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ABSTRACT

Over the last decade, importance sampling has been a p
ular technique for the efficient estimation of rare even
probabilities. This paper presents an approach for appl
ing balanced likelihood ratio importance sampling to th
problem of quantifying the probability that the content o
the second buffer in a two node tandem Jackson netwo
reaches some high level before it becomes empty. Heuris
importance sampling distributions are derived that can b
used to estimate this overflow probability in cases whe
the first buffer capacity is finite or infinite. The proposed
importance sampling distributions differ from previous bal
anced likelihood ratio methods in that they are specified
functions of the contents of the buffers. Empirical result
indicate that the relative errors of these importance sampli
estimators is bounded independent of the buffer size wh
the second server is the bottleneck and is bounded linea
in the buffer size otherwise.

1 INTRODUCTION

The estimation of rare event probabilities has received co
siderable attention over the last decade. Tandem Jacks
networks serve as a simplified model for analyzing rar
events in many systems such as switched telecommunicat
networks, manufacturing systems and computer network
System performance measures such as the probability t
the system size or a specific queue length exceeds a giv
level are needed to accurately assess system reliability, p
ticularly the time until one of these events occurs.

Importance sampling is gaining popularity as an ef
ficient method for analyzing rare events in queueing an
reliability systems (see Asmussen and Rubinstein 1995, H
delberger 1995). The application of importance samplin
involves simulating the model using an auxiliary distribu
tion designed to make the system experience rare events
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interest more often. Large deviations theory has been us
to derive a heuristic change of measure for estimating t
probability that the total system size exceeds a given lev
before returning to zero in tandem Jackson networks (s
Parekh and Walrand 1989). Thisexponential twistingor
tilting change of measure interchanges the arrival rate a
the smallest service rate in the network. This heuristic wa
later analyzed by Glasserman and Kou (1995) who esta
lished necessary and sufficient conditions for the asympto
efficiency of this importance sampling estimator. More re
cently, de Boer, Kroese, and Rubinstein (2002) proposed
adaptive importance sampling method that utilizes a min
mum cross-entropy optimization approach to estimate th
overflow probability in three stages by approximating a
optimal tilting parameter.

The balanced likelihood ratio approach to importanc
sampling (see Alexopoulos and Shultes 1998, 2001) was d
veloped for analyzing system performance in fault-tolera
repairable systems. This approach has been used to de
importance sampling estimators for limiting system unavai
ability and mean time to system failure that yield bounde
relative error. Shultes (2002) applied this approach to e
timate the system overflow probability in tandem Jackso
networks. This method yields a zero variance importanc
sampling distribution for a single node system. For system
with more than one node, this method yields asymptotical
efficient results with some restrictions on the model param
eters.

The rare event studied in this paper is the buffer overflo
probability at the second node in a two node tandem Jacks
network. An exponential tilting technique was developed b
Kroese and Nicola to estimate this overflow probability (se
Kroese and Nicola 2002). These authors exponentially t
a Markov additive process representation of the system
derive an importance sampling estimator. Their distributio
is state dependent in that it depends on the contents of
first buffer.
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This paper applies the balanced likelihood ratio a
proach to derive an importance sampling distribution fo
estimating the overflow probability at the second node in
two node tandem Jackson network. Like all balanced like
hood ratio methods, the distribution has guaranteed varia
reduction over standard Monte Carlo methods. Unlike t
distributions from Shultes (2002), the proposed distributio
depend on the contents of the buffers and can be app
to any set of arrival and service rates. A complete pro
of optimality is not available at this time, but numerica
results suggest asymptotic efficiency.

Section 2 presents the model studied and provides
overview of importance sampling and the balanced like
hood ratio approach. Section 3.1 and 3.2 provide details
the proposed method for the infinite and finite first buffe
cases respectively. Section 4 contains experimental resu
Conclusions and future research directions are presente
Section 5.

2 BACKGROUND

Consider a tandem Jackson network with two nodes. C
tomers arrive at the first queue according to a Poisson proc
with rateλ.The service time of a customer at the first node
exponential with rateµ1, independent of the input proces
and service times at the second node. The output proces
the first queue forms the input process of the second que
The service time at the second node is exponential w
rateµ2, which is also independent of the input process a
service times at the first node. Without loss of generali
assume thatλ + µ1 + µ2 = 1. The queueing system is
assumed to be stable, i.e.,λ < min(µ1, µ2).

