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ABSTRACT

In steady-state simulation the output data of the transie
phase often causes a bias in the estimation of the stea
state results. A common advice is to cut off this transie
phase. Finding an appropriate truncation point is a we
known problem and is still not completely solved. In this
paper we consider two algorithms for the determination
the truncation point. Both are based on a technique whi
takes the definition of the steady-state phase more clos
into consideration. The capabilities of the algorithms a
demonstrated by comparisons with two methods most oft
used in practice.

1 INTRODUCTION

The output process{X j }n
j =1 of a discrete-event simulator

is influenced by the initial stateS(0) chosen by the analyst.
In general this influence is significant in the beginning an
decreases with increasing model time. If one is interest
in the steady-state behavior of the model, this initializatio
bias is obviously undesirable. A common way to reduc
the influence ofS(0) is to truncate the “most” influenced
observationsx0, . . . , xl−1.

Following this strategy the problem is to find an appro
priate truncation pointl . Many detection rules and methods
can be found in the literature. Some are based on o
simulation run (see (Pawlikowski 1990)) and some emplo
many independent simulation runs starting with the sam
initial state (cf. (Fishman 2001, Welch 1983)). The latte
approach is called multiple (independent) replications
parallel (MRIP, see (Ewing, Pawlikowski, and McNickle
1999)) and will be considered in this paper.

Let Fj (x|S(0)) := Pr[X j ≤ x|S(0)] denote the cumu-
lative distribution function (CDF) at model time indexj .
Assuming an ergodic system we haveFj (x|S(0)) → F(x)

if j → ∞. F(x) is called the steady-state distribution
and the primary concern of steady-state simulation is
t
y-

y

e

determine this distribution or derived measures. In prac
tice, the calculation ofF(x) is only possible for special
cases, because the output process might never reach stea
state in finite time. By eliminating the transient phase, th
steady-state distribution or derived measures are estima
on the basis of the observationsxl+1, . . . , xn, hopefully giv-
ing results close to the theoretical steady-state distributio
In the following we will call the observationsxl+1, . . . , xn

the steady-state phase. In the literature the steady-st
phase is, e.g., defined by the remark "relatively free o
the influence of initial conditions" (Fishman 2001) or by
the remarkXl+1, Xl+2, . . . Xn "will have approximately the
same distribution" (Law and Kelton 2000). These defini
tions are not precise enough for an algorithmic detectio
of the truncation pointl and the practical knowledge of
the analyst is still very important. It is therefore not much
surprising, that the most common methods for detection o
the truncation point are based on a visual inspection of th
output data. Other, completely algorithmic methods giv
only proper results under special conditions (see (Gafaria
Ancker, and Morisaku 1978)) and are mostly based on on
long simulation run. Nearly all methods use as a criterio
convergence of the mean, although the steady-state ph
is defined by the convergence ofFj (x|S(0)) towards the
steady-state distributionF(x).

In this paper we focus on the output analysis of MRIP
One main advantage ofk independent replications is, that
it is possible to getk random values ofFj (x|S(0)) and
thus an estimation of the CDF ofFj (x|S(0)). The accuracy
of this estimation increases with an increasing number o
replications. A significant advantage of MRIP is that the
execution ofk replications in parallel needs about the sam
amount of time than one single simulation run (provide
we use, e.g.,k computers), but gives more data for a bette
estimation ofFj (x|S(0)). Since the prices of hardware are
decreasing and performance is increasing, the execution
MRIP becomes a feasible method in practice.
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(a) Linear Transient Mean (b) Linear Transient Variance

(c) Exponential Transient
Mean

(d) ARMA(5, 5)

(e) Periodic (f) Non-ergodic

Figure 1: PDF Over Time: Abscissa Represents Index o
Model Time; Ordinate Shows Range ofY Divided Into
Equally Spaced Y-intervals (A Dark Gray Point at Interval
v Represents a High Probability of [Yt ∈ v], while a Light
Gray Represents a Low Probability)

