after timeldeally
the process observed durif@] is identical to the process
after r. The initial-transient issue is a typical reason why
[0, =] is only representative rather than identical.

To consider stability of seasonal models a time-averaged
definitionis reasonable, since the number of customers might
not explode and yet

lim E(N(t))

does not exist. As a working definition, we define stability
based on the time-averaged expected number of customers.
That is, a network istableif

lim /T E(N(1))
=00 Jg T

is a finite constant, sag. We use this definition because
of our simulation orientation. A long-run simulation ex-
periment of lengthr naturally estimates the performance
measure with the point estimator

é:/twdt.
0

dt

T

Wieland, Pasupathy, and Schmeiser

If the value of the performance measéres not finite, then Dai (1997) simulate the Bramson (1994a) network, which
trying to estimate using simulation makes no sense, since is a multiclass two-station network with re-entrance. This
simulation point estimates are always finite. network has the traffic intensity of 0.90, scheduling policy

Alternatively, and probably with little change in any FIFO, and the respective station utilizations of approximately
resulting algorithm, we could define stability as requiring 0.76 and 0.85. These low utilizations are unexpected be-
that 6 goes to a finitep with probability one. With either cause the scheduling policy is non-idling and the number

definition, the observed value éfwill play a central role of customers in the network is consistently growing with
in any reasonable algorithm. time (run length is 100,000 customer departures).

Leibniz’s Rule applied t® shows that any seasonal From a simulation perspective, we take a slightly differ-
model that is stable under the time-average expected- entview on counterexamples (such as the Bramson network)
number-of-customers definition satisfieg = 0, where that are unstable despite the fact that the traffic intensity is

less than one at each station. Rather than saying that the
= lim E(N(7)) usual traffic condition is not sufficient for stability, say that
T—>00 T the effective arrival rate is affected by the network factors.

Although calculating analytically the effective arrival rate
might be difficult, simulation algorithms need only to es-
timate the effective arrival rate. With this view, the usual
traffic condition for stability still holds.
E(A(T)) The implications of these counterexamples are as fol-
lows: (1) If the network factors are fundamental in causing
instability, the most efficient way to stabilize the network
and may not be obvious. In fact, adding service capacity may
E(D(v) not be necessary to achieve stabi_lit)_/. (See, for e_xample,
Ap = lim ——=, Kumar and Seidman (1990) or Sharifnia (1997)). This result
twee T is also reinforced by Dai (1996) who shows that increasing
Notice that for stable seasonal modgls = Ap, de- the service rate for a given class of customers does not nec-
spite the instantaneous arrival rate not being equal to the essarily stabilize a multiclass network because the global
instantaneous departure rate. In general, the choice of sta-stability region is not monotone with respect to the service
bility definition for seasonal models needs to depend upon time vector. (2) Utilization is not necessarily representative

is the time-averaged rate of change of the expected number of
customers. For seasonal models, this condition is equivalent
to Aa = Ap, Where

aa = lim

T—00 T

time averages rather than instantaneous rates. of stability because unstable networks can have ‘bottleneck’
servers with low utilization. The problem, however, does
2 DIFFICULTY IN ESTABLISHING STABILITY not result from too little service capacity, but rather the

network factors. (3) When scheduling priority customers,

Until the past decade, it was thought that having traffic instability can result if the first customer class is always
intensity less than one at every network station (we refer prioritized over the second class with no corrective measures
to this as theusual traffic condition) was sufficient for in place for situations where the second class of customers
establishing stability of queueing networks, where traffic consistently accumulates for long periods of time without
intensity is the ratio of the effective arrival rate to the service receiving service.
rate at a given station. This condition does hold for single-
class networks and single-server multiclass networks, but 3~ WHAT IS FUNDAMENTAL?
several counterexamples have been presented that show that
the usual traffic condition is not sufficient for establishing The following three queueing-network properties are fun-
stability in multi-server multiclass queueing networks. Some damental in assessing whether a network is stable, at least
counterexamples can be found in, for example, Kumar and if stability is based on time-average number of customers.
Seidman (1990), Rybko and Stolyar (1993), Seidman (1994),
and Bramson (1994a, b). 3.1 Subnetworks