Let X(t) andY(t) denote the number of customers a
the first and second node at timet , respectively (including
customers in service). Letb denote the size of the first buffer,
which may be finite or infinite. The quantity of interest is th
probability(γ ) that the number of customers in the secon
queue reaches some high levelB ∈ IN before hitting 0. We
wish to estimate this probability given that the system sta
in state(X(0) = 0, Y(0) = 0) or (X(0) = 1, Y(0) = 1).
These probabilities are denoted asγ0 andγ1 respectively.

The system can be modeled as a Markov process w
system stateZ(t) = (X(t), Y(t)). Let

r (t) = λ + 1 (X(t) > 0) µ1 + 1 (Y(t) > 0)µ2

denote the total rate of event transitions out ofZ(t). The
probability that a buffer overflow is observed depends up
the embedded discrete-time Markov chain whose one-s
transition probabilities at timet are: λ/r (t) the probability
the next event is an arrival, 1(X(t) > 0) µ1/r (t) the prob-
ability that the next event is a service completion at no
one, and 1(Y(t) > 0) µ2/r (t) the probability that the next
event is a service completion at node two.
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2.1 Importance Sampling

Let � denote the set of all cycles and for eachω ∈ �, let
β(ω) denote the largest number of customers at the seco
node within the cycle. The probabilityP(ω) of observing
the cycleω is the product of one-step transition probabilities
A new distributionP′ is defined using importance sampling
such thatP(ω) > 0 =⇒ P′(ω) > 0 and

γ =
∑
ω∈�

1 (β(ω) = B)
P(ω)

P′(ω)
P′(ω)

=
∑
ω∈�

1 (β(ω) = B) L(ω)P′(ω)

where the likelihood ratioL(ω) is the Radon-Nikodym
derivative of P with respect toP′. The likelihood ratio
L(ω) can be decomposed into a product of one-step transit
event likelihood ratiosassociated with each individual even
within the cycle.

2.1.1 Asymptotic Properties

The asymptotic efficiency of an estimator can be measur
using the relative error of the estimated quantity. Relativ
error is defined as the ratio of the standard deviation
the estimator over its expected value. The estimator yie
bounded relative errorif the relative error remains bounded
as the quantity to be estimated approaches zero. This me
that, the sample size required to achieve a desired level of
curacy remains bounded in the limit. An estimator is said
beasymptotically efficientif the relative error grows at a sub-
exponential rate as the quantity to be estimated approac
zero. For importance sampling estimators, bounded relat
error implies asymptotic efficiency.

2.1.2 Variance Reduction Ratio

To compare the performance of two importance samplin
estimators, we need to take into account variance redu
tion and the computational effort required to achieve th
reduction. The variance reduction ratio (VRR) measur
the trade-off between variance reduction and the associa
computational cost. VRRs are computed by multiplying
ratio of the variances of two estimators by a ratio of th
corresponding computational effort, i.e., simulation time o
number of events sampled to generate that variance. Ty
cally, VRRs are estimated empirically by simulation. If th
VRR is less than one, then the approach in the numera
is more efficient and a VRR greater than one implies th
the approach in the denominator is more efficient.
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2.2 Balanced Likelihood Ratio Approaches

The proposed importance sampling method is based
the balanced likelihood ratio approach. This approach w
originally proposed to estimate the reliability of fault-toleran
repairable systems (see Alexopoulos and Shultes 2001)
was later adapted to estimate system overflow probabilit
in tandem-Jackson networks (see Shultes 2002). A k
feature of this approach is that likelihood ratios associat
with regenerative cycles can be bounded from above
controlling event likelihood ratios associated with individua
events within cycles.

The application of the balanced likelihood ratio ap
proach to estimateγ0 andγ1 proceeds as follows. Classify
all system events into 2 classes: events that move the sys
towards buffer overflow and events that move the syste
away from buffer overflow. Arrival events and service com
pletion events at the first node belong to the first catego
and service completion events at the second node fall in
the second category. The balanced likelihood ratio meth
balances the event likelihood ratios associated with eve
from these two classes.

Every service completion event at the second node m
be preceded by an arrival event and a service complet
event at the first node. The product of these three ev
likelihood ratios can be forced to be one for all customer
This assignment causes likelihood ratios associated w
cycles to be bounded below one. The proposed meth
has the following basic balanced likelihood ratio propertie
established by Shultes (2002).

