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ABSTRACT to obtain analytical results for backlogs and delays, where
one relies on stochastic comparisons, coupling arguments
Simulation can provide insight to the behavior of a complex (Bambos and Michailidis 2002; Xia, Michailidis, Bambos,
gueueing system by identifying the response surface of and Glynn 2001) and large deviation principles (Schwartz
several performance measures such as delays and backlogsand Weiss 1994). However, one usually needs to impose
However, simulations of large systems are expensive both strongstructuralassumptions about the system under study
in terms of CPU time and use of available resources (e.g. (e.g. balanced input rates). Therefore, simulation becomes
processors). Thus, itis of paramountimportanceto carefully an important tool for understanding the performance of
select the inputs of simulation in order to adequately capture complex queueing models.
the underlying response surface of interest and at the same Simulation can provide insight to the behavior of a
time minimize the required number of simulation runs. complex system by identifyingesponse surfacef®r sev-
In this study, we present a methodological framework for eral performance measures, such as backlogs and delays as
designing efficient simulations for complex networks. Our functions of various control parameters; e.g. control poli-
approach works in sequential and combines the methods cies, distributions of inputs and service times, buffer sizes,
of CART (Classification And Regression Trees) and the etc. However, simulation of large systems are expensive
design of experiments. A generalized switch model is used both in terms of CPU time and use of available resources
to illustrate the proposed methodology and some useful (e.g. processors). In this study, we develop methodology

applications are described. for designing efficient simulations for complex networks.
From a modeling perspective, the goal is to (i) adequately
1 INTRODUCTION capture the underlying response surface, (ii) efficiently use

the available experiment runs, (iii) provide an interpretable
Traditional network models have played an important role model and (iv) provide a means to evaluate the “goodness
over the last four decades in providing insight in the dynam- of the model. Our approach works in sequential and com-
ics of telecommunication, computer, manufacturing, traffic bines classification and regression trees (CART) (Breiman,
and distribution systems (Baccelli and Bremaud 1994; Ser- Friedman, Olshen and Stone 1984) and the design and anal-
fozo 1999; Walrand 1988). Such complex stochastic systems ysis of experiments (Federov 1972; Wu and Hamada 2000),
typically have a large number of control parameters that can while the first one is used to partition the input space into
have a significant impact on the performance of the system. homogeneous subregions and the second one selects the
Typical performance measures are the system’s throughput, optimal location of the inputs to simulate the system.
backlogs and delays of customers/jobs, as well as other gen- The paper is organized as follows. In Section 2 a specific
eral costs/revenues associated with their operation. Over queueing model is introduced and used to illustrate the
the years a fairly rich literature has been developed for de- proposed methodology. In Section 3, the proposed approach
termining the throughput capacity of complex systems, as is presented for a small system and some applications are
well as constructing control policies that achieve maximum described. In Section 4 some concluding remarks are drawn
throughput under different stochastic assumptions on the in- and an alternative approach currently under investigation is
put and service processes; for example, drift analysis (Hajek briefly discussed.
1982), fluid models (Dai and Meyn 1994; Dai 1995; Meyn
1996), sample path analysis (Baccelli and Bremaud 1994;
Walrand 1988). On the other hand, it is a much harder task
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2 A GENERALIZED SWITCH MODEL

In this Section we introduce a particular queueing model
exhibiting complex dynamics that is used to motivate and
illustrate the proposed methodology. Consider a queueing
system consisting ofQ infinite capacity first-in-first-out
(FIFO) queues in parallel, each queue corresponding to
a different class of job traffic. The clasp jobs arrive
according to a renewal procesk; of mean rateiq, g =
1,...,Q. There are also a pool d@ processors, whose
service times are mutually independent random variables,
independent of the arrival processes, with distributions that

depend on both the job class and the processor class. That

is, the processing time of a claggob assigned to a class

J processor has distributioRjq and mean O< /,Lj_ql <

co. At certain points in time, a processor must decide
whether or not to process a job, and if so, from which
of the Q classes. This basic queueing model captures the
essence of a fundamental resource allocation problem in
many modern communication, computer and manufacturing
systems involving heterogeneous processors and multiple
classes of job traffic flows (Hung 2002).