These counterexamples illustrate that stability is af-
fected by factors other than the traffic intensity. These A network is stable if all, say < oo, stations within the
network factors include network routing, scheduling policy, network are stable. IN; (t) is the number of customers in
differences in service rates between classes at the samequeuei at timet, then N(t) = Ziszo Ni (t). Therefore, if
server, and dependence among arrival, service, and routingany N; is unstable, thei is unstable. The converse is also
processes. true, in that if N is unstable, then one or more individual

A common element in many of these counterexamples stations are unstable.
is inefficient use of resources. For example, Banks and

523

Wieland, Pasupathy, and Schmeiser

3.2 Little’'s Law the advantages that it applies to any queueing network,
it always provides an answer, and the practitioner needs

Stability-checking algorithms can be based on either number only to provide a simulation code. There are, of course,

of customers or customer times in the network. Little's disadvantages.

Law is usually written as. = AW for a time-homogeneous For three reasons, a simulation-based algorithm can be

network, withi being the instantaneous arrival and departure wrong, concluding that the given network is stable when

rate for a stable network. The time-average analogy, which it is unstable, and vice versa. First, the initial transient

includes seasonal models, is can make the data collected frof@, r] appear unstable,
especially whenN(0) is much smaller than the expected
L — iim /r EN®) number of customers. Second, data from heavily loaded
=00 Jg T stable networks have high autocorrelations, so the run length
and therefore T must be qu_ite large to estimate Iong—rgn performance
L measures. Third, sample paths for a heavily loaded stable
W= A network and and a barely unstable network are quite similar;

no discontinuity occurs, for example, in M/M/1 models as
defines a time-averaged mean time in the network. As traffic intensity increases from less than one to greater than
always with Little’s Law, the result can be applied to the one.

network model as a whole or to any part. If, however, Another disadvantage is that, because a simulation-
time-homogeneous data are collected from a seasonal net-based algorithm is correct only some fraction of the time,
work model everys time units, then collecting number of a confidence statement is required. Such statements often
customers is well defined, whereas collecting times in the are true only asymptotically and, even if the assumptions

network is not. hold, are easily misunderstood by the practitioner.
Finally, simulation seems to be restricted to stability
3.3 Linear Growth definitions based on rates and moments. Stability definitions
based on asymptotic almost-sure bounds on sample paths
For seasonal and time-homogeneous networks with are tractable only with mathematical analysis. On the other
E(A(T)) hand, the first-order sta}bility definition, based on average
lim = AA number of customers directly can be extended to
T—>00 T
and . T E(NK(t
_ E(D(1)) Bt = lim / =
im ———— =A\p oo t
T—>00 T

for positive integer¥k, allowing stability to be based (for

the expected number of customers has linear growth rate ;
example) on the variance of customer numbers.

with asymptotic slope
AN = AA — AD. 5 ALGORITHM CONSIDERATIONS
This result holds for both stable and unstable networks. If The stability-checking problem assumes that a simulation

the network is stableiy = 0. If the network is unstable, code is given for the network model of interest. To obtain a
An > 0. Therefore, a stability-checking algorithm could particular stability-checking problem instance, we need to

base its answer on an estimatejgf. From Little's Law, have three additional types of information about the problem
the expected time in the network also grows linearly. context.
First, is a definition of stability to be specified? A rea-
4 DISADVANTAGES OF SIMULATION sonable default definition is that the time-averaged number
FOR CHECKING STABILITY in the network has finite limio.

Second, is the run length fixed? For a simulation
Both the simulation and analysis approaches are useful for practitioner whose experiment has ended with an ‘out-of-
determining network Stabl'lty The analytical approach con- memory’ error message, is fixed. For a researcher who
siders a class of network models, answering with certainty s investigating stability issues, can be chosen, with the
whether the class is stable, or providing no answer because option of increasing the run length to obtain better algorithm
the network class is intractable. The simulation approach performance.
considers a particular network, always answering, but with Third, is the length of the network seasonalityknown
some associated sampling-error uncertainty. Compared t0 tg the algorithm? If the network is time-homogeneous, does
probability analysis, using simulation to check stability has the algorithm know? Asymptotically, many algorithms will

524

Wieland, Pasupathy, and Schmeiser

perform the same with or without seasonality knowledge,
but for short run lengths, seasonality knowledge should
help an algorithm.