• Every event that moves the system closer to th
rare event (arrival and service completion at th
first node) has one corresponding event (servi
completion at the second node) that effective
cancels out the events that moved the system clo
to overflow.

• Events that would complete a cycle before the sy
tem experiences a rare event have zero probabil
in the importance sampling distribution.

• If the events that move the system closer to buff
overflow are forced to be more likely, then the
corresponding future event which would move th
system away from overflow is forced to be les
likely.

3 TANDEM QUEUES

Balanced likelihood ratio methods for estimating the prob
bilitiesγ0 andγ1 when the first buffer capacity is infinite and
finite are described in Sections 3.1 and 3.2 respectively. T
importance sampling distribution is the same for estimatin
both γ0 and γ1. However, the method for estimatingγ0
includes cases which do not occur while estimatingγ1, i.e.,
when the starting state is (1,1). Hence, without loss of ge
n
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erality, the importance sampling distributions are described
for the starting state (0,0).

Customer arrival events and service completion event
at the first node generate event likelihood ratios denoted
by la andls respectively. These event likelihood ratios are
used as multipliers for biasing the probability of service
completion at the second node. The importance samplin
distribution is formed such that the content of the second
buffer reaches the boundB in all cycles. The idea is to
avoid paths which fail to experience the rare event within
the cycle.

The proposed importance sampling distribution depend
on the sample path for the processZ. For simplicity, time
and the sample path history are omitted from the follow-
ing presentation. Letλ′ denote the importance sampling
probability of an arrival event. Letµ′

1 and µ′
2 denote the

importance sampling probabilities of service completion
events at the first and second nodes respectively.

3.1 Infinite First Buffer

The importance sampling approach described in Section 2.
is directly applied to the infinite first buffer case. Assume
the system starts from state(0, 0). There are four cases to
consider: (1) The system is empty, (2) All customers are
at the first node, (3) All customers are at the second node
and (4) Customers are at both nodes in the system.

Case 1: The system is empty. The next event is a
customer arrival with probability one. The event likelihood
ratio for this event is replaced byla′ = λ/ (λ + µ2) in
the implementation to ensure that the service completion
probability at node two associated with this arrival is reduced
It is easy to show that this deviation from the basic balanced
likelihood ratio approach maintains established likelihood
ratio properties.

Case 2: All customers in the system are at the first
node, i.e., the system state is(X(t) = x, Y(t) = 0, t ≥ 0)

for some x ∈ IN. In this case, the next event could be
either an customer arrival or a service completion at the
first node. Deviating from the original balanced likelihood
ratio description, the importance sampling probability for
a service completion event at the first node is reduced to
increase the arrival probability. The importance sampling
probabilities in this case are:

µ′
1 = la

(
µ1

λ + µ1

)
, and

λ′ = 1 − µ′
1.

Case 3: All customers in the system are at the second
node, i.e., the system state is(X(t) = 0, Y(t) = y, t ≥ 0)

for somey ∈ IN. In this case, the next event could be either
a customer arrival or a service completion at the second
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node. The importance sampling probabilities wheny > 1
are:

µ′
2 = la (ls)

(
µ2

λ + µ2

)
, and

λ′ = 1 − µ′
2.

The service completion event is not allowed wheny = 1
if the rare event has not yet occurred within the cycle.
this latter case, the customer arrival probability is one.

Case 4: Customers in the system are at node one a
node two, i.e., the system state is(X(t) = x, Y(t) = y, t ≥
0) for some x ∈ IN, y ∈ IN. The importance sampling
probabilities in this case wheny > 1 derive from:

µ′
2 = la (ls)

(
µ2

λ + µ1 + µ2

)
.

The remaining probability
(
1 − µ′

2

)
is split between the

customer arrival event and service completion event at
first node based on the number of customers in the syst
The importancesampling distribution gives more importan
to arrivals when the system size is less than the buffer s
B. When the system size is greater than the boundB, the
importance sampling probabilities allocated to the arriv
event and the service completion at node one are proportio
to the respective ratesλ andµ1.

