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ABSTRACT

When designing steady-state computer simulation expe
iments, one is often faced with the choice of batchin
observations in one long run or replicating a number o
smaller runs. Both methods are potentially useful in simu
lation output analysis. In its simplest form, the choice boils
down to: Should we divide one long run intob adjacent,
nonoverlapping batches, each of sizem? Or should we
conductb independent replications, each of lengthm?

We give results and examples to lend insight as to whe
one method might be preferred over the other. In the stead
state case, batching and replication perform about the sam
in terms of estimating the mean and variance paramete
though replication tends to do better than batching when
comes to the performance of confidence intervals for th
mean. On the other hand, batching can often do better th
replication when it comes to point and confidence-interva
estimation of the steady-state mean in the presence of
initial transient. This is not particularly surprising, and is
a common rule of thumb in the folklore.

1 INTRODUCTION

The purpose of this article is to compare the methods o
batch means and independent replications in the context
steady-state simulation output analysis.

When designing steady-state computer simulation e
periments, one is often faced with the choice of batch
ing observations in one long run or replicating a numbe
of smaller runs. Both methods are potentially useful in
simulation output analysis, where we might be intereste
in obtaining confidence intervals (CI’s) for the unknown
steady-state meanµ, or at least in obtaining estimates for
the variance of the sample mean, the obvious point estimat
for µ.

In its simplest form, the choice of batching or replicating
boils down to: Should we divide one long run intobadjacent,
nonoverlapping batches, each of sizem? Or should we
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conductb independent replications, each only of lengthm?
The trade-offs between the two alternatives are well known
Batching ameliorates the effects of initialization bias (if it is
present), but produces batch means that often are correlate
replication yields independent sample means, but may suffe
from initialization bias at the beginning of each of the runs
So what should we use for steady-state simulation outpu
analysis — the method of independent replications (IR) o
batch means (BM)?

There is a wide literature on the subject, outlined in
Alexopoulos and Goldsman (2003). Our analysis com
plements Whitt (1991), who also studied the problem o
one long run versus independent replications based on th
efficiency of the estimator ofµ.

The organization of the rest of the article is as follows.
Section 2 gives some relevant background and notation
while Sections3 and 4 provide our main findings. Our
claims are supported in Section5, which provides illustrative
examples. We end up showing that IR does just fine in
the steady-state case, but certain initial transients ruin th
performance of IR without straining that of BM too badly.
Section6 wraps up the discussion with some final thoughts

2 BACKGROUND

In this section we define the problem of interest and presen
the notation to be used in the sequel.

The goal is to estimate the meanµ of a stationary
stochastic process{S̀ , ` ≥ 1}, e.g., a steady-state simula-
tion output process. The natural point estimator forµ is the
sample mean based onn observations,̄Sn ≡ n−1 ∑n

`=1 S̀ .
A wise, statistically sound practice is to supplement the
sample mean with a measure of its precision. Relevan
steady-state performance measures areσ 2

n ≡ n Var(S̄n) and
the associatedvariance parameter, σ 2 ≡ limn→∞ σ 2

n . Es-
timators forσ 2

n andσ 2 can subsequently be used to obtain
CI’s for µ, among other things. The two simplest and mos
widely used approaches for estimatingσ 2

n and σ 2 are IR
and BM. For good introductory references on these an
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other variance estimators, see Alexopoulos and Seila (199
Fishman (2001), or Law and Kelton (2000).

2.1 Some Notation and Definitions

We use some additional notation and definitions througho
the paper.

The quantitiesS1, S2, . . . always denote stationary ob-
servations. By contrast,X1, X2, . . . denote generic obser-
vations — sometimes they will be stationary (Section3),
sometimes not (Section4). Sometimes the observations will
be divided into independent replications, and sometimes in
batches. We generally use the notationsȲ1,m, Ȳ2,m, . . . and
Ȳn for the replicate sample means and grand sample me
from all of the replicates, respectively; the analogous n
tations X̄1,m, X̄2,m, . . . and X̄n are reserved for the batch
sample means and grand mean from all of the batches.

For a stationary process{S̀ }, the autocovariance func-
tion is denotedRj ≡ Cov(S1, S1+ j ), j = 0,±1,±2, . . ..
This leads to the well-known alternative expressions

σ 2
n = R0 + 2

n−1∑
i=1

(
1 − i

n

)
Ri

and, if
∑∞

j =1 j |Rj | < ∞,

σ 2 =
∞∑

i=−∞
Ri .