Now, given a problem instance, a specific stability-
checking algorithm can be designed. There are at least
three high-level design decisions to be made.

First, the algorithm can take either a Bayesian or fre-
guentist framework. ldeally, the algorithm should be able
to reflect the prior probabilities of whether the network is
stable or unstable, which favors a Bayesian approach. Ad-
ditionally, the algorithm should be able to reflect the costs
of incorrect classifications, both concluding stable for an
unstable network and vice versa, which either framework
can do.

Second, the algorithm can be based on either number
in the network or times in the network (or possibly both).
Law (1975) shows that direct estimation bf or of W
is less efficient than estimating mean queueing time, and
then indirectly estimatind. andW. Law considered only
single-station networks, but the same statistical advantage
can be obtained in general networks by estimating mean
time in the network by substituting mean service time for
observed service time. If the assumption that the simulation
code is given is taken literally, however, so that only the
processe®\, D, andN are observed, indirect estimation is
not possible.

Third, the algorithm can use data from the entire network
or data from individual stations. If eststation network has
only one station that is unstable, then the instability signal
from that station alone will be easier to detect than from
the aggregate network.

6 A STABILITY-CHECKING ALGORITHM

To illustrate the key issues in designing a simulation-based
stability-checking algorithm, we present an example fre-
guentist algorithmAg. This algorithm is based on estimat-
ing the time-average network growth ratg, = E(N(7))/t,

with batching used to estimate sampling error. The algo-
rithm is based on classical hypothesis testing, with null
hypothesisHp: An = 0 and alternative hypothesids:

AN > 0. That is,Hg is that the network is stable artd;

is that the network is unstable. This algorithm is presented
with no computational results or claim of particularly good
performance; rather it is to serve as a basis for discussion
of algorithmic issues in Section 6.2.

6.1 Algorithm Ag
Given: Observed output datd(t) for0 <t < t.
Step 0. Choose a number of batcheswith a default

value ofb = 10. Choose a nominal probability of
type | error, with a default value af = 0.05.

525

Step 1. For each batch = 2,...,b, compute the
batch observation

it/b Nt
/ NO 4.
(j—1z/b T/D

the time-average number in the network during the
jth batch.

Step 2. Compute the difference between the last and
second batch observations:

5\, =

N.j

N =ANb — AN,2

Step 3. Compute the variance of the batch observations:

b 22 32
@ _ Zi=2Mnj ~ PR
B b—2

Step 4. Conclude unstable if and onlyHb is rejected;
that is, reject whenever

A

AN

V2s

wheret;_, p—2 is the 1— « Student-T quantile
with b — 2 degrees of freedom. (For the default
values ofb = 10 anda = 0.05, t1_4 p—2 = 1.86
and stability is rejected ity > 2.63s.)

> {1-a,b-2,

6.2 Critique of Algorithm Ap

How does AlgorithmAg fare in terms of the five criteria
for comparing algorithms discussed in Section 1.4? First,
it is general and applicable to any seasonal (including time-
homogeneous) network. Second, the number of batdhes,
and the probability of type | erros, are ‘magic’ parameters,
with values that the practitioner should not be asked to
choose; the default values bf= 10 anda = 0.05 are not
surprising, but other values could well be better. Third, the
algorithm is fast and easy to implement. Fourth, the nominal
value of PCC is I« if the network is stable and unknown

if the network is unstable. Fifth, thevalue (the probability
that aT value is greater than the observied/(s/+/b)) is
often taken as a kind of confidence statement.

