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ABSTRACT

Statistical ranking and selection (R&S) is a collection o
experiment design and analysis techniques for selecting
“population” with the largest or smallest mean performanc
from among a finite set of alternatives. R&S procedures ha
received considerable research attention in the stocha
simulation community, and they have been incorporate
in commercial simulation software. One of the ways tha
R&S procedures are evaluated and compared is via t
expected number of samples (often replications) that mu
be generated to reach a decision. In this paper we arg
that sampling cost alone does not adequately character
the efficiency of ranking-and-selection procedures, and w
introduce a new sequential procedure that provides the sa
statistical guarantees as existing procedures while reduc
the expected total cost of application.

1 INTRODUCTION

Ranking-and-selection procedures (R&S) based on t
indifference-zone formulation have been proposed to s
lect the simulated system with the largest or smallest me
performance from among a finite number of alternative sy
tems (see Bechhofer et al. 1995 for a summary). Amon
these, fully sequential procedures, which approximate t
sum of differences between two systems as a Browni
motion process and use a triangular continuation regi
to determine the stopping time of the selection proces
were first proposed by Paulson (1964). Figure 1 illus
trates how triangular continuation region works. Hartman
(1988, 1991) improved Paulson’s procedure by replacin
Boole’s inequality with a geometric inequality and replac
ing a large-deviation bound by a Brownian motion bound
These procedures were intended for the case of norma
distributed data with known or unknown common varianc
across systems. Recently, Kim and Nelson (2001, 200
further extended Hartmann’s work to allow unknown an
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Figure 1: Triangular Continuation Region for the Fully Se
quential, Indifference-zone Procedures; Selection of Syst
i or j as Best Depends on Whether the Sum of Differenc
Exits the Region from the Top or Bottom

unequal variances, the use of common random numbers
single-replication experiment designs, yielding procedur
that are more applicable in computer simulation expe
ments. In this paper we also refine sequential selecti
procedures with a triangular continuation region by consi
ering the computation costs that are incurred in simulatio
experiments.

One important, and relatively recent, application o
R&S is within optimization-via-simulation algorithms (see
for instance, Boesel, Nelson and Ishii 2003, and Pich
lamken and Nelson 2003). Many optimization algorithm
attempt to move from a current good solution to an im
proved solution on each iteration by selecting the best fro
among a small set of candidates or neighbors. Rankin
and-selection procedures can be embedded within th
algorithms to help recognize improved solutions efficientl
and with a statistical guarantee of correctness. Since so
optimization algorithms revisit solutions to insure conve
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gence, Pichitlamken and Nelson (2002) developed fu
sequential selection procedures that exploit the data alre
obtained on previous visits, even if the sample sizes a
unequal. The procedure we introduce in this paper also
tends easily to unequal initial samples, and it is particular
well suited to the optimization setting.

R&S procedures are typically evaluated in terms o
the expected number of samples required to reach termi
tion. Sequential procedures with elimination—such as Ki
and Nelson’s (2001, 2002) procedure KN—and Bayesi
procedures—such as Chick and Inoue (2001)—reduce
expected total number of samples relative to well-know
two-stage indifference-zone selection procedures, such
Rinott’s (1978) procedure (RN). Two-stage procedures we
designed to provide their guarantees in the face of a “lea
favorable configuration,” and not to try to adapt to mor
favorable situations (two-stage procedures with eliminatio
at the first stage have been discussed in, for instance, Nel
et al. 2001, and these can be more efficient than procedu
like RN).

The focus in R&S research has been on developi
procedures that reduce the cost ofsampling, which means
generating data (typically replications) from a simulatio
model. To achieve this reduction, fully sequential procedur
like KN repeatedly switch among the different simulatio
models, where aswitchoccurs when we change the mode
instance from which samples are generated. In fact, K
requires one switch for each new sample generated afte
initial stage of sampling.

Unfortunately, the computational overhead of switchin
can be significant, sometimes orders of magnitude more th
sampling. Further, the cost of switching may be incurre
thousands of times if the R&S procedure is embedded with
an optimzation algorithm that explores a large solutio
space. The work required to switch from one simulate
system to another usually includes storing state informati
about the current system (including values of the rando
number seeds); saving all relevant output data; swapp
the executible code for the current system out of, and t
code for the next system into, active memory; and restori
the state information for the next system to the values
had on the last call. Therefore, focusing solely on sampli
cost is misleading in many applications.