In addition, we define the related “center-of-gravity” con
stantγ ≡ −2

∑∞
j =1 j Rj (Song and Schmeiser 1995). Along

the way, we will also assume that the process isφ-mixing
(Billingsley 1968). Informally,φ-mixing means that events
in the distant future are approximately independent of tho
in the past.

The “little-oh” notation f (m) = o(g(m)) means that
f (m)/g(m) → 0 as m → ∞. The “big-oh” notation
f (m) = O(g(m)) means that| f (m)/g(m)| ≤ C for some
constantC and allm ≥ 1.

2.2 Independent Replications

Here we conductb independent replications of a simulation
process{X`}. We will assume that the replication lengthm
is fixed and common among theb replications. Denoting
by Xi, j the j th observation from replicationi , we have the
following allocation of then = bm observations.

Replication 1: X1,1, X1,2, . . . , X1,m

Replication 2: X2,1, X2,2, . . . , X2,m

...

Replicationb: Xb,1, Xb,2, . . . , Xb,m
),

t

o

n

e

For each of these replications, we calculate a replica
(sample) mean̄Yi,m ≡ m−1 ∑m

j =1 Xi, j , i = 1, 2, . . . , b. By
the way in which the replications are run, we see that th
replicate means are independent and identically distribut
(i.i.d.) random variables (r.v.’s); and if the process{X`} is
stationary with meanµ, then the replicate means have mea
µ and varianceVar(Ȳi,m) = σ 2

m/m.
The IR estimator for the steady-state meanµ is simply

the grand sample mean from theb independent replications,
Ȳn ≡ b−1 ∑b

i=1 Ȳi,m. If {X`} is stationary with meanµ,
thenE[Ȳn] = µ, and so the grand mean is unbiased forµ.

The IR estimator forσ 2 is

V̂R ≡ m

b − 1

b∑
i=1

(Ȳi,m − Ȳn)
2.

Since V̂R is m times the sample variance of the replicat
means, it follows that̂VR is an unbiased estimator for
mVar(Ȳi,m), i.e.,

E[V̂R] = mVar(Ȳi,m). (1)

In addition, if {X`} is stationary, thenE[V̂R] = σ 2
m.

2.3 Batch Means

Here we conduct one long run of the simulation, say o
lengthn, and we divide then observationsX1, X2, . . . , Xn

into b adjacent, nonoverlapping batches, each of sizem
(assuming thatn = mb).

Batch 1: X1, X2, . . . , Xm

Batch 2: Xm+1, Xm+2, . . . , X2m

...

Batchb: X(b−1)m+1, X(b−1)m+2, . . . , Xn

For each of these batches, we calculate thebatch mean,
X̄i,m ≡ m−1 ∑m

k=1 X(i−1)m+k, for i = 1, 2, . . . , b.
The BM estimator forµ is the grand sample mean from

the b batch means,̄Xn ≡ b−1 ∑b
i=1 X̄i,m = n−1 ∑n

`=1 X`.
Stationarity implies thatE[X̄n] = µ, so the grand mean is
unbiased forµ; and the variance of the grand mean is, b
definition,Var(X̄n) = σ 2

n /n.
The BM estimator forσ 2 is

V̂B ≡ m

b − 1

b∑
i=1

(X̄i,m − X̄n)
2.

For large batch sizem, the experimenter assumes that th
batch means are approximately i.i.d. normal r.v.’s with mea
µ and unknown varianceσ 2

m/m = Var(X̄i,m); this assump-
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tion motivates estimation ofσ 2 .= σ 2
m by m times the sample

variance of the batch means.

3 IR / BM STEADY-STATE COMPARISON

In this section, we assume that the process starts off an
remains in steady state. For comparison purposes, w
will assume that the IR and BM competitors use equivalen
replication/batch sizem and numbers of replications/batches
b. We will compare the IR and BM estimators as applied to
the point estimation ofµ (Section3.1), the point estimation
of σ 2 (Section3.2), and confidence interval estimation for
µ (Section3.3).

3.1 Estimators for the Mean

We compare the mean squared errors (MSE’s) ofȲn andX̄n,
the IR and BM estimators, respectively, for the steady-stat
meanµ. As pointed out in Sections2.2and2.3, bothȲn and
X̄n are unbiased forµ. Thus,MSE(Ȳn; µ) = Var(Ȳn) and
MSE(X̄n; µ) = Var(X̄n). The following lemma provides
relevant expressions for these variances.