Let ρs andρa denote the fraction of
(
1 − µ′

2

)
assigned

to the service completion at the first node and the arriv
event respectively. The importance sampling probabiliti
for the arrival event and the service completion at node o
are:

µ′
1 = ρs

(
1 − µ′

2

)
, and

λ′ = ρa
(
1 − µ′

2

)
,

where

ρs =




max

(
0.5,

µ1

1 − µ′
2

)
if x + y ≤ B,

µ1

λ + µ1
if x + y > B,

and

ρa = 1 − ρs.

3.1.1 Implementation

Define two stacks:La for storing arrival event likelihood
ratios andLs for storing likelihood ratios for service com-
pletion events at the first node. Initially each stack conta
one multiplier,la′ = λ/(λ+µ2) is on stackLa andls′ = 0
is on stackLs where the 0 guarantees that the cycle does n
.

l

l

end without observing a buffer overflow event. After each
arrival event, the event likelihood ratio(λ/λ′) is pushed
onto stackLa. After each service completion event at the
second node, one likelihood ratio from each stack is re
moved. For each service completion event at the first nod
the event likelihood ratio(µ1/µ

′
1) is pushed onto stackLs

if the system is in state(x, y) for somex ∈ IN, y ∈ IN
and a likelihood ratio is removed from stackLa when the
system state is(x, 0) for somex ∈ IN.

3.2 Finite First Buffer

The balanced likelihood ratio method for estimating the
probability of buffer overflow in the second node when
the first buffer has finite capacity is described below. The
approach is similar to the infinite first buffer case.

Assume the system starts from state(0, 0). The same
four cases as in the infinite first buffer case are considere
For cases 1, 2 and 3, i.e., when the system is empty an
when the system state is(x, 0) and(0, y) for somex ∈ IN,
y ∈ IN, the importance sampling distribution is the same a
in the infinite first buffer case. When the system is in stat
(x, y) for somex ∈ IN, y ∈ IN, the importance sampling
probabilities derive from the same starting point as before

µ′
2 = la (ls)

(
µ2

λ + µ1 + µ2

)
.

As before, the remaining probability
(
1 − µ′

2

)
is split be-

tween the customer arrival event and the service completio
event at the first node based on the number of custome
in the system. Since the first node has a finite capacityb,
the fractionρs of

(
1 − µ′

2

)
assigned to the service comple-

tion at node one is increased, relative to the infinite firs
buffer case, by a factorc which depends on the number of
customers at the first node. However, ifµ1 > µ2 then this
modification is not necessary, soc = 0 in this special case.
The importance sampling probabilities for customer arriva
events and service completion at node one are:

µ′
1 = (ρs + c)

(
1 − µ′

2

)
, and

λ′ = 1 − µ′
1 − µ′

2,

whereρs is defined as before and

c = x

b

(
µ1

λ + µ1
− ρs

)
.

The method can be implemented in the same way as that
the infinite first buffer case using two stacks:La for storing
arrival event likelihood ratios andLs for storing likelihood
ratios of service completion events at first node.
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4 NUMERICAL RESULTS

Experimental results for four, two node tandem Jackso
network examples are presented. In the first example, t
second server is the bottleneck(µ1 > µ2), in the second and
third examples the first server is the bottleneck(µ1 < µ2)

and in the fourth example the service rates at the tw
nodes are equal. Results from experiments that estima
the probability that the contents of the second buffer reac
the boundB before reaching zero starting from state(1, 1)

and (0, 0) are presented for both finite and infinite first
buffer cases. These cases come directly from Kroese a
Nicola (2002). The rates in the tables can be normalize
so that the normalized rates sum to one.

The result from each simulation experiment is based o
1,000,000 cycles. Cycles end when the second node ex
riences buffer overflow or when the second node emptie
Each simulation run provides an estimate for the overflo
probability (Mean), a 95% confidence interval halfwidth
(Halfwidth) and the relative error, i.e., standard deviatio
divided by mean (RE). Computation times (CPU) are dis
played in terms of average number of events per cycl
The tables include estimates of the overflow probabilitie
obtained by applying the exponential change of measu
technique presented by Kroese and Nicola (2002). The n
merical values for these probabilities presented by Kroe
and Nicola (2002) are also provided. The numerical value
can be obtained by using the algorithm outlined in Garve
and Kroese (1999). The results from the two method
(BLR and exponential change of measure) are compar
using Variance Reduction Ratios (VRRs). If the VRR is les
than one, then the exponential change of measure meth
by Kroese and Nicola (K-N method) is more efficient and
the BLR method is more efficient if VRR is greater than
one. All simulations were implemented in C and run on a
HP C3600 workstation.

