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ABSTRACT Sum of differences, systeinand j

Statistical ranking and selection (R&S) is a collection of
experiment design and analysis techniques for selecting the  &j
“population” with the largest or smallest mean performance

from among afinite set of alternatives. R&S procedures have ajj

received considerable research attention in the stochastic A

simulation community, and they have been incorporated

in commercial simulation software. One of the ways that r samples

R&S procedures are evaluated and compared is via the

expected number of samples (often replications) that must

be generated to reach a decision. In this paper we argue —&ij

that sampling cost alone does not adequately characterize

the efficiency of ranking-and-selection procedures, and we

introduce a new sequential procedure that provides the samegq re 1: Triangular Continuation Region for the Fully Se-

tsri“g(lSzlc'?eudagglegssatlso?);;gﬂga?i?riedures while reducing quential, Indifference-zone Procedures; Selection of System
i or j as Best Depends on Whether the Sum of Differences
Exits the Region from the Top or Bottom

1 INTRODUCTION

Ranking-and-selection procedures (R&S) based on the
indifference-zone formulation have been proposed to se-
lect the simulated system with the largest or smallest mean
performance from among a finite number of alternative sys-
tems (see Bechhofer et al. 1995 for a summary). Among
these, fully sequential procedures, which approximate the
sum of differences between two systems as a Brownian
motion process and use a triangular continuation region
to determine the stopping time of the selection process,
were first proposed by Paulson (1964). Figure 1 illus-
trates how triangular continuation region works. Hartmann
(1988, 1991) improved Paulson’s procedure by replacing

Boole's inequality with a geometric inequality and replac- e d solution on each iteration by selecting the best from
ing a large-deviation bound by a Brownian motion bound. among a small set of candidates or neighbors. Ranking-

These procedures were intended for the case of normally 54 selection procedures can be embedded within these
distributed data with known or unknown common variance o qrithms to help recognize improved solutions efficiently,

across systems. Recently, Kim and Nelson (2001, 2002) 5 yith a statistical guarantee of correctness. Since some
further extended Hartmann's work to allow unknown and htimization algorithms revisit solutions to insure conver-

unequal variances, the use of common random numbers and
single-replication experiment designs, yielding procedures
that are more applicable in computer simulation experi-
ments. In this paper we also refine sequential selection
procedures with a triangular continuation region by consid-
ering the computation costs that are incurred in simulation
experiments.

One important, and relatively recent, application of
R&S is within optimization-via-simulation algorithms (see,
for instance, Boesel, Nelson and Ishii 2003, and Pichit-
lamken and Nelson 2003). Many optimization algorithms
attempt to move from a current good solution to an im-
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gence, Pichittamken and Nelson (2002) developed fully systems, which is desirable when R&S is also used to
sequential selection procedures that exploit the data already add statistical inference after an optimization algorithm has
obtained on previous visits, even if the sample sizes are terminated (see Boesel, Nelson and Kim 2003).
unequal. The procedure we introduce in this paper also ex- In Section 2 we present the Minimum Switching Se-
tends easily to unequal initial samples, and it is particularly quential Procedure (MSS), which consumes the minimal
well suited to the optimization setting. number of switches, just as the two-stage procedures do,
R&S procedures are typically evaluated in terms of while still maintaining sequential sampling. Then we pro-
the expected number of samples required to reach termina- vide some numerical examples in Section 3, followed by
tion. Sequential procedures with elimination—such as Kim the conclusions and future research directions in Section 4.
and Nelson’s (2001, 2002) procedure KN—and Bayesian
procedures—such as Chick and Inoue (2001)—reduce the2 A MINIMUM SWITCHING PROCEDURE
expected total number of samples relative to well-known
two-stage indifference-zone selection procedures, such asin this section we describe a sequential procedure that
Rinott’s (1978) procedure (RN). Two-stage procedures were guarantees, with confidence level greater than or equal to
designed to provide their guarantees in the face of a “least- 1—«, that the system ultimately selected has the largest true
favorable configuration,” and not to try to adapt to more mean if the true mean of the best is at leabttter than the
favorable situations (two-stage procedures with elimination second best. When there are inferior systems whose means
at the first stage have been discussed in, for instance, Nelsonare within§ of the best, then the procedure guarantees to

et al. 2001, and these can be more efficient than proceduresfind one of thesgood systems with the same probability.

like RN).