2 MULTIPLE REPLICATIONS IN PARALLEL

Let F̃j (x|S(0)) denote the empirical CDF of thek values
from the independent replications.̃Fj (x|S(0)) is an esti-
mation of Fj (x|S(0)) and, of course, the accuracy of this
estimation increases with increasingk. Let xi, j denote the
j th observation of thei th replication with 1≤ i ≤ k and
1 ≤ j ≤ n. If all xi, j are observations of the same measur
and allx1, j , . . . , xk, j are observed at the same model tim
or event, than the sequence{xi, j }k

i=1 can be considered as an

independent random sample ofXi . Let x̄ j = 1
k

∑k
i=1 xi, j

denote the column average.

2.1 Method of Fishman

It is the nature of simulation that all estimated measure
have a random error. In addition, measures might ha
a systematic error caused by the transient phase. T
systematic error is known as the initialization bias an
Fishman’s advice to detect it, is to examine the sequence
column averages{x̄ j }n

j =1 (cf. (Fishman 2001)). Increasing
the number of replicationsk decreases the random error
but the systematic error remains unaffected.

1. Compute and plot{x̄ j }n
j =1.

2. If the graph does not show a suitable “warm-u
interval”, increasen and goto step 1.
s
e
is

f

2.2 Method of Welch

The method of Welch extends the method of Fishman.
is based on the following experiences. The random er
appears as a high-frequency oscillation in the sequence
column averages whereas the systematic error is in m
cases a low-frequency oscillation. A sliding window com
prising a sequence of column averages might be able
reduce the effect of the random error. Given a particu
window size we can define an overall average from the
column averages. Since the window is moving this avera
is called the moving average and sliding of the windo
results in a sequence of such moving averages. In pract
this sequence often seems to converge after some poil
giving the wanted truncation point. For details see (La
and Kelton 2000, Welch 1983).

1. Compute{x̄ j }n
j =1.

2. Move a window of sizew = 2K +1 across{x̄ j }n
j =1.

Calculate and plot the average of the interval
each single step. In order to avoid conflicts a
the beginning, one starts with a window of size
(K = 0), which is increased until the desired siz
w is reached. After that, the window size is kep
constant.

3. As long as the plot is not smooth, increase th
window size by some valuev > 0 and repeat step
2 with w := 2(K + v) + 1.

As mentioned, the methods of Fishman and Wel
require interaction of an experienced user. In the followin
we introduce two algorithms which need less user interacti
In practice, different situations might be encountered. O
the one hand, one might has to deal with a static set of da
e.g., if the simulation has been terminated. On the oth
hand, one might be confronted with a dynamic set of da
E.g., if analysis of the output data is performed on-the-fl
additional data will become available during the simulatio
experiment. The following two algorithms take these tw
possible scenarios into account. One algorithm deals w
a static set of data, the other deals with a dynamic set
data. Both aim at the detection of the truncation pointl and
are based on convergence characteristics of the empir
CDF of the random samples ofXi .

3 STATIC DATASET

Assume that̃Fn(x|S(0)) is the latest estimation of the steady
state distributionF(x), because the simulation terminate
at model time indexn. In order to find a proper truncation
point, the first model time indexl must be detected such tha
F̃j (x|S(0)) ≈ F̃n(x|S(0)) for all j > l . One measure for
equality of two random variables is the maximum differenc
of their empirical CDFs. The maximum difference of two
CDFs X1 and X2 is given by maxx |F1(x) − F2(x)| where
Fi (x) is the proportion ofXi values less than or equal tox.
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Figure 2: Plots of a Linear Transient Phase (Y(1)
t )

Given two empirical CDFs by two samples, the maximu
difference can be determined by sorting these samples
comparing indices of corresponding X-values. All this give
the following algorithm.