Tables 1-4 display the results for the estimates of th
probabilityγ1 for the infinite first buffer cases. Tables 5-8
display the results for the estimates of the probabilityγ1
for cases where the first buffer is limited to nine customer
Tables 9 and 10 present the estimates of the probabil
γ0 for all the four examples for the infinite and finite first
buffer cases respectively.

The relative error of the BLR method is bounded in
dependent of the buffer size when the second server is t
bottleneck in both finite and infinite buffer cases. In the
other two cases, i.e., when the first server is the bottlene
and when the service rates at both nodes are equal,
relative error is linearly bounded. Based on the numeric
results, the BLR method is more efficient than the K-N
method when the buffer at the first node is infinite. In
contrast, the K-N method is more efficient than the BLR
method forB larger than 25 in the finite first buffer cases
This is not surprising given that the BLR relative errors ar
e
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e
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only linearly bounded in this case while the relative error
for the K-N method are bounded.

The BLR method yields similar results when used t
estimate the overflow probabilitiesγ0 and γ1. The K-N
method also yields similar results except when the fir
server is the bottleneck and its capacity is infinite in whic
case the relative error increases sharply withB. Kroese
and Nicola (2002) have suggested that a different chan
of measure is needed in this case when the starting state
(0,0).

5 CONCLUSIONS

This paper presents a balanced likelihood ratio importan
sampling approach for estimating the overflow probabilit
of the second buffer in a two node tandem Jackson netwo
Numerical results indicate that the relative error is bounde
independent of the buffer size except when the first serv
is the bottleneck in which case the relative error is lin
early bounded. Empirical evidence indicates that the BL
method outperforms existing importance sampling distribu
tions when the first node buffer is infinite. More work is
needed to determine why the BLR method struggles whe
the first node buffer is finite. The theoretical propertie
of the proposed importance sampling distributions includ
ing asymptotic characteristics need to be studied in deta
The proposed methods can be readily extended to estim
individual buffer overflow probabilities in tandem Jackson
networks with more than two nodes.
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Table 1: Estimates ofγ1 in Example 1(λ, µ1, µ2 = 1, 4, 2) with b = ∞
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 1.43e-06
BLR 1.43e-06 1.26e-09 0.45e-03 85 3.8
K-N 1.43e-06 3.20e-09 1.13e-03 51 —

25 4.47e-08
BLR 4.47e-08 3.95e-11 0.45e-03 110 3.8
K-N 4.51e-08 1.00e-10 1.13e-03 65 —

50 1.33e-15
BLR 1.33e-15 1.18e-18 0.45e-03 235 3.8
K-N 1.35-15 3.01e-18 1.13e-03 136 —

60 1.30e-18
BLR 1.30e-18 1.15e-21 0.45e-03 285 3.8
K-N 1.33e-18 2.95e-21 1.13e-03 164 —

100 1.18e-30
BLR 1.18e-30 1.05e-33 0.45e-03 485 3.8
K-N 1.22e-30 2.72e-33 1.13e-03 276 —
Table 2: Estimates ofγ1 in Example 2(λ, µ1, µ2 = 1, 2, 3) with b = ∞
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 2.05e-11
BLR 2.05e-11 5.24e-14 1.30e-03 70 9.2
K-N 2.05e-11 1.97-13 4.89e-03 46 —

25 4.61e-14
BLR 4.61e-14 1.35e-16 1.49e-03 89 9.1
K-N 4.63e-14 5.07e-16 5.59e-03 57 —

50 4.31e-27
BLR 4.30e-27 1.93e-29 2.29e-03 186 8.5
K-N 4.28e-27 7.27e-29 8.66e-03 112 —

60 2.96e-32
BLR 2.96e-32 1.49e-34 2.57e-03 224 8.4
K-N 2.94e-32 5.62e-34 9.76e-03 133 —

100 8.60e-53
BLR 8.58e-53 6.02e-55 3.58e-03 378 8.4
K-N 8.49e-53 2.32e-54 13.8e-03 218 —
Table 3: Estimates ofγ1 in Example 3(λ, µ1, µ2 = 3, 4, 6) with b = ∞
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 1.35e-08
BLR 1.35e-08 3.54e-13 1.34e-03 97 6.6
K-N 1.35e-08 1.38e-20 5.20e-03 42 —