The decision mechanism employed by the processors at
each of their decision points definep@cessor allocation
policy. It can be seen that due to the fact that all processors
can process all classes of jobs, withrying degrees of
efficiencyany processor allocation scheme induces complex
dynamics.

The most fundamental problem for any queueing system
is that of system stability. For a given set of service rates
{tjq} and mean arrival vectar = (A1, ..., Xq), the system
is said to bestableunder some policy, if the conditional
expectationE[N”(t)|N”(O)] is uniformly bounded above
by a constant, wherdl” (1) is the vector of queue lengths
at timet (Hajek 1982). The set of arrival rate vectors for
which the queueing system under studgiybe stabilizable
by some policyr is given by the set (Hung 2002):

Q
=1

1)

wherewjq € [0, 1] and satisfyzc?zleq < 1. The region

S is known in the queueing literature as tstability region

of the system (Walrand 1988). In Figure 1, the reg®n

is shown for a system with 2 job classes and 2 processors
(called henceforth a2 system).

It can be shown that if the average input rait& S,
then for any policyr, lim{_.o N7 (t) = co. In words, this
implies that there is10 scheduling policyr that can keep
the queue backlogs (and consequently job delays) finite in
the long run (Hung 2002). On theﬁotherqhand,iife S
it doesnot necessarily imply thaE[N” (t)|N™ (0)] < oo
for any server allocation policyg. However, a particular
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Figure 1: The Stability Regios of
a 2 Queue, 2 Processor System with
pmi11=2,pu12=1, u21 =1, uz2 =3

policy called Maximum Weighted Queue Length (MWQL)
that at any decision point in time allocates procegdorthe
gueue with maximum prodquMWQL(t)ujq maximizes the
system’s throughput; that is, sug E[NMWRL ()] < oo as
long asi € S (Hung 2002).

The question of interest then becomes how other per-
formance measures, such as job delays, behave under the
MWQL policy, for different choices of the arrival and service
time distributions (e.g. exponential, gamma, etc). In order
to answer this question one has to resort to a simulation
study.

3 METHODOLOGY FOR SIMULATION

The complex relationship between the system response and
the inputs requires a flexible model to adequately approxi-
mate the network dynamics. One could use a non-parametric
regression approach (e.g. MARS (Friedman 1991)) to help
model the response. However, non-parametric procedures
do not provide an easy to interpret model relating the input
factors to the response. Moreover, the theory of which input
points to choose in th& region in order to fit a model with
good properties (e.g. small standard errors of the coeffi-
cients) has not been developed. The aim of this endeavor
is to find an easily interpretable response surface where we
can gain insight into which factors dominate the response
in different areas of the stability regiafl. Consequently,

a polynomial based function is attractive. The proposed
approach is based on fitting treed models (Alexander and
Grimshaw 1996). Atreed modelis an elaboration of conven-
tional regression tree models (Breiman, Friedman, Olshen,
and Stone 1984) that use binary trees to partition data into
homogeneous subsets, where the response can be described
by a simple mean. Although such models can provide a
useful approach for handling interactions and nonlinearities,
they do not fully exploit partitions with more substantial
structure within the subsets. To overcome this limitation,
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treed models are constructed so that thedel structure
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to fit the regression model, one is able to efficiently use the

as opposed to the data, is homogeneous within a terminal available resources.

node, which in turn allows a richer and more parsimonious
overall model. Moreover, the theory of choosing the opti-
mal location of the inputs iy so as to optimize the desired

Next, a polynomial regression model is fit within each
subregion and the goodness of fit is evaluated. The local
model evaluation is done using the usual residual analysis

characteristics of polynomial regression models has been techniques. When the model fit is not adequate, the degree
well studied over the years (Federov 1972; Wu and Hamada of the polynomial is increased and more trials are performed.
2000). In our approach we use the D-optimality criterion This step allows the resources to be used in regions where