3.1 Algorithm for a Static Dataset (ASD)

1. CalculateF̃j (x|S(0)) for 1 ≤ j ≤ n by sorting
{xi, j }k

i=1.
2. Compute the maximum differences{dj }n−1

j =1 of

F̃j (x|S(0)) and F̃n(x|S(0)).
3. Compute for allj with 1 ≤ j ≤ n−1 the number of

differences which miss the threshold in the interva
[ j , n − 1].

4. Choosel to be the minimum value ofj after which
only (a ∗ 100)% of thedj , dj +1, . . . , dn−1 exceed
the thresholdz2,k;1−α.

The thresholdz2,k;1−α is the same threshold used in
the Kolmogoroff-Smirnov two-sample test. Values of th
threshold are tabulated. For details see (Hartung, Elp
and Klösener 1985). In our experiments we used anα-level
of 0.05 and seta = 0.02.

4 DYNAMIC DATASET

Analysis of the output data parallel to the execution of th
numerous simulations in the MRIP approach has some
vantages. Most important is that the analysis process h
the opportunity to guide the execution of the replication
nd

l

lt,

d-
as
.

The decision whether to terminate or to continue the sim
lations can be based on specific analysis results. Thus
set of data is now not limited a priori and its size varie
dynamically with proceeding execution of the simulations

4.1 Algorithm for a Dynamic Dataset (ADD)

1. Choose a ratio 1: r , and a levelp, 0 ≤ p ≤ 1.
Initialize n := 0

2. Observer + 1 new X-intervals of all replications
and compute ther + 1 new random samples:
{xi,n+1}k

i=1, . . . , {xi,n+r+1}k
i=1

3. Setn := n + (r + 1)

4. SetT S := {xi, n
r+1

}k
i=1

5. CompareT Swith {xi, j }k
i=1 for j = n

r+1 +1, . . . , n
using the Kolmogoroff-Smirnov two-sample test.
If more than(p ∗ 100)% of the compared random
samples{xi, j }k

i=1 have a different probability dis-
tribution thanT S: goto 2.
Otherwise terminate withl := n

r+1.

In (Bause and Eickhoff 2002) this algorithm for a
dynamic dataset (ADD) was first introduced. Similar to
ASD, this algorithm is based on the maximum differenc
of the empirical CDFs. ADD divides the observed random
samples into three parts. The first part comprises the rand
samples, which have been assigned to the transient pha
The second part is the random sample, denoted as the t
sampleT S, which is tested whether it is a proper estimatio
for l . Finally, the third part are those random samples, whic
are assumed to be in the steady-state phase. This last
might be used to estimateF(x). Note thatn is not bounded
and therefore the algorithm need not terminate, which, e.
might happen in case of a non-stationary model.

Since the analysis can be performed in parallel to th
simulation, the algorithm might be employed to determin
a suitable stopping criteria for the simulation (cf. (Baus
and Eickhoff 2002)). One key property of ADD is, that it
preserves a predefined ratio of 1: r between the transient
and the steady-state phase, following an advice of Law a
Kelton (Law and Kelton 2000). Surely, a proper choic
of r depends on the model. Our experiences show, th
r = 10 is a proper choice for many datasets and we us
this choice in the following experiments.

Testing whether two random samples originate from th
same distribution is again performed using the Kolmogorof
Smirnov two-sample test. Selecting this test seems reas
able, since it makes no assumptions on the distribution
the X j . When using ADD we selected anα-level of 0.05
and also setp to 0.05.

5 EXPERIMENTAL COMPARISON

As mentioned, it is well-known that a proper estimation o
the truncation point has a significant impact on the quality o
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Figure 3: Plots for a Constant Mean with a Transient
Variance (Y(2)

t ) – ASD Givesl = 87 and ADDl = 91

the simulation results (cf. (Fishman 2001, Law and Kelto
2000, Welch 1983)). Gafarian, Ancker and Morisaku defin
quality in more detail by attributes like accuracy, precisio
and generality (see (Gafarian, Ancker, and Morisaku 1978
Here we want to deal with the quality in a more genera
view and test ASD, ADD and the methods of Fishma
and Welch on some typical attributes of the output data
common models.