Two-stage indifference-zone selection procedures, su
as RN, mininize the number of switches; however, they d
not adapt to the observed differences among the syste
as the sampling progresses. Thus, they are efficient fr
a switching perspective, but inefficient from a samplin
perspective. KN, and similar procedures, are efficient fro
a sampling perspective, but may not be efficient whe
switching is considered. In this paper we propose a tw
stage sequential procedure that is adaptive, like KN, b
also has the minimum number of switches, like RN. Furthe
our procedure tends to allocate more samples to the be
y
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systems, which is desirable when R&S is also used
add statistical inference after an optimization algorithm ha
terminated (see Boesel, Nelson and Kim 2003).

In Section 2 we present the Minimum Switching Se
quential Procedure (MSS), which consumes the minim
number of switches, just as the two-stage procedures d
while still maintaining sequential sampling. Then we pro
vide some numerical examples in Section 3, followed b
the conclusions and future research directions in Section

2 A MINIMUM SWITCHING PROCEDURE

In this section we describe a sequential procedure th
guarantees, with confidence level greater than or equal
1−α, that the system ultimately selected has the largest tr
mean if the true mean of the best is at leastδ better than the
second best. When there are inferior systems whose me
are within δ of the best, then the procedure guarantees
find one of thesegood systems with the same probability.
The parameterδ, which defines theindifference zone, is set
by the experimenter to the minimum difference in expecte
performance that it is important to detect. Differences o
less thanδ are considered practically insignificant.

The procedure, which is called the Minimum Switching
Sequential Procedure (MSS), has two stages, like RN.
stage is a checkpoint at which the maximum number o
samples that can be taken from each system until the n
checkpoint is determined; it is the “maximum” numbe
because fewer samples may be needed if some syste
are eliminated from consideration. All of the procedure
considered in this paper, including RN and KN, assum
unknown output variances, and for that reason they requ
an initial stage of sampling that is not adaptive and whos
size is somewhat arbitrary; we refer to this as the “zero
stage.” The first decision about how to proceed occurs aft
the zeroth stage.

MSS works as follows: After obtainingn0 ≥ 2 samples
from each system in the zeroth stage, it then estimates
parameters of the triangular continuation region and chec
if any system can be eliminated immediately. LetI be the
set of systems still in play at the end of the zeroth stage, a
let B and S alwaysdenote the systems inI with the best
and the second-best zeroth-stage sample means. In st
1, MSS takes the maximum number of samples implied b
the continuation region from systemB, so that no more
samples are needed for systemB under any circumstances
(this contrasts with RN which takes the maximum numbe
of samples fromall systems, and KN which obtains one
sample at a time from all systems still in play). Then MSS
obtains one sample at a time from systemS, comparing a
weighted sample mean from systemS to a weighted sample
mean from systemB, with elimination decisions after each
sample. IfB eliminatesS, then the identity ofS is updated
(since the former systemS is no longer inI , andS is always
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the system inI with the second-largest zeroth-stage sampl
mean) and the process starts over again. IfS eliminatesB,
then the identities of bothB and S are updated, the new
systemB gets the maximum number of samples, and th
process continues. The procedure always examines on
two systems at a time, eliminating one, and stopping whe
there is only one system remaining inI . MSS is sequential
in the way it obtains samples, but it requires at mostk
switches after the zeroth stage, wherek is the number of
systems.

Throughout this paper we usexi to denote thei th
system and useXi` to denote thè th independent sample
from systemi . Think ofxi as the vector of decision variables
that define thei th system. We assume thatXi` ∼ N

(
µi , σ

2
i

)
,

with bothµi andσ 2
i unknown. The procedure has two stages

denoteds = 0,1. Let ¯̄Xi (m) = m−1 ∑m
`=1 Xi` denote the

sample mean of the firstm samples from systemi , and
let X̄i (n; s) denote the sample mean of the firstn samples
from systemi taken in stages, wherei = 1,2, . . . , k.

Minimum Switching Sequential Procedure
Setup: Select confidence level 1/k < 1 − α < 1,

indifference-zone parameterδ > 0 and zeroth-stage
sample sizen0 ≥ 2. Selectλ such that 0< λ < δ

(λ = δ/4 is recommended by Paulson[1964]).
Initialization: Taken0 samplesXi`, ` = 1,2, . . . ,n0,

from each systemi = 1,2, . . . , k. For all i 6= j ,
calculate

S2
i j = 1

n0 − 1

n0∑
`=1

(
Xi` − X j ` − [

X̄i (n0; 0)− X̄ j (n0; 0)
])2

,

(1)

the sample variance of the difference between sy
temsi and j , and let

ai j =
(n0 − 1) S2

i j

4(δ − λ)

{[
1 − (1 − α)1/(k−1)

]−2/(n0−1) − 1

}
.

