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ABSTRACT

In this work, we extend the use of time series models t
the output analysis of non-stationary discrete event sim
ulations. In particular, we investigate and experimentall
evaluate the applicability of ARIMA(p, d, q) models as po-
tential meta-models for simulating queueing systems und
critical traffic conditions. We exploit stationarity-inducing
transformations, in order to efficiently estimate performanc
measures of selected responses in the system under stu

1 INTRODUCTION

Analyzing the results produced by simulation models i
certainly an area of utmost practical importance. On th
other hand, the highly autocorrelated nature of simulatio
responses, namely in queuing systems, has challenged sim
lation analysts to propose ever more innovative approache

The use of classical time series models (Box, Jenkin
and Reinsel 1994) in the output analysis of stationary dis
crete event simulations was initially proposed by Fishma
(1971). He suggested fitting an autoregressive model
order p, AR(p), to a simulation response, as an intermed
ate step for estimating reliable variability measures of th
response (variance, confidence intervals). Later, Schrib
and Andrews (1984) generalized that approach and us
an automated procedure for fitting mixed autoregressiv
moving average models, ARMA(p,q). In both cases, th
authors reported poor performance results, namely, in th
coverage rates of confidence intervals for simple queuein
systems.

Contradicting the apparent incompatibility between
queueing systems and time series models, Brandão a
Porta Nova (1999) showed that most of those results cou
be related to either an insufficient simulation duration o
an excessive initial bias. Keeping under control these tw
factors, very positive results were observed for anM/M/3
stationary queue under moderate and congested traffic s
uations.
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This paper is organized as follows. In Section 2, w
discuss the use of classical time series models to analy
the output of non-stationary discrete event simulations.
Section 3, we investigate the applicability of ARIMA models
as potential meta-models for queuing system simulatio
under critical traffic conditions. Finally, in Section 4, we
draw some conclusions and suggest further work in th
area.

2 NON-STATIONARY SIMULATION

The output analysis of non-stationary discrete event simu
tions is conspicuously absent from the literature of stochas
simulation. The well-known asymptotic result, for simple
queueing systems, that most response measures go to infi
when the utilization factor approaches one, seems to ha
convinced the simulation community that it was worthles
to explore this topic. Uncontrolled evolution, explosive
growth, are but two ways of characterizing a situation tha
has undoubted practical interest. During rush-hour period
system breakdowns, etc., arrival rates do actually exce
processing rates. And much needed and useful informati
might be extracted from such non-stationary simulation
many "what if?" questions could be answered... What
the expected queue length at the end of a rush-hour p
riod? What is the expected sojourn time for an entit
arriving halfway through that period? It would be even
more interesting if we could predict the evolution in time o
these and other performance measures, without having
repeat time consuming simulations and subsequent out
analysis. This is the main purpose of pursuing simulatio
meta-models: finding analytical models that are simpler b
realistic representations of the computer programs impl
menting simulation models.

Since the output produced by stochastic simulatio
models is essentially composed of strongly autocorrelat
time series, it seemed just natural to investigate the applic
bility of the classical time series models, ARIMA(p, d, q),
as potential meta-models for non-stationary simulations.
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most scientific areas where the Box-Jenkins methodolog
is widely applied, data is scarcely available; that is the cas
for instance, when econometric models are fit to a singl
realization of an economical time series. In contrast to tha
we can chose any number of independent replications
analyze the output produced in discrete event simulatio
experiments. Thus, if we analyze the averaged respons
across runs, instead of a single realization: (i) we reduc
the time series variability; (ii) we are able to identify more
clearly theunderlyingevolution of the response with respect
to time; and (iii) we make the meta-model fitting process
much easier. In addition, this is a valid fitting approach to au
tocorrelated data, contrarily to regression-based procedure
If the simulation responses are non-stationary in variance,
may be necessary to previously apply a variance-stabilizin
transformation.

We illustrate our meta-modelling approach to non-
stationary simulation with two case studies, two simple
queues, with utilization factors greater than or equal to one
and we analyze the evolution of two responses: averag
queue length and average time spent in the system.

3 EXPERIMENTATION

In this section, we present and discuss the experiment
evaluation of the applicability of ARIMA(p, d, q) meta-
models for the non-stationary simulation of twoM/M/s
queueing systems—that is, with exponential inter-arriva
and service times, ands identical parallel servers. We
consider two distinct values for the utilization factor,ρ =
λ/(sµ), whereλ and µ represent the arrival and service
rates, respectively:ρ = 1 (a critical traffic situation) and
ρ = 2 (super-critical traffic).