In the following examples we use output data, that
not taken from simulations of "real" models. Instead w
employ some well-known artificial processes with know
properties. Especially characteristics of the truncation poi
are known in advance giving a precise criterion for com
parison. We used the random number generator describ
in (L’Ecuyer, Simard, Chen, and Kelton 2002) and som
additional transformations, described below.

Let {εt }∞t=1 denote an independent Gaussian white noi
process (Hamilton 1994). This process is transformed in
six processes with different attributes. In the following w
employk = 100 independent replications for each proces

5.1 Linear Transient Mean

The first inspected dataset (see Fig. 1(a)) is a realization
the process

Y(1)
t = f (1)

t + εt . (1)

A transient phase originates fromf (1)
t which is defined as

f (1)
t =

{
x − t x

l if t < l ,

0 else.
(2)
).
l

f
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Figure 4: Plots of an Exponential Transient Phase
(Y(3)

t ) – ASD Givesl = 149 and ADDl = 115

f (1)
t is defined such that the transient phase ends at ind

l andY(1) is the white noise process beyond indexl . The
parameterx describes the offset.

Figures 2(a)- 2(d) show results obtained from applying
the methods of Fishman and Welch, ASD and ADD for
x = 10 andl = 100. As depicted, all methods give a good
estimation ofl .

In Fig. 2(c) a cross represents the percentage of alldh

with j ≤ h ≤ n − 1, which exceed the thresholdz2,k;1−α.
In Fig. 2(d) a cross represents the normalized result of a
performed Kolmogoroff-Smirnov two-sample tests at one
step of the ADD. Normalization is done with respect to all
tests, i.e. the normalized number of rejections of the nu
hypothesis is plotted. At aboutt = l we find the first random
sample being (approximately) equal to all remaining random
samples. Obviously, due to randomness some “outlier” te
samples still show differences, but the algorithm determine
the truncation point accurately neart = 100.

5.2 Linear Transient Variance

The second considered process (see Fig. 1(b)) has a cons
mean, but there is a transient behavior of the variance.

Y(2)
t = f (2)

t · εt (3)

f (2)
t =

{
x − t x−1

l if t < l ,

1 else.
(4)

Multiplication in equation (3) stretches the y-range of the
white noise process. Again,f (2)

t describes a linear transient
behavior (x = 10, l = 100).
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Figure 5: ARMA(5, 5) ProcessY(4)
t – ASD Gives

l = 428 and ADD Givesl = 288.

The large variance has an influence on the column av
ages. Since the random error is larger at the beginning, a
the column average has a larger variance at the beginn
(see Fig. 3(a)). But with an increasing number of repl
cations, the random error decreases. The moving avera
smoothes the column averages. The random error is cove
with increasing window size. In this example the metho
of Welch is not able to discover the end of the transie
phase correctly (see Fig. 3(b)), because the standard hin
enlarge the window size leads to a smoothed curve witho
any slope.

Figs. 3(c) and 3(d) show, that ASD and the ADD ar
able to find an appropriate truncation point, because th
are based on the empirical CDFs. The run of the curves
both plots show a sharp drop near the “theoretically bes
truncation point.

5.3 Exponential Transient Mean

Our third example considers a dataset (cf. Fig. 1(c)) bein
realizations of the process

Y(3)
t = f (3)

t + εt . (5)

In contrast to the first dataset exhibiting a linear transie
phase, the addend now has an impact which is exponentia
disappearing

f (3)
t = x · e(t ln(0.05)

l ). (6)

The definition of f (3)
t results in permanent differences be

tween two consecutive random samples, but beyond tim
index l (againx = 10, l = 100) a test sample will differ
from the steady-state distribution at most by 5% of the di
g
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Figure 6: Plots of a Periodic Process (Y(5)
t , No Steady-

state) –ASD Givesl = 498 and ADD Gives No Trun-
cation Point

ference between the first random sample and the steady-s
distribution.