(2)

The parametersai j and λ define the triangular
continuation region for systemi and j . Let

Nij =
⌈ai j

λ

⌉
− n0,

where dae denotes the smallest integer which is
greater than or equal toa.

Initial Screening: Calculate

Zi j (n0) = n0
[
X̄i (n0; 0)− X̄ j (n0; 0)

]
.

Let

I =
{
i : Zi, j (n0) ≥ min

{
0,−ai j + n0λ

}
,

i , j = 1,2, . . . , k, i 6= j
}

y

-

be the set of systems still in play. If|I | = 1,
then stop and select the system whose index is
I as the best. Otherwise, sort the elements inI
based on the zeroth-stage sample meansX̄i (n0; 0)
and let B and S alwaysbe the systems inI with
the best and the second best zeroth-stage sam
means. Let

NB = max
j ∈I , j 6=B

NBj .

Take NB additional samples from systemB. Let
r be the number of samples taken from systemS
in stage 1, and setr = 0. Letψ be an elimination
indicator. Ifψ = 0 then systemB is still in con-
tention; otherwise, systemB has been eliminated.
Setψ = 0.

Screening:Take one sample from systemS, and let
r = r + 1. Calculate

ZBS(n0 + r ) = ZBS(n0)+ r
[
X̄B(NB; 1)− X̄S(r ; 1)

]
,

(3)

WBS = max{0,aBS− λ(n0 + r )} .
If ZBS(n0 + r ) ≥ WBS, then let I = I − {S}
and updateS; if ZBS(n0 + r ) ≤ −WBS, then let
I = I − {B}, updateB and S, and letψ = 1;
otherwise, go toScreening.

Stopping Rule: If |I | = 1, then stop and select the
system whose index is inI as the best. Otherwise,
if ψ = 1, then let

NB = max
j ∈I , j 6=B

NBj ,

and take max{0, NB − r } samples from systemB.
Always letr = 0 andψ = 0, then go toScreening.

Remark.ZBS(n0+r ) is defined by Equation (3) instead
of the more natural cumulative difference

ZBS(n0 + r ) =
n0+r∑
`=1

( ¯̄XB(n0 + NB)− XS`

)
. (4)

Jennision et al. (1982) have shown that whenk > 2 the
sampling rule can only depend on the difference betwe
sample means, not on the individual sample means, if Equ
tion (4) is used. However, the individual sample means a
required for sorting in MSS. Therefore, we use Equation (
to insure independence between stages 0 and 1.

We show that our procedure satisfies the probabili
gurantee in Theorem 1, and a good system is selected w
there are inferior systems withinδ of the best system in
Corollary 1. The proofs are given in Hong and Nelso
(2003). Assumeµk ≥ µk−1 ≥ · · · ≥ µ1 so that systemk
is the best.
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Theorem 1 Suppose thatXi`, ` = 1,2, . . ., are
i.i.d. normally distributed, and thatXip and X jq are inde-
pendent fori 6= j . Then MSS selectsxk with probability at
least1− α wheneverµk − µi ≥ δ for i = 1,2, . . . , k − 1.

Corollary 1 Supposeµk − µk−1 < δ. Then MSS
selects a solution whose mean is withinδ of µk with prob-
ability at least1 − α.

Remark. We proved the use ofai j defined in Equation
(2) by using Paulson’s probability bound. Pichitlamken an
Nelson (2002) show that empirical results also suport the u
of Fabian’s probability bound used in KN, although it has no
yet been proved. Fabian’s probability bound is a Brownia
motion bound. It is tighter than Paulson’s probability bound
which is a large-deviation bound. If Fabian’s probability
bound is used, we have

ai j =
(n0 − 1) S2

i j

4(δ − λ)

{[
2 − 2(1 − α)1/(k−1)

]−2/(n0−1) − 1

}
,

(5)
for λ = δ/2.

MSS has the same number of switches as two-sta
procedures, such as RN, when both take additional samp
for all systems after stage 0. However, MSS can eliminat
clearly inferior systems at the end of stage 0, while RN onl
ceases sampling ifn0 happens to be larger than the total
number of samples that RN required. Not surprisingly, ou
experiments show that the average sample size of MSS
less than or equal to RN in all situations. When the tru
difference between some system and the best system is lar
than the indifference amountδ, which is the usual case in
practice, MSS has a much smaller average sample size th
RN. Since two-stage procedures have been implement
in commercial simulation software, such as Automod an
Awesim, MSS is a good substitute for them.