Lemma 1 (Song and Schmeiser 1995; Titus 1985).
If {X`} is stationary withE[X4

1] < ∞, andφ-mixing with
φk = O(k−4−ε) for someε > 0, then

σ 2
m = mVar(Ȳi,m) = σ 2 + γ

m
+ o

(
1

m

)
. (2)

Using Lemma1 and the fact that the replications are
independent, we eventually have

MSE(Ȳn; µ) − MSE(X̄n; µ) = γ (b − 1)

n2 + o

(
1

nm

)
,

implying that the difference in MSE’s is very small.
Remark 1 Most queue waiting processes tend to

have a positive autocorrelation structure, for which it turns
out thatγ < 0, andσ 2

n converges toσ 2 from below. So in
this case,MSE(Ȳn; µ) is a tad smaller thanMSE(X̄n; µ).

3.2 Estimators for the Variance Parameter

We divide the analysis into three portions: Derivations for
IR, derivations for BM, and then a comparison.

3.2.1 Independent Replications

Suppose that{X`} is stationary and satisfies the conditions
of Lemma1. Then Equations (1) and (2) imply

E[V̂R] = σ 2
m = σ 2 + γ

m
+ o(1/m), (3)
which yields an explicit expression for the bias ofV̂R as
an estimator ofσ 2.

Assuming the replicate means have finite and well
defined fourth moments, it can be shown that

bVar(V̂R) = m2 E[(Ȳ1,m − µ)4] − σ 4
m

(
b − 3

b − 1

)

= 2bσ 4

b − 1
+ O

(
1

m

)
(4)

(see Kang and Goldsman 1990 and Alexopoulos and Gold
man 2003, among others, for details).

Actually, some more simplification is possible if we
are willing to assume that̄Y1,m is normal (e.g., ifm is
sufficiently large). Then we have the exact result

Var(V̂R) = 2σ 4
m

b − 1
, (5)

which looks familiar — for if we assume that the replicate
means are i.i.d. normal, then̂VR ∼ σ 2

mχ2(b − 1)/(b − 1),
whereχ2(ν) is the chi-square distribution withν degrees
of freedom. If we believe this distributional assumption,
the variance from Equation (5) follows.

3.2.2 Batch Means

We have some analogous expressions for the expected va
and variance of the BM estimator forσ 2, the latter result
requiring a couple of additional assumptions on the proces
{X`} .

Theorem 1 If the process{X`} is stationary with∑∞
j =1 j |Rj | < ∞, then

E[V̂B] = σ 2 + γ (b + 1)

n
+ o

(
1

m

)
. (6)

Theorem 2 (Goldsman and Meketon 1986; Song
and Schmeiser 1995; and Chien, Goldsman, and Melame
1997.) Suppose that the process{X`} is stationary with
E[X12

1 ] < ∞ andφ-mixing with φk = O(k−9). Then

bVar(V̂B) = 2σ 4 + o(1), (7)

the last equality holding asm → ∞ andb → ∞.
In addition, for fixedb, different, but still mild, moment

and mixing conditions implŷVB
D→ σ 2χ2(b − 1)/(b − 1)

asm → ∞ (cf. Glynn and Whitt 1991).
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3.2.3 Comparison

What about the MSE’s for the IR and BM estimators for
σ 2 in the steady-state case? By Equations (3) and (6), we
have

Bias2(V̂R; σ 2)−Bias2(V̂B; σ 2) = −γ 2(2b + 1)

n2 +o

(
1

m2

)
.

By Equations (4) and (7), we haveVar(V̂B) = Var(V̂R) +
o(1). So, up to the order terms, we cannot really distinguis
between the IR and BM variances. And then we see th
MSE(V̂R; σ 2) andMSE(V̂B; σ 2) differ by only small-order
terms.

3.3 Confidence Intervals for the Mean

The analysis on CI’s forµ turns out to be difficult. On
one hand, we assumed in this section that the replicate a
batch means all have the same (steady-state) distributio
On the other, we might encounter some problems sinc
neither the replicate nor batch means are necessarily n
mal, or since the batch means are not even independe
Nevertheless,for purposes of the rough-cut analysis of the
present subsection, we shall assume for now that the repli-
cate and batch means are identically distributed from th
steady-state normal distribution.