Algorithm Ap leaves much to be desired in terms of
Criterion 4. For a fixed run length, Figure 2 shows PCC
as a function of the network model; think of the horizontal
axis as being the traffic intensity of &h/M/1 model in this
example. The figure’s curves assume that the underlying
assumptions all hold: that is, that the initial transient is
negligible, the batch valuefsN,j are essentially normally
distributed and independent. These assumptions, if true,
would provide PCC= 1 — « for any stable network, which

Wieland, Pasupathy, and Schmeiser

is traffic intensityp < 1 for this M/M/1 example. Because
there is no discontinuity of sample-path behaviopat 1,
there is a discontinuity in PCC, with suddenly PECx.

The value of PCC then increases monotonically to one for
networks that are more and more unstable. Even here with
all assumptions being true, the effect of increasing the run
lengtht is only to raise the PCC curve for valuesof- 1;

the value for stable models can be raised only by lowering
the values for unstable networks.

IType I Error

0.5 9

Probability

Traffic Intensity

Figure 2: Example PCC Curve for Algorithms
under Assumptions

The assumptions, of course, never hold exactly. There
is an initial transient, which tends to look like instability.
For this reasonAp uses the second batch rather than the
first in Step 2. For stable networks close to instability,

large autocorrelations cause dependence between the batc

valuesiN,j, causing the standard-error estimajg/b to

be too small for any given run length and number of
batchesh. For asymptotically large batches, however, the
batch observationéN,j are normal and independent for
both stable and unstable networks. Undy, the Step-2
point estimator,

AN = AN,b — AN,2,

is asymptotically normal with mean zero.

Our use of the time-average batch observatiogs is
important to obtaining the appropriate asymptotic perfor-
mance. Initially, our batch observations in Step 1 were the
simpler

s N(jz/b) — N((j — Dt/b))
N = /b ’

the rate of change ifN(t) during the jth batch. Then
corresponding point estimator afy, the average of the
batch observations, is

i = N@)
T

526

Because this point estimator is based only on a snapshot
of the number of customers at time rather than a time
average, it is not asymptotically normal, despite being the
mean of batch observations in Step 2. To provide a specific
example, assume that the modelNs/M/1 with traffic
intensity p. Then at steady staté\l(t) has a geometric
distribution with mean BN(t)) = p/(1 — p) and variance
Var(N(t)) = p/(1 — p)2. Therefore, the point estimator
An is not asymptotically normal for this important special
case.

If Algorithm Ap had been defined usingy j rather
thaniN,j, asymptotic normality could have been achieved
by using independent replications (rather than batching) to
unlink the An,j values. The cost, however, would be that
each replication would incur the initial transient, a severe
disadvantage in an algorithm whose purpose is to check
stability.

Criterion 5 is also an issue. In fact, no confidence
statementis provided. Thevalue easily could be computed,
but for stable networks with all assumptions holding the
distribution of p values is uniform ovef0, 1], so a better
confidence statement is needed. The confidence interval

0<iN <t b 2v2s

has nominal confidence 1 «, but is only a restatement
of the hypothesis-testing analvalue computations. Better
would be a confidence statement that is directly about the
algorithm’s PCC.

h] CONCLUSIONS AND EXTENSIONS

FOR FUTURE RESEARCH

Developing an excellent algorithm for checking stability
might be quite difficult. Although many given models are
quickly seen to be either stable or unstable, stable models
that are close to unstable are difficult to simulate because
of high autocorrelation in the output data. Furthermore,
the discontinuity in the probability of correct classification

at the stable-unstable boundary almost guarantees that any
algorithm based on hypothesis testing will be wrong more
than half the time for some models.

We have focused on seasonal models, with time-
homogeneous models as a special case. Even if the modelis
time homogeneous, simulation experiments estimate steady-
state performance measures using time averages. Once time
averages are used, a stability-checking algorithm can natu-
rally be extended to seasonal models.

We prefer a Bayesian framework, especially if the
prior distribution meaningfully can reflect the practitioner’s
belief. Additionally, a Bayesian posterior distribution allows
a meaningful confidence statement about the algorithm’s
PCC.