In fully sequential procedures, such as KN, the elimi
nation decisions between the better and the inferior system
occur with each having the same number of samples b
cause the sampling is synchronized. In MSS, the inferio
systems are typically eliminated by one of the (apparently
better systems that has receivedall of the samples that MSS
will ever allocate to it. In some cases this fact will allow
MSS to be more efficient than KN, even if switching cost is
not significant. Consider, for instance, the case that amon
k > 2 systems the true mean difference between the be
and second-best systems is small (less than or equal toδ),
while the other systems are clearly inferior to these two. I
this case, it is very likely that both MSS and KN will end
up taking nearly the maximum samples from the two goo
systems. However, MSS will tend to eliminate the clearly
inferior systems earlier (fewer samples), because the inferi
systems are compared to a good system that has receiv
all of its samples. This is because it is likely that one of th
two good systems will have the largest zeroth-stage samp
e
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mean, and therefore will immediately be allocated all of it
samples.

3 EMPIRICAL EVALUATION

In this section we summarize the results of an extensive e
pirical evaluation of MSS relative to the Rinott’s procedur
(RN) and Kim and Nelson’s procedure (KN), which are
representatives of two-stage procedures and fully seque
tial procedures, respectively. The systems are represen
by various configurations ofk normal distributions and, to
assess the impact of nonnormality, lognormal distribution
whose skewness and kurtosis (standardized third and fou
moments) differed from those of the normal distribution
In all cases systemk is the true best (has the largest true
mean). We evaluated each procedure on different variatio
of the systems, examing factors including the number
systems, the configuration of means, the configuration
variances and the relative cost of sampling and switchin
The configurations, the experiment design and the resu
are described below.

3.1 Configurations and Experiment Design

Two configurations of the true means were used: th
slippage configurations (SC) and the monotone increa
ing means (MIM). In SCµk was set toδ while µ1 = µ2 =
· · · = µk−1 = 0. This is a difficult configuration since
all inferior systems are exactlyδ from the best. In MIM
µi = (i − 1)δ, i = 1,2, . . . , k. MIM is used to investi-
gate the effectiveness of the procedures in more favorab
settings.

For each configuration of the means, we examine
the effect of variances. There are three configurations
variances: equal variances (EV), increasing variances (I
and decreasing variances (DV). In EV,σ1 = σ2 = · · · =
σk = 1; in IV, σi = i ; and in DV σi = k + 1 − i .

Let c denote the switching cost in units of sampling
cost (the cost of generating a sample). We usedc = 10,
c = 100 andc = 1000 to represent different cost struc
tures. Considering the current status of computer simulati
software, evenc = 1000 is not excessive.

We also varied the number of systems in each e
periment, with k taking values of 2, 5 and 10. In all
experiments, the nominal probability of correct selectio
(PCS) was 1− α = 0.95 and the first-stage sample size
n0 was 10. The indifference-zone parameter was set
δ = σk/

√
n0, whereσk is the standard deviation of the

best system. Thus,δ is one standard deviation of the first
stage sample mean of the best system. For each configu
tion, 1000 macroreplications (complete repetitions) of th
each procedure are performed to compare the performan
measures, including the observed PCS, average numbe
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samples (ANSa), average number of switches (ANSw) an
average total cost (ATC).

3.2 Summary of Results

MSS is very close to RN in the slippage configuration
but has much better performance than RN in the MIM
configuration, which is more typical in practice. Therefore
MSS can be a good subsitute for the widely used R
procedure. We also found that the variance configuratio
does not significantly change the relative performances
all three procedures.

3.3 Some Specific Results

We do not attempt to present comprehensive results fro
such a large simulation study. Instead, we present selec
results that emphasize the key conclusions.

3.3.1 Validity Check

In Sections 2 we showed the validity of MSS using Paulson
probability bound. However, we also pointed out that th
empirical results conducted by Pichitlamken and Nelso
(2002) support the use of the Fabian’s Probability boun
which is tighter than Paulson’s bound. We checked th
use of both bounds under the slippage configuration wi
equal variances. The results in Table 1 show that Paulso
probability bound is very conservative and the Fabian
probability bound is appropriate to use. In the rest of th
paper, MSS refers to the MSS using Fabian’s probabilit
bound.