3.3.1 Independent Replications

The well-known 100(1 − α)% IR CI for µ is

µ ∈ Ȳn ± tα/2,b−1

√
V̂R/n, (8)

wheretβ,ν is theβ quantile of Student’st distribution with
ν degrees of freedom. Under the liberal assumptions of th
subsection, this CI achievesperfect coverage.

Theorem 3 If the replicate means are i.i.d. normal
with meanµ, then the probability that the CI (8) will cover
µ is exactly 1− α.

3.3.2 Batch Means

The 100(1 − α)% BM CI for µ is

µ ∈ X̄n ± tα/2,b−1

√
V̂B/n. (9)

Unfortunately, things do not work out as smoothly for the
BM CI as they did for the IR CI, even under the liberal
assumptions of this subsection, for the batch means a
not independent. The good news is that under the mi
assumption that the process satisfies a functional cent
t

d
.

r-
t.

e

limit theorem, as the batch sizem becomes large (with
fixed number of batchesb), we have

Pr
(

µ ∈ X̄n ± tα/2,b−1

√
V̂B/n

)
→ 1 − α

(see, e.g., Glynn and Iglehart 1990). Hence, the true co
erage probability approaches the nominal value 1− α. But
for small values ofm, the estimator̂VB is biased forσ 2

(andσ 2
n ), and so the coverage probability is often less tha

nominal for systems with positive autocorrelation (see, e.g
Sargent, Kang, and Goldsman 1992).

Although we cannot give a general expression for th
coverage probability, we can at least do so for the speci
case ofb = 2 batches.

Proposition 1 If b = 2 batch means̄X1,m andX̄2,m

are bivariate normal, both with marginal meanµ and variance
σ 2

m/m, then the probability that the CI (9) will cover µ is

CVG ≡ Pr
(

µ ∈ X̄n ± tα/2,1

√
V̂B/n

)

= 2Ft (1)

(
tα/2,1

√
σ̃ 2

m/σ 2
n

)
− 1,

whereFt (1)(·) is the cumulative distribution function (c.d.f.)
of the t (1) (Cauchy) distribution and

σ̃ 2
m ≡ σ 2

m − mCov(X̄1,m, X̄2,m).

Example 1 Consider the stationary first-order mov-
ing average process,X` = ε` + θε`−1, ` ≥ 1, where the
ε`’s are i.i.d. Nor(0, 1) r.v.’s. This process has covariance
function R0 = 1 + θ2, R±1 = θ , and Ri = 0, otherwise.

It is easy to show that

σ 2
n = σ 2 + γ /n,

with

σ 2 = (1 + θ)2 and γ = −2θ.

Further,

Cov(X̄1,m, X̄2,m) = θ/m2.

So for the casen = 2m (b = 2), we see that

σ̃ 2
m

σ 2
n

= σ 2 − 3θ
m

σ 2 − θ
m

and can conclude from Proposition1 that the coverage is
< [>] 1 − α if θ > [<] 0. ♦
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3.4 Steady-State Recap

Almost all of the results in Sections3.1and3.2indicate that
the IR and BM methods perform similarly when it comes
to point estimation forµ andσ 2 — except perhaps for the
meaningless case of very small sample sizes. However, th
results in Section3.3 seem to say that IR has an advantage
over BM in terms of the steady-state performance of the
respective CI’s forµ. But the victory is hollow, since some
serious problems arise if the process under study does n
happen to be in steady state.

4 IR / BM TRANSIENT COMPARISON

The main reason for skepticism concerning the use of IR
is the stationarity issue; and in this section, we examin
what happens in the nonstationary case. Now the observ
tions {X`} start off polluted by a transient function, before
eventually settling down to steady state. To keep things a
simple as possible, and still make our points, we will study
the model

X` = S̀ + a`, (10)

` = 1, 2, . . ., where{S̀ } is astationaryprocess with mean
µ, and {a`} is simply a sequence of constants converging
to zero.