The focus in R&S research has been on developing
procedures that reduce the costsaimpling which means
generating data (typically replications) from a simulation

model. To achieve thisreduction, fully sequential procedures

like KN repeatedly switch among the different simulation
models, where awitchoccurs when we change the model
instance from which samples are generated. In fact, KN

The parametes, which defines théndifference zongs set

by the experimenter to the minimum difference in expected
performance that it is important to detect. Differences of
less thans are considered practically insignificant.

The procedure, which is called the Minimum Switching
Sequential Procedure (MSS), has two stages, like RN. A
stageis a checkpoint at which the maximum number of
samples that can be taken from each system until the next

requires one switch for each new sample generated after ancheckpoint is determined; it is the “maximum” number

initial stage of sampling.
Unfortunately, the computational overhead of switching

because fewer samples may be needed if some systems
are eliminated from consideration. All of the procedures

can be significant, sometimes orders of magnitude more than considered in this paper, including RN and KN, assume

sampling. Further, the cost of switching may be incurred
thousands of times if the R&S procedure is embedded within
an optimzation algorithm that explores a large solution
space. The work required to switch from one simulated
system to another usually includes storing state information
about the current system (including values of the random

unknown output variances, and for that reason they require
an initial stage of sampling that is not adaptive and whose
size is somewhat arbitrary; we refer to this as the “zeroth
stage.” The first decision about how to proceed occurs after
the zeroth stage.

MSS works as follows: After obtainingy > 2 samples

number seeds); saving all relevant output data; swapping from each system in the zeroth stage, it then estimates the
the executible code for the current system out of, and the parameters of the triangular continuation region and checks

code for the next system into, active memory; and restoring
the state information for the next system to the values it
had on the last call. Therefore, focusing solely on sampling
cost is misleading in many applications.

if any system can be eliminated immediately. LLelbe the

set of systems still in play at the end of the zeroth stage, and
let B and S alwaysdenote the systems ih with the best

and the second-best zeroth-stage sample means. In stage

Two-stage indifference-zone selection procedures, such 1, MSS takes the maximum number of samples implied by

as RN, mininize the number of switches; however, they do

the continuation region from system, so that no more

not adapt to the observed differences among the systemssamples are needed for syst@runder any circumstances
as the sampling progresses. Thus, they are efficient from (this contrasts with RN which takes the maximum number

a switching perspective, but inefficient from a sampling
perspective. KN, and similar procedures, are efficient from
a sampling perspective, but may not be efficient when
switching is considered. In this paper we propose a two-
stage sequential procedure that is adaptive, like KN, but
also has the minimum number of switches, like RN. Further,

of samples fromall systems, and KN which obtains one
sample at a time from all systems still in play). Then MSS
obtains one sample at a time from syst&ncomparing a
weighted sample mean from syst&io a weighted sample
mean from systenB, with elimination decisions after each
sample. IfB eliminatesS, then the identity ofS is updated

our procedure tends to allocate more samples to the better (since the former systeis no longer inl, andSis always
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the system in with the second-largest zeroth-stage sample
mean) and the process starts over agairs défiminatesB,

then the identities of botlB and S are updated, the new
systemB gets the maximum number of samples, and the
process continues. The procedure always examines only
two systems at a time, eliminating one, and stopping when
there is only one system remaininglin MSS is sequential

in the way it obtains samples, but it requires at mist
switches after the zeroth stage, whérés the number of
systems.