We performed a Monte Carlo experiment consisting
of 3000 independent replications of each simulation mode
with a referenceduration of 60 time units for the followings
queueing systems:

(i) An M/M/1 queue with super-critical traffic (ρ =
2); and

(ii) An M/M/2 queue with critical traffic (ρ = 1).
The actual duration varied, because each run was on
terminated when the last entity that had arrived before 6
time units left the system. The initial conditions for each
model were an empty and idle system.

Queue lengths were collected at regular time interval
1t = 0.5, 1.0, with t ∈ (0, 60]; sojourn times were sorted
according to the time interval in which the arrival had
occurred. Then, for each time interval, the correspondin
observations across 30 runs were averaged. Finally, th
Box-Jenkins methodology was applied to the averaged tim
series of each response, through the identification,estimatio
and diagnostic checking of the ARIMA(p, d, q) models.
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Although we performed the experimentation for both
interval widths, we only present the graphs correspondin
to 1t = 0.5, because the results are very similar.

3.1 A Super-Critical M/M/1 Queue

The super-critical traffic situation was created with an inte
arrival rate ofλ = 2 and service rate ofµ = 1, producing
the utilization factorρ = 2.

Analyzing the average queue length for a typical se
of 30 runs (see Figure 1, the hardly discernible dash-line
we can conclude that the process is non-stationary on t
mean: there is a marked linear trend and the sample au
correlation function (ACF) decreases very slowly to zero
In the figure, the sample partial autocorrelation function
also represented. The results produced by the fitted mo
are also represented (solid line) on the subgraph contain
the original series (dash-line).
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Figure 1: Average Queue Length (M/M/1, ρ = 2
and1t = 0.5)

Differentiating the series (see again Figure 1), we ob
served that it became stationary, without any statistical
significative value on the ACF and PACF. This was als
confirmed applying the Box-Ljung test. Thus, in this case
we can fit the ARIMA(0, 1, 0) model to the average queue
length. This is an example of the simplest possible ARIMA
model, where the first difference produces white noise. Th
process is called a random walk with drift, if it has a nonzer
expected value, or simply a random walk, otherwise.

We repeated the analysis for the remaining 99 time ser
(each corresponding to an average of 30 runs) obtaini
the results reproduced in Table 1. In more than 90%
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Table 1: Valid Fits for Average Queue Length (M/M/1 Queue, withρ = 2)

ARIMA (0, 1, q) TIME INTERVAL ARIMA (p, 1, 0) TIME INTERVAL
FITTED MODEL 1t = 0.5 1t = 1.0 FITTED MODEL 1t = 0.5 1t = 1.0

ARIMA (0, 1, 0) 91 93 ARIMA (0, 1, 0) 91 93
ARIMA (0, 1, 4) 1 ARIMA (1, 1, 0) 1
ARIMA (0, 1, 5) 1 3 ARIMA (2, 1, 0) 1 2
ARIMA (0, 1, 6) 1 2 ARIMA (3, 1, 0) 2
ARIMA (0, 1, 7) 3 1 ARIMA (4, 1, 0) 1 1
ARIMA (0, 1, 8) 2 ARIMA (5, 1, 0) 6
ARIMA (0, 1, 9) 1 ARIMA (6, 1, 0) 1 1
ARIMA (0, 1, 10) 1
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the cases, the same ARIMA(0, 1, 0) model was consistently
validated.

The 100 original series are represented in Figure 2, a
well as the corresponding fitted series. Comparing the tw
subgraphs, we see that both series have basically the sa
behavior.

The mean values of the differentiated data (for all the
100 series) are, approximately, 0.5 (for the case1t = 0.5)
and 1 (for the case1t = 1.0). This suggests that the
average queue length is directly proportional to the elapse
time. This important conclusion is in agreement with a
little-known asymptotic result obtained by Bailey (1964)
for the M/M/1 queue: the mean of the queue length a
instantt can be approximated by(λ − µ)t for λ > µ, thus
validating the approach and the results presented here.
the same Figure 2, we also represent Bailey’s result (th
thick white line in the subgraph to the right).

A similar analysis was performed for the other response
the average sojourn time. In this case, differentiation did
not produce white noise, except for a few data series. Th
original series, its first difference and the correspondin
ACF and PACF are represented in Figure 3.
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Figure 2: Original and Fitted Series: Average
Queue Length (M/M/1 Queue, withρ = 2 and
1t = 0.5)
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The number of different ARIMA(p, 1, q) models that
were actually fitted to the 100 series of average sojou
times are reported in Table 2. Although the order of th
ARIMA (p, 1, q) model required to cover about 90% o
the original series increased substantially, we see that
fitted models keenly capture the global behavior of the da
series—see Figure 4.

3.2 A Critical M/M/2 Queue

To create, now, a situation with a critical value for th
utilization factor,ρ = λ/(sµ), we chose an arrival rate of
λ = 2 and a service rate ofµ = 1, resulting inρ = 1 for
the utilization factor.