Still more notation. LetSi, j be the j th observation
from replicationi of the stationary process{S̀ }, for i =
1, 2, . . . , b and j = 1, 2, . . . , m. We denote the replicate
means of the process{S̀ } by T̄1,m, T̄2,m, . . . , T̄b,m, i.e.,
T̄i,m ≡ m−1 ∑m

j =1 Si, j , for i = 1, 2, . . . , b. Further, let

T̄n ≡ b−1 ∑b
i=1 T̄i,m be the grand sample mean taken over

the b independent replications of the process{S̀ }. Thus,
defining ām ≡ m−1 ∑m

`=1 a`, we can express Model (10)’s
replicate means in terms of those from the stationary proces
{S̀ }: Ȳi,m = T̄i,m+ām, i = 1, 2, . . . , b, Similarly, the grand
sample mean of theb replicates of Model (10) is Ȳn =
T̄n + ām. We see from these definitions that the replicate
meansȲ1,m, Ȳ2,m, . . . , Ȳb,m under Model (10) are i.i.d. with
expected valueµ + ām and varianceσ 2

m/m. Further, the
grand sample mean̄Yn of all the replications has expected
valueµ + ām and varianceσ 2

m/n.
Now we define the analogous notation for the batch

means method. To begin with,S(i−1)m+ j is the j th ob-
servation from batchi of the stationary process{S̀ },
for i = 1, 2, . . . , b and j = 1, 2, . . . , m. We denote
the batch means of this process byS̄1,m, S̄2,m, . . . , S̄b,m,
i.e., S̄i,m ≡ m−1 ∑m

j =1 S(i−1)m+ j , for i = 1, 2, . . . , b.

Further, let S̄n ≡ b−1 ∑b
i=1 S̄i,m be the grand sample

mean taken over theb batches of{S̀ }. Thus, defining
āi,m ≡ m−1 ∑m

j =1 a(i−1)m+ j , for i = 1, 2, . . . , b, we can
express Model (10)’s batch means in terms of those from the
stationary process{S̀ }: X̄i,m = S̄i,m+āi,m, i = 1, 2, . . . , b.
e

ot

a-

s

s

Similarly, the grand sample mean of theb batches of Model
(10) is X̄n = S̄n + ān, where ān ≡ n−1 ∑n

`=1 a`. Thus,
the i th batch meanX̄i,m under Model (10) has expected
value µ + āi,m and varianceσ 2

m/m, for i = 1, 2, . . . , b.
Finally, the grand sample mean̄Xn of all the batch means
has expected valueµ + ān and varianceσ 2

n /n.
With our simple additive transient function{a`} in mind,

Section4.1 compares the IR and BM estimators as applied
to the point estimation ofµ under Model (10), Section4.2
does the same forσ 2, and Section4.3 is concerned with
the CI estimation forµ.

4.1 Estimators for the Mean

Under Model (10),

E[Ȳn] = E[Ȳi,m] = µ + ām and E[X̄n] = µ + ān,

and (as in Section3.1)

Var(Ȳn) = σ 2
m/n and Var(X̄n) = σ 2

n /n.

Then we get

MSE(Ȳn; µ) − MSE(X̄n; µ)

= ā2
m − ā2

n + γ (b − 1)

n2 + o

(
1

nm

)
.

As we commented in Section3.1, the last two terms in this
difference are probably very small. Thus, it may very well
be that the bulk of the difference in the MSE’s is contained
in the first term, ā2

m − ā2
n. If the underlying stochastic

process{X`} eventually reaches steady state, then we must
havea` → 0 as` → ∞. So it is reasonable to assume that
ā2

m > ā2
n; and if m is small enough andn is large enough,

it may even be the case thatā2
m � ā2

n.

4.2 Estimators for the Variance Parameter

We divide the analysis into three portions: Derivations for
IR, derivations for BM, and then a comparison.

4.2.1 Independent Replications

Under Model (10), we can writeȲi,m = T̄i,m + ām, for
i = 1, 2, . . . , b, and Ȳn = T̄n + ām. This immediately
implies that

V̂R = m

b − 1

b∑
i=1

(Ȳi,m − Ȳn)2 = m

b − 1

b∑
i=1

(T̄i,m − T̄n)2.
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SinceT̄1,m, T̄2,m, . . . , T̄b,m are i.i.d. r.v.’s with meanµ and
varianceσ 2

m/m, nothing changes from the steady-state cas
studied in Section2.2 — Equation (1) still gives

E[V̂R] = mVar(Ȳi,m) = mVar(T̄i,m) = σ 2
m, (11)

and Equation (4) still givesVar(V̂R) — so bothE[V̂R] and
Var(V̂R) are unaffected by the additive transient function
{a`}. These “lucky” results make sense here because Mod
(10) is simply the sum of a stationarity process and
deterministic transient process, the latter of which cance
out in the calculation of̂VR.