Throughout this paper we usg to denote theith
system and us&;, to denote the/th independent sample
from system. Think ofx; as the vector of decision variables
that define théth system. We assume thét, ~ N (i, o),
with both; andoi2 unknown. The procedure hastwo stages,

denoteds = 0,1. Let Xj(m) = m~1 31", Xj, denote the
sample mean of the firgh samples from system, and
let X;(n; s) denote the sample mean of the firssamples
from systemi taken in stages, wherei = 1,2, ..., k.
Minimum Switching Sequential Procedure
Setup: Select confidence level/k < 1 —«a < 1,
indifference-zone parametgér 0 and zeroth-stage
sample sizeg > 2. Selecth suchthat O< A < §
(A = 8/4 is recommended by Paulson[1964]).

Initialization: Takeng samplesXj¢, £ = 1,2, ..., ng,
from each systemn=1,2,...,k. Foralli # |,
calculate

no
2 1 g < 2
§j = — > (Xie = Xje = [Xi (ng; 0) — Xj (no: 0)])°,

=1
@
the sample variance of the difference between sys-
temsi and j, and let

(np — 1) §2j 1 —2/(ng-1)
U _ (1 — (k=D _
T {[1 A-a) | 1} ‘
(@)

The parameters;; and A define the triangular
continuation region for systemand j. Let

ai
N =[2] o
where [a] denotes the smallest integer which is
greater than or equal ta.
Initial Screening: Calculate

aj =

Zij (No) = no [ Xi (No; 0) — X (no; 0)].
Let
| = {i : Zi,j(ng) = min {0, —ajj + noA} ,

ij=12...k i;éj}
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be the set of systems still in play. 1| = 1,

then stop and select the system whose index is in

| as the best. Otherwise, sort the elementd in
based on the zeroth-stage sample me&riag; 0)

and letB and S alwaysbe the systems i with

the best and the second best zeroth-stage sample
means. Let

Ng

~max_Ngj.

jel.j#B
Take Np additional samples from syste®. Let
r be the number of samples taken from syst&m
in stage 1, and set= 0. Lety be an elimination
indicator. If ¢ = 0 then systenB is still in con-
tention; otherwise, systef has been eliminated.
Sety =0.

Screening: Take one sample from syste8) and let
r =r + 1. Calculate

ZgsNo+r) = Zps(no) +1 [Xg(Ng: 1) — Xs(r; D],
(3)
Wgs=max{0,ags— A(Ng +7r)}.

If Zgs(ng +r) > Wags, then letl I —{S}
and updateS; if Zgs(ng+r) < —Wgs, then let
| =1 —{B}, updateB and S, and lety = 1;
otherwise, go tdscreening

Stopping Rule: If |I| = 1, then stop and select the
system whose index is ihas the best. Otherwise,
if v =1, then let

Ng max_ Ngj,

jel.j#B
and take ma$0, Ng —r} samples from systerB.
Always letr = 0 andyr = 0, then go tdscreening

Remark.Zgs(no+r) is defined by Equation (3) instead
of the more natural cumulative difference

no+r

Zgso+1) =Y <):<B(n0+ NB) — Xse) :
=1

4

Jennision et al. (1982) have shown that when 2 the
sampling rule can only depend on the difference between
sample means, not on the individual sample means, if Equa-
tion (4) is used. However, the individual sample means are
required for sorting in MSS. Therefore, we use Equation (3)
to insure independence between stages 0 and 1.

We show that our procedure satisfies the probability
gurantee in Theorem 1, and a good system is selected when
there are inferior systems withif of the best system in
Corollary 1. The proofs are given in Hong and Nelson
(2003). Assumeuk > uk—1 > --- > u1 SO that systenk
is the best.
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Theorem 1  Suppose thatXj,, £ = 1,2,..., are mean, and therefore will immediately be allocated all of its
i.i.d. normally distributed, and thaXj, and Xjq are inde- samples.
pendent foi # j. Then MSS selecig with probability at
leastl — a whenevemug — i >éfori =1,2,...,k— 1 3 EMPIRICAL EVALUATION

Corollary 1 Supposeuk — k-1 < 8. Then MSS
selects a solution whose mean is withiof pk with prob- In this section we summarize the results of an extensive em-
ability at leastl — «. pirical evaluation of MSS relative to the Rinott's procedure