In this example there is obviously no clear defined
truncation point, but this represents a typical situation en
countered in practice. Since the influence of the initial sta
is not disappearing completely, it is difficult to estimate
the truncation point visually (see Fig. 4(a) and 4(b)). A
decision where to define the truncation point now depend
very much on experience of the analyst.

Figures 4(c) and 4(d) show the results for ASD and
ADD. Both algorithms give a truncation point in the interval
[100, 150]. Their advantage is the automatic determinatio
of the truncation point due to statistical assumptions.

5.4 ARMA(5, 5)

The fourth dataset (see Fig. 1(d)) is created by multipl
realizations of the ARMA(5, 5) process which is defined
by

Y(4)
t = 1 + εt +

5∑
i=1

1

2i
(Yt−i + εt−i ), t ≥ 0. (7)

We selectedY(4)
−5 , Y(4)

−4 , Y(4)
−3 , Y(4)

−2 = 0, Y(4)
−1 = 100 as start-

ing conditions giving a transient behavior, sinceE(Y(4)
t ) =

32 for t → ∞.
The results are shown in Fig. 5. The methods of Fishma

and Welch give no clear indication of a proper truncatio
point. Theoretically the sample atl = 183 differs at most
by 5% from the steady-state distribution. Also ASD gives
no proper truncation point. The reason is that the sample
t = 500 (i.e. F̃n(x|S(0))) is an outlier and thus ASD gives
a cautious estimation of the truncation point. The analy
would probably reject ASD’s choice and thus avoids runnin
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Figure 7: (Y(6)
t , No Steady-state) – ASD Givesl = 231

and ADD Gives No Truncation Point

into further problems, since the resultant steady-state pha
contains too few data for statistical analysis.

Not surprisingly, the results of ADD are the best. ADD
determines a truncation point atl = 288. Beyond indexl
there are some peaks, e.g. att ≈ 300 andt ≈ 350− 400.
These peaks result from the memory of the ARMA(5, 5)

process. In comparison to the outliers seen before (e.
in Fig. 2(d)), which are limited to a single point in time,
an outlier of an ARMA(5, 5)-process is reproduced in the
following 5 values. Thus, many outliers occurring close
together will give a curve shown in Fig. 5(d).

5.5 Periodic

A periodic process (see Fig. 1(e)) is non-stationary and ha
no steady-state distribution. This implies that there is no
truncation point.

Y(5)
t = f (5)

t + εt (8)

f (5)
t = b · sin(ωt) (9)

Equation (9) defines a periodic process using a sine osci
lation with amplitudeb and cycle lengthT = 2π

ω
.

Of course, the column averages give also a sine osci
lation (cf. Fig. 6(a), hereb = 1, T = 50). The method
of Welch aims at smoothing the column averages with the
advice to increase the window size whenever the resu
tant curve is not smooth. So there is some chance tha
the analyst will select (after some experiments on initially,
maybe, smaller data sets) a window size close to the cyc
length. Selecting a window size which conforms to the cy-
cle length, results in a smooth curve of the moving averag
(cf. Fig. 6(b)). Based on such a curve, the analyst would
be inclined to select an incorrect truncation point.
e

.

-

t

In contrast to the method of Welch, ASD shows
periodic behavior (cf. Fig. 6(c)), since the differences of th
empirical CDFs are oscillating, too. ASD outputsl = 498
as truncation point, indicating that the inspected data
shows no steady-state behavior.

Figure 6(d) displays the results for ADD, which agai
gives the best result. Here the curve remains on a high le
and does not reach the threshold, simply because ther
no steady-state phase.