4.2.2 Batch Means

Unlike the case for independent replications, the BM est
matorV̂B for σ 2 is affected by the transient in Model (10).
After some algebra,

V̂B = m

b − 1

{ b∑
i=1

(S̄i,m − S̄n)2

+2
b∑

i=1

(āi,m − ān)S̄i,m +
b∑

i=1

(āi,m − ān)
2
}
,

This leads to the following results, analogous to Theorem
1 and2.

Theorem 4 If Model (10) holds and all necessary
moments exist, then

E[V̂B] = σ 2+ γ (b + 1)

n
+o

(
1

m

)
+ m

b − 1

b∑
i=1

(āi,m−ān)
2.

(12)
Theorem 5 Suppose the process{X`} satisfies

Model (10) with bounded transient constants{a`} such
thatan = o(1). Further suppose that the process{S̀ } is sta-
tionary withE[S12

1 ] < ∞ andφ-mixing with φk = O(k−9).
Then

bVar(V̂B) = 2σ 4+ 4nσ 2
m

(b − 1)2

b∑
i=1

(āi,m−ān)
2+o(1). (13)

Remark 2 Suppose, as would be the case for larg
batch sizem, that the batch means are approximately in
dependent normal r.v.’s. Then under Model (10), a result
adapted from Equation (5) of Goldsman, Schruben, an
Swain (1994) shows that

V̂B ≈ σ 2
m

b − 1
χ2

(
b − 1,

m

σ 2
m

b∑
i=1

(āi,m − ān)
2
)

,

l

whereχ2(ν, δ) denotes the noncentralχ2 distribution with
ν degrees of freedom and noncentrality parameterδ. Using
well-known moment properties of the noncentralχ2, we
can retrieve Equations (12) and (13).

4.2.3 Comparison

For Model (10), we can compare the expression forE[V̂B]
given by Equation (12) with that for E[V̂R], which is still
given by Equation (1). Assuming thatσ 2

n
.= σ 2

m, we have

E[V̂B] .= E[V̂R] + m

b − 1

b∑
i=1

(āi,m − ān)
2,

and thusV̂B has the potential for a great deal of positiv
(conservative) bias as an estimator ofσ 2. As explained in
Remark1 and Section3.2, V̂R and V̂B are often biased
for σ 2 from below, at least for processes with positiv
autocorrelation; soE[V̂B]’s extra term is not necessarily
deleterious for purposes of estimatingσ 2.

Similarly, we can compareVar(V̂B) from Equation (13)
with Var(V̂R), which is still given by Equation (4). Under
Model (10),

Var(V̂B)
.= Var(V̂R) + 4mσ 2

m

(b − 1)2

b∑
i=1

(āi,m − ān)
2.

Again the additional noncentrality term appears, indicatin
that Var(V̂B) tends to be higher thanVar(V̂R) for our
simple Model (10). Combining the above bias and varianc
results shows that it is likely, but not always certain, tha
MSE(V̂B; σ 2) > MSE(V̂R; σ 2).

Remark 3 It may very well be the case that, unde
a different transient than Model (10), BM will outperform
IR in terms of the bias of the respective variance estimato
See Alexopoulos and Goldsman (2003) for such exampl

4.3 Confidence Intervals for the Mean

As in Section3.3, we encounter difficulties with respect to
the analysis on CI’s forµ. Sofor purposes of simplifying the
rough-cut analysis, we shall assume that the replicate an
batch means are normally distributed with the appropria
parameters.

4.3.1 Independent Replications

Taking advantage of the liberal assumptions of this subse
tion, we can derive the probability of coverage for the IR
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CI for µ under Model (10). First of all, Alexopoulos and
Goldsman (2003) show that the pivot

T?
R ≡

√
n(Ȳn − µ)

V̂1/2
R

∼ t

(
b − 1 ,

√
bmām

σm

)
, (14)

wheret (ν, δ) is the noncentralt distribution withν degrees of
freedom and noncentrality parameterδ (cf. Evans, Hastings,
and Peacock 2000, Chapter 39). Thus, the probability th
the IR CI coversµ is

Pr
(

µ ∈ Ȳn ± tα/2,b−1

√
V̂R/n

)
= FT ?

R
(tα/2,b−1) − FT?

R
(−tα/2,b−1), (15)

whereFT?
R
(·) is the c.d.f. ofT?