Remark We proved the use @& defined in Equation (RN) and Kim and Nelson’s procedure (KN), which are
(2) by using Paulson’s probability bound. Pichitlamken and representatives of two-stage procedures and fully sequen-
Nelson (2002) show that empirical results also suport the use tial procedures, respectively. The systems are represented
of Fabian’s probability bound used in KN, although it has not by various configurations d€ normal distributions and, to
yet been proved. Fabian’s probability bound is a Brownian assess the impact of nonnormality, lognormal distributions
motion bound. Itis tighter than Paulson’s probability bound whose skewness and kurtosis (standardized third and fourth
which is a large-deviation bound. If Fabian’s probability moments) differed from those of the normal distribution.

bound is used, we have In all cases systerk is the true best (has the largest true
He mean). We evaluated each procedure on different variations
aj = (no — D S {[2_ 2(1_a)1/(k71)]—2/(”0—1) B 1}’ of the systems, examing factors including the number of
45 —1) systems, the configuration of means, the configuration of
®) variances and the relative cost of sampling and switching.
for A =§/2.

The configurations, the experiment design and the results

) are described below.
MSS has the same number of switches as two-stage

procedures, such as RN, when both take additional samples3 1 Configurations and Experiment Design
for all systems after stage 0. However, MSS can eliminate

clearly inferior systems at the end of stage 0, while RN only Two configurations of the true means were used: the

ceases sampling ifio happens to be larger than the total  gj,5506 configurations (SC) and the monotone increas-
number of samples that RN required. Not surprisingly, our ing means (MIM). In SGux was set tas while u1 = o =
experiments show that the average sample size of MSS is |~ _ k1 = 0. This is a difficult configuration since

Ie_ss than or equal to RN in all situations. When th(_e true 41 inferior systems are exactly from the best. In MIM
dlfferencg bgtween some system gnd_the best system |s]arger = (i —18i=12. ..k MMis used to invest-
than the indifference amoudt which is the usual case in
practice, MSS has a much smaller average sample size than
RN. Since two-stage procedures have been implemented
in commercial simulation software, such as Automod and

gate the effectiveness of the procedures in more favorable
settings.
For each configuration of the means, we examined
) ; X the effect of variances. There are three configurations of
Awesim, MSS is a good substitute for them. __variances: equal variances (EV), increasing variances (IV)
In fully sequential procedures, such as KN, the elimi- ;4 decreasing variances (DV). In E¥ = op = - -- =
nation decisions between the better and the inferior systems . _ 1. i v o: = i: and in DVo; =k +1—1i.
occur with each having the same number of samples be- Let ¢ denote the switching cost in units of sampling
cause the sampling is synchronized. In MSS, the inferior cost (the cost of generating a sample). We used 10,
systems are typically eliminated by one of the (apparently) ¢ = 100 andc = 1000 to represent different cost struc-

better systems that has receivblof the samples that MSS a5 considering the current status of computer simulation
will ever allocate to it. In some cases this fact will allow ¢t vare evere = 1000 is not excessive.

MSS to be more efficient than KN, even if switching cost is We also varied the number of systems in each ex-
not significant. Consider, for instance, the case that amon ; ; ;
k > 2gs stems the true mean difference between the besgt periment, with k takmg values Of- 2, 5 and 10. In a_II

Yy ; experiments, the nominal probability of correct selection
and second-best systems is small (less than or equ] to (PCS) was 1- « = 0.95 and the first-stage sample size
while the other systems are clearly inferior to these two. In no was 10. The indifference-zone parameter was set to

this case, it is very likely that both MSS and KN will end 5 = ox//Mo, whereoy is the standard deviation of the
up taking nearly the maximum samples from the two good poqt qystem. Thus, is one standard deviation of the first

;ystgms. However, _MSS will tend to eliminate the c_IearI_y stage sample mean of the best system. For each configura-
inferior systems earlier (fewer samples), because the inferior tion, 1000 macroreplications (complete repetitions) of the

systems are compared to a good system that has receivedy,op procedure are performed to compare the performance

all of its samples. This is because it is likely that one of the measures, including the observed PCS, average number of
two good systems will have the largest zeroth-stage sample
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samples (ANSa), average number of switches (ANSw) and that MSS has the lowest ATC in almost all cases under the
average total cost (ATC). three cost configurationg & 10, 100, 1000).