5.6 Non-Ergodic

A principal problem when applying simulation is its limited
model time horizon. The observed data might satisfy som
criteria at the beginning, but after the horizon somethin
“unexpected” might happen. E.g., the system might sho
non-ergodic behavior (cf. (Bause and Beilner 1999)). Su
an “unexpected” behavior is shown in Fig. 1(f) and th
corresponding process is defined by

Y(6)
t = f (6)

t εt + f (1)
t (10)

with

f (6)
t = ct. (11)

f (1)
t again results in a process with a typical initial transie

behavior, but due tof (6)
t the process will not become

ergodic afterwards. We used the following parameters f
experiments:c = 0.01, x = 10, l = 100.

Not surprisingly, the methods of Fishman and Welc
fail detecting non-ergodicity, see Fig. 7. ASD outputs
truncation point att = 231, but again this is a cautious
choice and the analyst will probably refuse to analyze t
resultant short “steady-state phase”. In comparison to
other methods ADD gives a definite result and is able
show that there is no truncation point.

6 COMPARISON OF RUNNING TIMES

It is well-known that the amount of data collected durin
a simulation might become very large. In the previou
section we pointed out the potential benefits of the propos
algorithms, ASD and ADD. In this section we consider th
price one has to pay for better results and determine
worst-case time complexity of all the methods consider
in this paper.

As before, letk denote the number of replications andn
the amount of observations of each single replication. So
total number of observations iskn. Assume, that all basic
arithmetic operations are inO(1) (cf. (Cormen, Leiserson,
and Rivest 1994)). In the following the mentioned runnin
times consider worst-case time complexity.
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Theorem 1 The running time of the method of Fish-
man isO(nk).

Proof: One column average can be calculated inO(k)

steps. Altogethern column averages have to be calculate
giving a running time ofO(nk).

Theorem 2 The running time of Welch’s method is
O(nk).

Proof: Since the method of Welch is based on the resul
of the method of Fishman, it needs a running time ofO(nk)
and some additional time in order to calculate the movin
average. The window slides through the observations in
mostn steps. Since each value of the moving average can
calculated by adding one new observation, subtracting t
oldest observation and finally dividing by the window size
we have an additional overhead ofO(1). Thus the moving
averages can be calculated inO(n) steps and the resultant
running time of Welch’s method is thereforeO(nk)+O(n) =
O(nk).

Theorem 3 The running time of ASD is
O(nk log(k)).

Proof: Determination of the maximum difference
of two CDFs from two random samples of sizek has a
running time ofO(k log(k)), because the random samples
have to be sorted. Thus sorting alln random samples needs
O(nk log(k)) steps.

The maximum difference of two CDFs (both given by
sorted random samples) takes 2k steps. Since we don − 1
random sample comparisons, additionalO(nk) steps are
necessary.

The threshold is tabulated and a lookup is done inO(1)

steps. In order to determine the number of differences f
all intervals[ j , n − 1] (1 ≤ j ≤ n − 1) having missed the
threshold, we have to inspect eachdj once. Traversing this
range in reverse order, starting withj = n − 1, gives the
opportunity to rely on previous results. So the amount o
differences, which missed the threshold, can be calculat
in O(1) per interval. Because there aren − 1 intervals this
takes additionalO(n) steps.

Altogether this gives a running time ofO(nk log(k))+
O(nk) + O(n) + O(1) = O(nk log(k)).

Theorem 4 The running time of ADD is
O(n2k log(k)).

Proof: As mentioned, the difference of the CDFs of
two random samples can be calculated inO(k log(k)). The
lookup of the threshold takesO(1), so one Kolmogoroff-
Smirnov two-sample test has a running time ofO(k log(k)).