R.

4.3.2 Batch Means

In order to make a rough-cut analysis on the BM CI for
µ under Model (10), we will also assume that the batch
meansX̄i,m, i = 1, 2, . . . , b, are approximately independent
— probably reasonable for sufficiently large batch sizem.
Now, Alexopoulos and Goldsman (2003) show that the pivo

T?
B ≡

√
n(X̄n − µ)

V̂1/2
B

≈ σn

σm
t

(
b− 1,

ān
√

n

σn
, δB

)
, (16)

where t (ν, δ1, δ2) is the doubly noncentralt distribution
with ν degrees of freedom and noncentrality parametersδ1
andδ2 (cf. Krishman 1968), and

δB ≡ m

σ 2
m

b∑
i=1

(āi,m − ān)
2.

Thus, under Model (10), the probability that the BM CI
coversµ is

Pr

(
µ ∈ X̄n ± tα/2,b−1

√
V̂B/n

)
.= G

(
σm

σn
tα/2,b−1

)
− G

(
−σm

σn
tα/2,b−1

)
,

whereG(·) is the c.d.f. of the doubly noncentralt random
variable in Equation (16).

4.3.3 Comparison

One cannot make completely sweeping conclusions regar
ing the comparative performance of the IR and BM CI’s
for the steady-state mean. Nevertheless, some interesti
findings are possible.

• For Model (10) with a fixed number of batches
b, the effect of the batch sizem on the IR CI’s
t

t

-

g

coverage depends on the form of the sequen
{aj }. In particular, thet distribution noncentrality
parameter from Equation (14),

√
bmām/σm, will

converge to zero if the underlyinga`’s approach
zero sufficiently quickly, e.g.,a` = o(1/

√
`). In

that case, the CI’s coverage will approach the nom
inal value 1−α asm increases. If thea`’s approach
zero more slowly, coverage degradation may r
sult; in fact, it may very well be the case tha√

bmām/σm approaches some non-zero constan
whence the coverage may never converge to t
nominal value! See Section5.

• For Model (10) with fixed m, the IR CI’s non-
centrality parameter

√
bmām/σm increases in the

number of replicationsb. One would expect a
resulting adverse effect on the coverage of the
CI; this is borne out in some additional example
given in Alexopoulos and Goldsman (2003).

• The BM method’s first noncentrality paramete√
n ān/σn from Equation (16) behaves qualita-

tively similarly to the corresponding IR paramete√
n ām/σm; but since thea`’s converge to zero, the

BM’s noncentrality parameter will likely be closer
to zero than that of IR — a potentially huge advan
tage for BM. Not as much can be said about th
behavior of the BM method’s second noncentrali
parameterδB in Equation (16), nor its effects on
CI coverage.

4.4 Transient Recap

With respect to point estimation of the steady-state meanµ,
the results from Section4.1indicate that an initial transient is
more likely to be a problem for IR than for BM — particularly
in terms of bias when the underlying process follows Mod
(10). Section4.2 shows that the comparison between th
IR and BM estimators for the steady-state parameterσ 2

is somewhat inconclusive. On the other hand, Section4.3
hints strongly that, when it comes to CI estimation forµ,
there may be more problems on the horizon for IR than f
BM.

5 EXAMPLE

This section illustrates our findings with an example involv
ing the first-order autoregressive [AR(1)] process.

We start off with the stationary AR(1) process

S̀ = ρ S̀ −1 + ξ`, ` ≥ 1,

where theξ`’s are i.i.d. Nor(0, 1−ρ2) r.v.’s withρ ∈ (−1, 1)

and S0 ∼ Nor(0, 1). For this process,Ri = ρ|i |, and some
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easy calculations (see, e.g., Sargent, Kang, and Goldsm
1992) give

σ 2
m = σ 2 + γ (1 − ρm)

m

with

σ 2 = 1 + ρ

1 − ρ
and γ = −2ρ

(1 − ρ)2 .

We now turn to Model (10), i.e., X` = S̀ + a`, and
study the performance of the resulting IR and BM estimator
for σ 2. First of all, the discussion in Section4.2.1 — in
particular, Equation (11) — implies that E[V̂R] = σ 2

m;
similarly, Equations (5) and (2) show that

(b − 1) Var(V̂R) = 2σ 4
m = 2σ 4 + O(1/m).