Wieland, Pasupathy, and Schmeiser

Another research problem related to stability checking
is that of estimating the stable-unstable boundary for a

of open queueing networkd$?roblems of Information
Transmissior28: 199-220.

class of network models and one model parameter. Here Schruben, L.W. 1997. Simulation optimization using si-

the algorithm would have the ability to simulate whatever
networks it chooses, possibly extrapolating to obtain its
estimate. Inthe continuous version, the problemis much like
stochastic root finding (e.g., Chen and Schmeiser (2001)),
except that the problem is to find the model parameter

where some performance measure becomes infinite, rather

than a specified finite value. In a discrete version, such
an algorithm would help the practitioner to determine the
minimum numbers of servers required to serve a fixed load
or determine the maximum release rate in a production
network. (See, for example, Schruben (1997).)

ACKNOWLEDGMENTS

multaneous replications and event time dilatidtro-
ceedings of the Winter Simulation Conferened. S.
Andradottir, K.J. Healy, D.H. Withers, and B.L. Nelson,
177-180.

Seidman, T.I. 1994. Firstcome, first served can be unstable!.
IEEE Transactions on Automatic Conti@®, 10: 2166—
2171.

Sharifnia, A. 1997. Instability of the join-the-shortest-
queue and FCFS policies in queueing systems and their
stabilization.Operations Research5, 2: 309-314.

AUTHOR BIOGRAPHIES

JAMIE R. WIELAND is a Master’s student in the School of

The first author's research was supported by an Eastman Industrial Engineering at Purdue University. She received a

Kodak Fellowship from the Center for Collaborative Man-
ufacturing at Purdue University.

REFERENCES

Banks, J., and Dai, J.G. 1997. Simulation studies of multi-
class queueing network#EEE Transaction®9: 213—
219.

Bramson, M. 1994a. Instability of FIFO queueing networks.
The Annals of Applied Probabilitg, 2: 414-431.

Bramson, M. 1994b. Instability of FIFO queueing net-
works with quick service timesThe Annals of Applied
Probability 4, 3: 693-718.

Chen H. and Schmeiser, B. 2001. Stochastic root finding via
retrospective approximatiohE Transaction83: 259—
275 (special issue dDperations Engineeringonoring
Alan Pritsker).

Dai, J.G. 1996. A fluid limit model criterion for instability
of multiclass queueing network3he Annals of Applied
Probability 6, 3: 751-757.

Dai, J.G., and O.B. Jennings. 2003. Stability of general
processing networks. Chapter 7 8tochastic Mod-
els and Optimization193—243: Springer Series, New
York.

Dai, J.G., and Meyn, S.P. 1995. Stability and convergence
of moments for multiclass queueing networks via fluid
limit models. IEEE Transactions on Automatic Control
40, 11: 1889-1903.

Kumar, P.R., and Seidman, T.I. 1990. Dynamic instabili-
ties and stabilization methods in distributed real-time
scheduling of manufacturing system&EE Transac-
tions on Automatic ControB5, 3: 289-298.

Law, A.M. 1975. Efficientestimators for simulated queueing
systems.Management Scien@?, 1: 30-41.

Rybko, A.N., and Stolyar, A.L. 1993. On the ergodic-
ity of random processes that describe the functioning

527

B.S. in Industrial Engineering from Northwestern University
in 2001. Her primary research interests are in applied
stochastic modeling. Her e-mail addressjaieland@
purdue.edu>

RAGHU PASUPATHY is a Ph.D. student in the School of
Industrial Engineering at Purdue University. His dissertation
has focused on designing efficient algorithms for the solution
of general stochastic root-finding problems. His broad
research interests are in the area of stochastic operations
research. His email address 1pasupath@purdue.

edu>.

BRUCE W. SCHMEISER is a professor in the School of
Industrial Engineering at Purdue University. His interests lie
in applied operations research, with emphasis in stochastic
models, especially the probabilistic and statistical aspects
of stochastic simulation. He is an active participant in the
Winter Simulation Conference, including being Program
Chairin 1983 and chairing the Board of Directors from 1988-
1990. His email address isbruce@purdue.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 520
	02: 521
	03: 522
	04: 523
	05: 524
	06: 525
	07: 526
	08: 527