In the pth step of the algorithmpr comparisons have to
be done in n

r+1 steps. Therefore the amount of comparison
is given by

r

n
r+1∑
p=1

p = r
n

r+1( n
r+1 + 1)

2
= rn2 + r 2n + rn

2r 2 + 4r + 2
. (12)
t
e

d

The only maximum of (12) subject to 1≤ r ≤ n − 1 is at
r = n+1

n−1 giving at most1
8(1 + n)2 comparisons.

Altogether the running time of ADD is given by the
number of comparisons multiplied by the running time of
one comparison, which results in a total running time of
O(n2k log(k)).

All worst-case running times can be limited by a polyno-
mial and are thus “theoretically efficient”. Not surprisingly
(having in mind the results from the previous section), the
methods of Fishman and Welch are the fastest. But ASD is
not significantly slower, since in practicen >> k holds for
most cases, so that the factor log(k) does not increase the
running time significantly. ADD needs the most steps (ad-
ditional factorn log(k)), but the algorithm can be executed
parallel to the execution of all replications (cf. (Bause and
Eickhoff 2002)) giving a moderate overhead in practice.

7 SUMMARY AND CONCLUSIONS

The method of Fishman (Fishman 2001) smoothes the simu
lation data by calculating the mean at each time index. This
method is easy to implement and therefore very popular. I
creates expressive plots for simple transient behavior (cf
Fig. 2(a), 4(a) and 6(a)). But analysis of the steady-state
phase just on the basis of the mean might lead to problems
As Welch remarked (cf. (Welch 1983)), convergence of
the mean is a necessary, but not a sufficient condition fo
stationarity. Therefore, this method is not suitable for the
analysis of complex transient behavior. In such cases, it is
advisable to compare the results with a plot of the original
data (cf. Figs. 1(b) and 3(a)).

The method of Welch (cf. (Welch 1983)) is based on
the column average, too. It has the same advantages a
the method of Fishman, but suffers also from the same
disadvantages. The extension is, that the column average
are smoothed, again by calculating the means of the slidin
window. This gives a better distinction between the random
and the systematic error. But smoothing might lead to
inaccurate results: The moving average is calculated from
the means at different points in time and, in general, the
process changes over time. E.g., smoothness of the kin
in Fig. 2(b) depends on the window size. A more serious
problem occurs, e.g., when analyzing periodic processes
especially if the window size conforms to the cycle length
(cf. Fig. 6(b)).

ASD and ADD solve some problems of the methods of
Fishman and Welch, because they are based on the CDF
and not only on the mean. Thus they take the definition of
steady-state better into account.

Even though the implementations of ASD and ADD are
not difficult, they are more complicated than the methods
of Fishman and Welch. Their execution is more costly, too.
But this pays off, when analyzing real-world models with
a complex transient behavior.
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Table 1: Comparison of Example Results (No Problem
+; Minor Problems:◦; Method Fails: –)

Process Fishman Welch ASD ADD

Y(1)
t (l = 100) + (l ≈ 100) + (l ≈ 100) + (l = 95) + (l = 99)

Y(2)
t (l = 100) ◦ [50,100] – (l ≈ 10) + (l = 87) + (l = 91)

Y(3)
t (l ≈ 100) ◦ [100,200] ◦ [100,200] + (l = 149) + (l = 115)

Y(4)
t (l ≈ 183) ◦ [150,400] ◦ [150,400] – (l = 428) ◦ (l = 288)

Y(5)
t (no l ) + – (l ≈ 25) ◦ (l = 498) +

Y(6)
t (no l ) – (l ≈ 100) – (l ≈ 100) ◦ (l = 231) +

runtime nk nk nk log(k) n2k log(k)

Table 1 summarizes the results from our experimen
The methods of Fishman and Welch are very useful wh
estimating a steady mean. If the transient behavior is rough
known, these two methods are adequate. Whenever stea
state can not be deduced from a steady mean or the trans
behavior is not roughly known, ASD and ADD are a mor
adequate choice. Their additional running time is acceptab
since they are able to find a proper truncation point for
larger amount of models.
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