(Federov 1972) to help decide which simulation trials to

perform. Experiment designs based on the D-optimality
criterion select the input points to minimize the overall

uncertainty of the estimated regression coefficients for a
polynomial regression model.

the model is most complex.
3.1 lllustration of Methodology Applied to a 2x 2 System

We first focus our attention to a system comprised of two

The proposed methodology is sequential and allows for job classes and two processors with service rates=
efficient use of available resources and model evaluation at 2, 12 = 1, w21 = 1, u22 = 3. The stability regionS of

each step. The final result is a set of local linear models
approximating the response throughout the stability region.
The steps of the new methodology are summarized below:

1. Run a small simulation experiment based on an
initial experiment design.
2. Perform a CART analysis on the results in step 1.
This partitions the input spacg into subregions
S1, ..., Sk
3. Ineach subregioi;, augment the existing simula-
tion trials with additional trials so that a polynomial
regression model of the desired degree can be fit.
The additional design points should be allocated
using an optimality criterion such as D-optimality.
Fitlocal polynomial regression models and evaluate
the fit. For each subregion where the model is not
adequate, increase the degree of the polynomial
regression model and return to step 3.
In the first step of this procedure, an initial allocation of
design points (experimental trials) is used. The purpose of
this step is to have an initial set of trials so that CART can

this system was shown in Figure 1. Our main objective
is to approximate as well as possible the delay surface of
interest (e.g. average delay, median delay, 95th percentile)
of this system over the entire stability regighwith the
smallest possible number of simulation runs.

A naive, but popular in practice, approach is to super-
impose onS a regular grid of sufficient density and then
simulate the system at all the grid points. The resulting
average delay surface under Poisson arrival processes and
exponential service times based on 60 simulation runs is
shown in Figure 2. The graph reveals that the average delay
is small for lightly loaded systems, and becomes an order
of magnitude larger at the 3 corners &f Moreover, the
picture in the right panel of Figure 2 suggests that it would
be beneficial to use the logarithm of the average delay (or
any other metric of interest) as the response variable in the
model building stage.

Remark: This naive approach becomes impractical for
systems with higher dimensional input spaces. For example,
consider generalized switches with more than 3 job classes.

be used to partition the input space into more homogeneous In those cases, the number of grid input configurations that

subregions. This design could be based on a D-optimal
design for a global second order model, a space filling
design (Box and Draper 1987; Wu and Hamada 2000),
expert knowledge or some combination of these. In practice,
we have found that an initial allocation of about 25% of
the experimental budget (number of simulations available)
is a good rule of thumb for the size of the design in this
step.

In step 2, a CART model is used to summarize the
responses. This amounts to a partition of the input region,

into more homogeneous subsets so local polynomial models

can be fit. Because the CART procedure will likely result in

some partitions where there are too few degrees of freedom

to fit the polynomial models, the existing experiment trials
in each subregion are augmented with additional design
points following the D-optimality criterion. By augmenting
the already existing trials with only enough trials necessary

514

need to be simulated increases exponentially, and because of
constraints in computational resources one may need to use
a very sparse grid that would fail to capture the underlying
response surface.

The fitted surface based on 60 simulation runs would
serve as a benchmark for testing the performance of the
proposed methodology. Le;-/t(X) denote the response vari-
able (in this case the logarithm of the average delay) for
the input configuratiori. Our objective is to construct a
statistical model of the form

K
yoi) =Y B+, i=1....

k=0

N,

2

for appropriately chosen functionf, and wheree is a
random error term, by using as few observations (that are
going to be obtained by simulating the queueing system)
as possible (smalh). The number of simulation trials,
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Figure 2: Linearly Interpolated Average-Delay Surface (Left Panel) and Average-Delay Surface in
Log-Scale (Right Panel) for thex2 Model with Poisson Arrivals and Exponential Service Times
under the MWQL Policy

n, is largely determined by the computational resources A
available, system complexity and the degree of accuracy |
we are interested in achieving. Then, the main issue becomes
which input configurations; to choose; i.e. which locations

in the S region to select for simulating the system. In our
methodology the function§(-) correspond to polynomials,
usually of low degree (e.g. 1 and 2).