3.2 Summary of Results Table 2: Effect of Mean Configuration

SC MIM
MSS is very close to RN in the slippage configuration, Procedure ANSa ANSw| ANSa ANSw
but has much better performance than RN in the MIM RN 1845.2 20.0| 1845.2 20.0
configuration, which is more typical in practice. Therefore, KN 977.2 887.2 426.6 336.6
MSS can be a good subsitute for the widely used RN MSS 1950.2 19.9] 981.7 18.5

procedure. We also found that the variance configuration
does not significantly change the relative performances of
all three procedures.

3.3 Some Specific Results

We do not attempt to present comprehensive results from
such a large simulation study. Instead, we present selected
results that emphasize the key conclusions.

3.3.1 Validity Check

In Sections 2 we showed the validity of MSS using Paulson’s
probability bound. However, we also pointed out that the
empirical results conducted by Pichitlamken and Nelson
(2002) support the use of the Fabian’s Probability bound
which is tighter than Paulson’s bound. We checked the
use of both bounds under the slippage configuration with
equal variances. The results in Table 1 show that Paulson’s
probability bound is very conservative and the Fabian’s
probability bound is appropriate to use. In the rest of the
paper, MSS refers to the MSS using Fabian’s probability
bound.

Table 1: Observed PCS of MSS using Paul-
son’s and Fabian’s Bounds

3.3.3 Robustness Study

To assess the impact of nhonnormal data on the procedures
they were applied to lognormally distributed data with in-
creasing levels of skewness and kurtosis, relative to the
normal distribution (which has skewness 0 and kurtosis
3). The configurations of means and variances are same
as Nelson et al. (2001). In all cases = 10, c = 10,
oi=1foralli,§=1//ng, p1=p2=---=puk-1 =0

and ux = 8. We also used different number of systems,
k =2,5,10. In the low deviation case the skewness and
kurtosis are 1.8 and 9.1; in the medium deviation case they
are 4.0 and 41.0; and in the high deviation case they are
6.2 and 113.2. Notice that the mean configuration is the
slippage configuration which is a difficult configuration to
achieve the nominal PCS.

Table 3 shows the estimated PCS for three lognormal
cases for MSS, with the corresponding normal case included
for comparison. When the level of deviation from the
normal distribution increases, the observed PCS decreases.
However, the observed PCS is close to the nominal value
even when the deviation is significant.

Table 3: Observed PCS of MSS in the Robustness

Procedure k=2 k=5| k=10
MSS Paulson 0.987 | 0.993| 0.995
MSS Fabian | 0.969| 0.987| 0.995

Study with Nominal Level 0.95

Normal | Low | Medium | High
k=2 0.969 | 0.970| 0.960 | 0.941
k=5 0.987 | 0.980| 0.953 | 0.922
k=10| 0.995 | 0.979| 0.950 | 0.926

3.3.2 Effect of Mean Configuration

We compared the three procedures using the slippage con-
figuration and monotone increasing means configuration.
We used equal variances akd-= 10 in both configurations.
The results in Table 2 show that Rinott's procedure does
not depend on the configuration of means while the other
procedures require less work when the mean configuration
deviates from the slippage configuration. In both configu-
rations KN has the lowest ANSa, while MSS has the lowest
ANSw. The reason why MSS has lower ANSw than RN
is because some clearly inferior systems can be eliminated