25 1.97e-10
BLR 1.97e-10 5.95e-13 1.54e-03 125 6.4
K-N 1.98e-10 2.33e-12 5.99e-03 52 —

50 2.20e-19
BLR 2.20e-19 1.03e-21 2.39e-03 264 6.1
K-N 2.22e-19 4.13e-21 9.49e-03 101 —

60 6.54e-23
BLR 6.53e-23 3.46e-25 2.70e-03 320 6.0
K-N 6.68e-23 1.39e-24 10.7e-03 120 —

100 6.79e-37
BLR 6.79e-37 5.08e-39 3.80e-03 541 5.8
K-N 6.96e-37 2.05e-38 15.2e-03 194 —
Table 4: Estimates ofγ1 in Example 4(λ, µ1, µ2 = 1, 2, 2) with b = ∞
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 2.79e-07
BLR 2.79e-07 6.11e-10 1.11e-03 95 3.1
K-N 2.78e-07 1.59e-09 2.90e-03 43 —

25 7.66e-09
BLR 7.68e-09 1.84e-11 1.22e-03 122 2.9
K-N 7.67e-09 4.67e-11 3.10e-03 54 —

50 1.56e-16
BLR 1.56e-16 4.83e-19 1.58e-03 257 2.4
K-N 1.56e-16 1.16e-18 3.79e-03 107 —

60 1.38e-19
BLR 1.38e-19 4.54e-22 1.67e-03 310 2.3
K-N 1.39e-19 1.08e-21 3.99e-03 127 —

100 9.62e-32
BLR 9.61e-32 3.72e-34 1.98e-03 520 2.2
K-N 9.58e-32 8.63e-34 4.59e-03 208 —



Dhamodaran and Shultes
Table 5: Estimates ofγ1 in Example 1(λ, µ1, µ2 = 1, 4, 2) with b = 9
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 1.43e-06
BLR 1.43e-06 1.27e-09 0.45e-03 85 3.8
K-N 1.43e-06 3.20e-09 1.13e-03 51 —

25 4.45e-08
BLR 4.45e-08 3.99e-11 0.45e-03 110 3.7
K-N 4.48e-08 9.99e-11 1.13e-03 65 —

50 1.30e-15
BLR 1.30e-15 1.21e-18 0.47e-03 235 3.5
K-N 1.32e-15 2.99e-18 1.13e-03 136 —

60 1.26e-18
BLR 1.26e-18 1.19e-21 0.48e-03 285 3.5
K-N 1.29e-18 2.92e-21 1.13e-03 164 —

100 1.12e-30
BLR 1.11e-30 1.10e-33 0.49e-03 485 3.3
K-N 1.12e-30 2.66e-33 1.17e-03 277 —
Table 6: Estimates ofγ1 in Example 2(λ, µ1, µ2 = 1, 2, 3) with b = 9
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 1.89e-11
BLR 1.88e-11 4.15e-14 1.12e-03 68 2.8
K-N 1.87e-11 8.69e-14 2.37e-03 43 —

25 3.76e-14
BLR 3.76e-14 1.00e-16 1.37e-03 87 1.8
K-N 3.76e-14 1.75e-16 2.37e-03 53 —

50 1.25e-27
BLR 1.25e-27 6.90e-30 2.83e-03 182 0.4
K-N 1.25e-27 5.80e-30 2.37e-03 107 —

60 5.06e-33
BLR 5.00-33 7.48e-35 9.62e-03 221 0.1
K-N 5.06e-33 2.35e-35 2.37e-03 128 —

100 1.38e-54
BLR 1.39-54 2.48e-56 9.12e-03 371 0.04
K-N 1.37e-54 6.39e-57 2.37e-03 214 —
Table 7: Estimates ofγ1 in Example 3(λ, µ1, µ2 = 3, 4, 6) with b = 9
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 1.15e-08
BLR 1.15e-08 2.74e-11 1.21e-03 91 1.6
K-N 1.15e-08 5.12e-11 2.27e-03 41 —

25 1.41e-10
BLR 1.40e-10 3.89e-13 1.41e-03 117 1.2
K-N 1.41e-10 6.25e-13 2.27e-03 52 —