We begin by considering the second order model that
involves linear and quadratic main effect terms and linear
interactions among the factors over the entire feasible region.
So, for the %2 system, the model is:

y(h) = Bo+Brr1+ B2ra+ Bard + Bars+ Bshda+e. (3)

Figure 3: The 7 Input Locations Se-
lected by D-Optimal Design Based on
Model (3)

The use of quadratic terms here is motivated by expert
knowledge about the behavior of queueing systems and
reinforced by the patterns observed in Figure 2.

In order to estimate the parameters of this model, a
minimum of 7 simulation runs are needed (6 for the regres- is not flexible enough for this type of response surfaces we
sion coefficients and 1 for the variance of the error term). are interested in.

The mathematical theory of D-optimality specifies that the Therefore, we use a more flexible approach that utilizes
optimal location of these 7 input configurations should be the insight gained from model (3) in our methodological
those given in Figure 3. The idea behind D-optimal design framework. In general, one can anticipate the general pat-
is to choose the locations in such a way, so as to minimize terns observed in Figure 2 and Figure 4. That is, when the
the volume of the confidence ellipsoid for the regression input rates are low, the average delay will be fairly small.
coefficient vectorB (Federov 1972). It is only when the queues get backed up will the average

Based on these 7 design points, the resulting predicted delays get large, and the pattern near the boundary will
average delay surface (after interpolation) and the plot of the be observed. Therefore the second order model in (3) is
difference of the predicted delays according to the model and & good starting point for investigation. As a consequence,
the true responses (derived directly from simulation) for 60 Step 1 of our approach uses the same design points for a
input configurations are shown in Figure 4. Itcan be seen that second order model as above. Nextin Step 2, a conventional
this model approximates fairly well the “true” underlying  tree regression model is then fit to the responses of the 7
response surface. However, as the residual plot reveals and aglesign points and according to its results, theegion is
can be gleaned from the picture, it significantly overestimates subdivided into 3 more homogeneous subsgtsS, and
the average delay for lightly loaded system (near the origin), S3 (see Figure 5).
while underestimating it close to the boundariesSofThe In Step 3 and Step 4, we need to decide what type of

Shortcoming of this mode”ing approach is that the model modeltofitin the resulting 3 subregions and then allocate ad-
ditional design points (always according to the D-optimality
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Figure 4. The Predicted Average-Delay Surface (in Log-Scale) Based on 7 Design Points Using
Model (3) versus the “True” Surface Derived from the Naive Approach (Left Panel) and the Plot of

(Predicted-True) Delays in Log-Scale (Right Pane

criterion used) byaugmentinghe existing design (i.e., add
points to the already available ones within every subregion
Si, i =1,2,3). We start by fitting a simple polynomial
model and the fit is evaluated within each subregion using
standard regression techniques. Next, for subregions where
the model fit is not adequate only, sequentially increase the
degree of each polynomial, adding the appropriate number
of design points to fit the model and keeping 3 degrees of
freedom for error. After a recursive running of Step 3 and
Step 4, model (3) was fit to each of the subregions and the
resulting surface and its residual plot are given in Figure 6.

It can be seen from Figure 6 thatthis model approximates
very well the ‘true’ response surface, especially at the corners
of the S region where most of the action in terms of average
delay is. It is worth noting that this model uses only 27
(3 subregionsx 9 points/subregion) simulation runs. The
resulting local polynomials for the three subregidhs S»
and Sz are listed below:

log(y(%)) = —1.15* + 0.08*A1 — 0.15*A» — 0.13*A1A2
+0.26°22 + 0.19°A3; R? = .992
log(y(L)) = 19.19 — 5.0541 — 13.70%45 + 1.2241A2
+ 12422 + 2.42).3; R? =.940
log(y(L)) = 56.38" — 44.981 — 0.41%5 — 0.224112
+9.11*A% + 0.51"23; R? =.991

wherex denote the significant coefficients at the 10% level
and with all three models being statistically significant at the
1% level. Based on the above local polynomial models, we
can interpret how the input factors (input arrival rates) affect
the average system delay in each subregion. For example,
the relatively large (in magnitude) coefficients of the last two
polynomials indicate that a slight change of input rates in
S2 andS3 can significantly affect the average system delay.
On the other hand, smaller (in magnitude) coefficients of
the first polynomial constitute a relatively flat average delay
surface onS1. Note that only the coefficient of the term
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1)