Further, Alexopoulos and Goldsman (2003) derive the fol
lowing (see also Carlstein 1986, p. 1176).

E[V̂B] = σ 2+γ (b + 1)

n
+O

(
ρm

m

)
+ m

b − 1

b∑
i=1

(āi,m−ān)
2

and

(b − 1) Var(V̂B)

= 2σ 4 + 4(b + 1)γ σ 2

n
+ O

(
1

m2

)
+ 9(a),

where9(a) is a messy function of thea`’s.
As we continue to study the nonstationary process{X`},

we setρ = 0.9 and consider the initialization functions
a` = 1/`p, for p = 1 and 1/2. Table1contains experimental
results comparing the IR and BM methods; the compariso
is based on the achieved sample coverage (ĈVG) of the
95% CI’s for the steady-state meanµ = 0 and the estimated
expected value (̂E[V̂ ]) of the estimators for the variance
parameterσ 2 = 19. All estimators are based on 10000
independent experiments, each withb = 20 independent
replications or batches, and various values ofm.

We first examine the casea` = 1/`, a sequence of
initialization bias constants that converges to zero relativel
quickly. In this case, both the IR and BM CI’s forµ appear
to achieve the nominal coverage asm increases, with BM
succeeding a bit more quickly than IR. The same goo
behavior holds true for the respective estimators ofσ 2.
These coverage results are not surprising in light of th
fact that all of the IR and BM noncentrality parameters in
Sections4.3.1 and 4.3.2 die to zero asm becomes large;
nor are the variance estimation results surprising in light o
Equation (11) and Theorem4.

We have a particularly interesting story for the case
a` = 1/

√
`, a sequence of bias constants that converges
n

o

Table 1: Experimental Results for the “Bi-
ased” AR(1) Process withρ = 0.9, b = 20,
and Transient Functions{a`} (Standard Er-
rors of All ĈVG’s Are ≤ 0.003)

a` = 1/` a` = 1/`1/2

m
ĈVG Ê[V̂ ] ĈVG Ê[V̂ ]

100 0.918 17.23 0.521 17.23
IR 500 0.941 18.56 0.514 18.56

1000 0.947 18.68 0.511 18.68
2500 0.945 18.77 0.509 18.77
100 0.940 17.14 0.914 17.28

BM 500 0.949 18.53 0.925 18.67
1000 0.953 18.67 0.926 18.81
2500 0.950 18.76 0.927 18.91

zero relatively slowly. Forb = 20, the BM method nearly
(but not quite) achieves the nominal coverage, while th
coverage of the analogous IR CI’s is poorregardless of
the replication sizem. Although the IR coverage results
are disappointing, the IR variance estimator neverthele
achieveŝE[V̂R] .= 19.

This seemingly bizarre behavior of the IR coverag
when p = 1/2 has an explanation. Simply put, fora` =
1/

√
`, the noncentrality parameter of thet distribution in

Equation (14) does not converge to zero as the batch sizem
becomes large; and although not illustrated here, it turns o
that the bad effects become more-pronounced as the num
of replicationsb increases. So in thisp = 1/2 case, the
coverage probability in Equation (15) cannot be nominal
even if the replication lengthm becomes large! The same
phenomenon also occurs with respect to batch means, bu
much less of a problem since there is essentially one lo
replication consisting ofb batches. See Alexopoulos and
Goldsman (2003) for all of the surprising details.

Of course, we could attempt to ameliorate these co
erage problems by truncating an initial portion of eac
replication (or the single batch means run), but this also h
to be done with extreme care (cf. Fishman 2001, Secti
3.4).

6 CONCLUSIONS

In this paper, we presented a comparison between the IR a
BM methods. The comparison was based on several n
results as well as on illustrative examples. We focused
nonstationary models with an additive transient, and und
the assumption that both methods use the same pair(b, m).

When the process under study is in steady state (or
transient portion has been removed successfully), the
and BM estimators forµ andσ 2 are practically equivalent
with regard to their MSE’s as the replication/batch sizem
becomes large. However, in the steady-state case, the
method wins with regard to the coverage of the CI forµ;
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indeed, if the replicate means are normal, the IR covera
is exactly nominal. On the other hand, the typical presen
of an initial transient turns the tide in favor of the BM
method. This assessment — for the transient case —
based on the slower convergence of the respective IR-bas
estimators forµ. See Alexopoulos and Goldsman (2003
for additional examples.
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