50 3.89e-20
BLR 3.88e-20 1.93e-22 2.54e-03 246 0.3
K-N 3.88e-20 1.73e-22 2.27e-03 103 —

60 5.84e-24
BLR 5.85e-24 3.57e-26 3.11e-03 299 0.2
K-N 5.89e-24 2.61e-26 2.27e-03 124 —

100 2.98e-39
BLR 2.99e-39 3.87e-41 6.61e-03 506 0.1
K-N 2.98e-39 1.33e-41 2.27e-03 207 —
Table 8: Estimates ofγ1 in Example 4(λ, µ1, µ2 = 1, 2, 2) with b = 9
Buffersize Numerical Method Mean Halfwidth RE CPU VRR

20 2.56e-07
BLR 2.56e-07 3.29e-10 0.65e-03 96 3.8
K-N 2.55e-07 9.56e-10 1.91e-03 43 —

25 6.40e-09
BLR 6.40e-09 9.98e-12 0.79e-03 125 2.5
K-N 6.42e-09 2.40e-11 1.91e-03 54 —

50 6.34e-17
BLR 6.34e-17 1.84e-19 1.48e-03 268 0.7
K-N 6.33e-17 2.37e-19 1.91e-03 110 —

60 3.99e-20
BLR 3.99e-20 1.40e-22 1.79e-03 324 0.5
K-N 3.99e-20 1.49e-22 1.91e-03 132 —

100 6.24e-33
BLR 6.25e-33 3.92e-35 3.20e-03 552 0.1
K-N 6.21e-33 2.33e-35 1.91e-03 221 —
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Table 9: Estimates ofγ0 with b = ∞
Buffersize Example Method Mean Halfwidth RE CPU VRR

50

1
BLR 7.40e-16 1.40e-18 0.97e-03 230 1.0
K-N 7.40e-16 2.05e-18 1.41e-03 112 —

2
BLR 1.03e-26 9.80e-29 4.86e-03 188 18.4
K-N 9.06e-27 5.54e-28 31.1e-03 108 —

3
BLR 3.86e-19 3.10e-21 4.10e-03 267 10.4
K-N 3.82e-19 1.65e-20 22.1e-03 98 —

4
BLR 1.54e-16 4.87e-19 1.62e-03 257 6.0
K-N 1.54e-16 1.93e-18 6.39e-03 98 —

100

1
BLR 6.56e-31 1.23e-33 0.96e-03 480 1.0
K-N 6.56e-31 1.82e-33 1.41e-03 224 —

2
BLR 2.39e-52 5.76e-54 12.3e-03 380 17.8
K-N 2.22e-52 3.29e-53 75.7e-03 207 —

3
BLR 1.23e-36 1.87e-38 7.72e-03 543 11.8
K-N 1.23e-36 1.09e-37 45.4e-03 187 —

4
BLR 9.53e-32 3.76e-34 2.01e-03 520 3.6
K-N 9.59e-32 1.18e-33 6.28e-03 187 —
Table 10: Estimates ofγ0 with b = 9
Buffersize Example Method Mean Halfwidth RE CPU VRR

50

1
BLR 7.23e-16 1.40e-18 0.99e-03 233 1.0
K-N 7.35e-16 2.06e-18 1.43e-03 111 —

2
BLR 1.96e-27 1.16e-29 3.02e-03 185 1.9
K-N 1.96e-27 2.15e-29 5.61e-03 103 —

3
BLR 5.59e-20 3.05e-22 2.79e-03 251 0.8
K-N 5.64e-20 4.30e-22 3.89e-03 100 —

4
BLR 5.89e-17 1.78e-19 1.54e-03 269 1.0
K-N 5.86e-17 2.89e-19 2.52e-03 101 —

100

1
BLR 6.21e-31 1.23e-33 1.00e-03 483 1.0
K-N 6.45e-31 1.83e-33 1.45e-03 225 —

2
BLR 2.16e-54 3.93e-56 9.27e-03 374 0.2
K-N 2.18e-54 2.41e-56 5.65e-03 204 —

3
BLR 4.30e-39 6.10e-41 7.23e-03 512 0.1
K-N 4.33e-39 3.29e-41 3.88e-03 199 —

4
BLR 5.83e-33 3.86e-35 3.38e-03 554 0.3
K-N 5.78e-33 2.85e-35 2.51e-03 200 —
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