Figure 5. Three Subregions Derived
from CART Based on the Responses
of the 7 Design Points

M1A2 in the first polynomial is statistically significant. This
implies that the interaction between two input rates might
play a much more important role that affects the average
system delay inS;.

3.2 Application 1: Predictions

The main benefit of having a good model for the delay
response surface is that we can predict the average system
delay atuntried input locations. To investigate the quality
of our predictions based on the constructed treed model,
we compare the true responses obtained from simulating
the system atn randomly chosen locations with the pre-
dictions obtained from the model. In order to carry out
this comparison the criteria of empirical integrated squared
error (EISE) and maximum absolute error (MAE) are used
(Wu and Hamada 2000). The results for the predictions
at 30 randomly chosen locations in tiseregion, for the
2x2 model under exponential interarrival and service times
for the treed model, the original quadratic model (3) and a
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Figure 6: The Predicted Average-Delay Surface (in Log-Scale) Based on the Flexible Approach versus
the “True” Surface Derived from the Naive Approach (Left Panel) and the Plot of (Predicted-True)

Delays in Log-Scale (Right Panel)

third competing approach that fits multivariate adaptive re-
gression splines (MARS) (Friedman 1991) to the responses
at the 27 locations used in the treed models under these
two criteria are given in Table 1. It can be seen that our
flexible approach has the smallest EISE2() and MAE
(0.512) relative to a data range 2.406 (maximum true value
- minimum true value). It clearly outperforms the other two
approaches.

Table 1: The Comparison of EISE and MAE
for Three Different Approaches Based on
30 Predictions under the MWQL Policy

Response: |og(average delay)

EISE MAE
Model (3) (0.445)° 0.699
MARS (0.728)" 1520
TreedMode  (0.218)° 0512
Data Range 2.406

3.3 Application 2: Comparisons
of Response Surfaces

Another benefit of the proposed methodology is that it
allows one to make comparisons between different response
surfaces that correspond to the system under study for
different control policies or for the same control policy but
under different stochastic assumptions. We illustrate this
aspect of our methodology by looking at our generelized
switch operating under another policy called the Maximum
Service Rate (MSR) policy, that at decision times allocates
serverj to the job clasg with maximum service ratg jq,

with the assumption of exponential interarrival and service
times.
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First, applying our methodology a good model for the
average delay is built. At the second stage, using the derived
treed models the predicted average delay (in log-scale) is
calculated at 806 locations i located on a 2-dimensional
grid. Then, the differences of the delays for the system
operating under two different policies are calculated and the
result (in the form of contour plot) is given in Figure 7. It
can be seen that the MSR policy outperforms the MWQL
policy for lightly loaded systems and in the corners of the
stability region, where almost all the incoming jobs belong
to one of the two classes. It is easy to see that having
one of the servers dedicated to the heavily loaded class and
only the second server switching between classes (what is
basically hapenning in those corners under the MSR policy)
definitely helps with respect to average delay.

Figure 7: The Contour Plot of the Dif-
ferences of the Average Delays (in Log-
scale) for the System Operating under Pol-
icy MWQL and MSR (MWQL-MSR)
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3.4 Application 3: Identify the luput Region 1991; Sacks, Welch, Mitchell, and Wynn 1989), and have

for a Given Threshold of Response obtained some initial promising results. This approach is
also sequential in nature and is expected to be able to handle

Building a good model for the response surface over the a more general type of response surfaces that might exhibit

entireS region also allows us to be able to identify a subset non-monotone properties.

of all possible input rate§Y ¢ S when a threshold of the

response is set, that iSY = {i : y(&) < U, % € S} for REFERENCES
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