Table 4: The Five Alternative Inventory

Policies
Policy (i) | s S | Expected Cost
1 20| 40 114.176
2 20| 80 112.742
3 40 | 60 130.550
4 40 | 100 130.699
5 60 | 100 147.382

based on zeroth-stage samples in MSS. One can easily check
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3.3.4 An lllustrative Example Boesel, J., B. L. Nelson and S.-H. Kim. 2003. Using
ranking and selection to ‘clean up’ after simulation
We provide a system simulation example to compare our optimization. Operations Researgtiorthcoming.
procedures with RN and KN. Consider tfg S) inventory Chick, S. E. and K. Inoue. 2001. New two-stage and
system with the 5 inventory policies provided in Koenig and sequential procedures for selecting the best simulated
Law (1985). The objective of the study is to compare the 5 system.Operations Research19:732-743.
policies given in Table 4 on the basis of their corresponding Hartmann, M. 1988. An improvement on Paulson’s sequen-
expected average cost per month for the first 30 months of tial ranking procedureSequential Analysig:363-372.
operation and select the policy with the minimum expected Hartmann, M. 1991. An improvement on Paulson’s proce-

cost. The expected cost, which can be analytically computed, dure for selecting the population with the largest mean
are also given in Table 4. We sét= 1, np = 10 and from k normal populations with a common unknown
¢ = 100. Table 5includes the results of the simulation study variance.Sequential Analysjsl0:1-16.
based on 1000 complete macroreplications. The results areHong, L. J. and B. L. Nelson. 2003. The Tradeoff Between
consistent to what we observed in the previous experiments. Sampling and Switching: New Sequential Procedures
Notice thats is smaller than the true difference between for Indifference-Zone Selection. Working Paper, De-
the best and the second best systems, which explains the  partment of Industrial Engineering and Management
high level of the observed PCS. Sciences, Northwestern University, Evanston, lllinois.
] . . Jennison, C., I. M. Johnston and B. W. Turnbull. 1982.
Table 5: Simulation Study of the lllustrative Example Asymptotically optimal procedures for sequential adap-
Procedure] PCS | ANSa | ANSw | ATC tive selection of the best of several normal means. In
RN 1.000| 1033.1| 10.0 | 2033.1 Statistical Decision Theory and Related Topics &dl.
KN 0.998| 235.7 | 190.7 | 19305.7 S. S. Gupta and J. Berger, 2:55-86. New York: Aca-
MSS 0.999| 635.0 | 7.56 | 1391.0 demic Press.

Kim, S.-H. and B. L. Nelson. 2001. A fully sequential
procedure for indifference-zone selection in simula-

4 CONCLUSION AND FUTURE WORK tion. ACM Transactions on Modeling and Computer
Simulation 11:251-273.

In this paper we have presented an indifference-zone selec-Kim, S.-H. and B. L. Nelson. 2002. On the asymptotic

tion procedure which is sequential and has minimum number validity of fully sequential selection procedures for

of switches. As we discussed in Section 3, MSS has simi- steady-state simulation. Working Paper, Department
lar performance (in both ANSa and ANSw) in the slippage of Industrial Engineering and Management Sciences,
configuration, but much better performance in more typical Northwestern University, Evanston, lllinois.
configurations, than the widely used Rinott’s procedure. It Koenig, L. W., and A. M. Law. 1985. A procedure for
can be a substitute for the Rinott's procedure. selecting a subset of siza containing thd best ofk

The disadvantage MSS has is that at least one system  independent normal populations, with applications to
always gets the maximum number of samples, which may simulation. Communications in Statistics: Simulation
be more than needed when true differences between systems ~ and Computation14:719-734.
are much larger than the indifference-zone paramitén Nelson, B. L., J. Swann, D. Goldsman and W. Song. 2001.
that case the wasted sampling may overcome the savings Simple procedures for selecting the best simulated sys-
from not switching. We are currently working on a more tem when the number of alternatives is largapera-
flexible indifference-zone selection procedure (Hong and tions Research49:950-963.
Nelson 2003). It incorporates the cost structure into the Paulson, E. 1964. A sequential procedure for selecting
design of the procedure, therefore achieves minimum total the population with the largest mean framnormal
cost. populations.Annals of Mathematical Statistic35:174-

180.
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