Table 1: Observed PCS of MSS using Paul-
son’s and Fabian’s Bounds
Procedure k = 2 k = 5 k = 10
MSS Paulson 0.987 0.993 0.995
MSS Fabian 0.969 0.987 0.995

3.3.2 Effect of Mean Configuration

We compared the three procedures using the slippage c
figuration and monotone increasing means configuratio
We used equal variances andk = 10 in both configurations.
The results in Table 2 show that Rinott’s procedure doe
not depend on the configuration of means while the oth
procedures require less work when the mean configurati
deviates from the slippage configuration. In both configu
rations KN has the lowest ANSa, while MSS has the lowe
ANSw. The reason why MSS has lower ANSw than RN
is because some clearly inferior systems can be eliminat
based on zeroth-stage samples in MSS. One can easily ch
f

d

’s

n-
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r
n

t

d

that MSS has the lowest ATC in almost all cases under t
three cost configurations (c = 10,100,1000).

Table 2: Effect of Mean Configuration

SC MIMProcedure
ANSa ANSw ANSa ANSw

RN 1845.2 20.0 1845.2 20.0
KN 977.2 887.2 426.6 336.6
MSS 1950.2 19.9 981.7 18.5

3.3.3 Robustness Study

To assess the impact of nonnormal data on the procedu
they were applied to lognormally distributed data with in
creasing levels of skewness and kurtosis, relative to t
normal distribution (which has skewness 0 and kurtos
3). The configurations of means and variances are sa
as Nelson et al. (2001). In all casesn0 = 10, c = 10,
σi = 1 for all i , δ = 1/

√
n0, µ1 = µ2 = · · · = µk−1 = 0

andµk = δ. We also used different number of system
k = 2,5,10. In the low deviation case the skewness a
kurtosis are 1.8 and 9.1; in the medium deviation case th
are 4.0 and 41.0; and in the high deviation case they
6.2 and 113.2. Notice that the mean configuration is t
slippage configuration which is a difficult configuration t
achieve the nominal PCS.

Table 3 shows the estimated PCS for three lognorm
cases for MSS, with the corresponding normal case includ
for comparison. When the level of deviation from th
normal distribution increases, the observed PCS decrea
However, the observed PCS is close to the nominal va
even when the deviation is significant.

Table 3: Observed PCS of MSS in the Robustness
Study with Nominal Level 0.95

Normal Low Medium High
k = 2 0.969 0.970 0.960 0.941
k = 5 0.987 0.980 0.953 0.922
k = 10 0.995 0.979 0.950 0.926

Table 4: The Five Alternative Inventory
Policies

Policy (i) s S Expected Cost
1 20 40 114.176
2 20 80 112.742
3 40 60 130.550
4 40 100 130.699
5 60 100 147.382
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3.3.4 An Illustrative Example

We provide a system simulation example to compare ou
procedures with RN and KN. Consider the(s, S) inventory
system with the 5 inventory policies provided in Koenig and
Law (1985). The objective of the study is to compare the
policies given in Table 4 on the basis of their correspondin
expected average cost per month for the first 30 months
operation and select the policy with the minimum expecte
cost. The expected cost,which can be analytically compute
are also given in Table 4. We setδ = 1, n0 = 10 and
c = 100. Table 5 includes the results of the simulation stud
based on 1000 complete macroreplications. The results a
consistent to what we observed in the previous experimen
Notice thatδ is smaller than the true difference between
the best and the second best systems, which explains
high level of the observed PCS.

Table 5: Simulation Study of the Illustrative Example

Procedure PCS ANSa ANSw ATC
RN 1.000 1033.1 10.0 2033.1
KN 0.998 235.7 190.7 19305.7
MSS 0.999 635.0 7.56 1391.0

4 CONCLUSION AND FUTURE WORK

In this paper we have presented an indifference-zone sele
tion procedure which is sequential and has minimum numb
of switches. As we discussed in Section 3, MSS has sim
lar performance (in both ANSa and ANSw) in the slippage
configuration, but much better performance in more typica
configurations, than the widely used Rinott’s procedure.
can be a substitute for the Rinott’s procedure.

The disadvantage MSS has is that at least one syste
always gets the maximum number of samples, which ma
be more than needed when true differences between syste
are much larger than the indifference-zone parameterδ. In
that case the wasted sampling may overcome the savin
from not switching. We are currently working on a more
flexible indifference-zone selection procedure (Hong an
Nelson 2003). It incorporates the cost structure into th
design of the procedure, therefore achieves minimum tot
cost.
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