Analyzing, for this case, the average queue length ser
(dash-line in Figure 5), we can observe, as before, a cl
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Figure 3: Average Sojourn Time (M/M/1 Queue,
with ρ = 2 and1t = 0.5)
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Table 2: Valid Fits for Average Sojourn Time (M/M/1 Queue, withρ = 2)

ARIMA (0, 1, q) TIME INTERVAL ARIMA (p, 1, 0) TIME INTERVAL
FITTED MODEL 1t = 0.5 1t = 1.0 FITTED MODEL 1t = 0.5 1t = 1.0

ARIMA (0, 1, 0) 14 ARIMA (0, 1, 0) 14
ARIMA (0, 1, 1) 27 11 ARIMA (1, 1, 0) 15 21
ARIMA (0, 1, 2) 18 25 ARIMA (2, 1, 0) 30 6
ARIMA (0, 1, 3) 16 23 ARIMA (3, 1, 0) 16 20
ARIMA (0, 1, 4) 16 21 ARIMA (4, 1, 0) 9 14
ARIMA (0, 1, 5) 12 5 ARIMA (5, 1, 0) 8 18
ARIMA (0, 1, 6) 8 1 ARIMA (6, 1, 0) 9 1
ARIMA (0, 1, 7) 2 ARIMA (7, 1, 0) 8 3
ARIMA (0, 1, 8) 1 ARIMA (8, 1, 0) 2 2

ARIMA (9, 1, 0) 2
ARIMA (10, 1, 0) 1 1
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linear trend on the data; again, the ACF decreases very slow
to zero indicating a non-stationarity on the mean. In solid lin
we represent the results produced by the fitted model. In sp
of this promising start, this case ended up representing t
greatest challenge to our analysis. Repeating the applicati
of the Box-Jenkins methodology to the 100 average queu
length responses, it was again possible to fit a large number
ARIMA (0, 1, 0) models. This seemed to suggest that simpl
differentiation would produce white noise. However, the
predicted linear evolution failed to detect a marked nonlinea
start of the actual responses.

Since the Box-Cox transformations frequently reduc
nonlinearity, as well as heteroscedasticity, we applied the
to the 100 averaged data series, obtaining the results
produced in Table 3. Again, we can conclude that th
ARIMA (0, 1, 0) is a good model for the transformed av-
erage queue length. In Figure 6 we represent the origin
series and the corresponding fitted series. We can see th
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Figure 4: Original and Fitted Series: Average
Sojourn Time (M/M/1 Queue, withρ = 2 and
1t = 0.5)
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except for a few extremal cases, the global behavior of t
original series is now mostly captured. However, we ma
have to further explore new stabilizing transformations.

The results obtained for the average sojourn time
the M/M/2 queue, withρ = 1, were very similar to those
of the M/M/1 queue (see Figure 7).

We then tried to fit the same type of ARIMA(p, 1, q)

models to the 100 series, obtaining the results presented
Table 4.

Again, differentiation did not produce a significan
number of cases of white noise. In this case, the fitte
ARIMA (p, 1, q) models had higher orders and they aptl
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Figure 5: Average Queue Length (M/M/2 Queue,
with ρ = 1 and1t = 0.5)
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Table 3: Valid Fits for Average Queue Length (M/M/2 Queue, withρ = 1)

ARIMA (0, 1, q) TIME INTERVAL ARIMA (p, 1, 0) TIME INTERVAL
FITTED MODEL 1t = 0.5 1t = 1.0 FITTED MODEL 1t = 0.5 1t = 1.0

ARIMA (0, 1, 0) 91 89 ARIMA (0, 1, 0) 91 89
ARIMA (0, 1, 1) 3 1 ARIMA (1, 1, 0) 3 1
ARIMA (0, 1, 2) 3 4 ARIMA (2, 1, 0) 1 3
ARIMA (0, 1, 3) 2 5 ARIMA (3, 1, 0) 2 6
ARIMA (0, 1, 5) 1 ARIMA (4, 1, 0) 2 1
ARIMA (0, 1, 6) 1 ARIMA (5, 1, 0) 1
Table 4: Valid Fits for Average Sojourn Time (M/M/2 Queue, withρ = 1)

ARIMA (0, 1, q) TIME INTERVAL ARIMA (p, 1, 0) TIME INTERVAL
FITTED MODEL 1t = 0.5 1t = 1.0 FITTED MODEL 1t = 0.5 1t = 1.0

ARIMA (0, 1, 0) 24 ARIMA (0, 1, 0) 24
ARIMA (0, 1, 1) 78 63 ARIMA (1, 1, 0) 10 46
ARIMA (0, 1, 2) 9 11 ARIMA (2, 1, 0) 44 25
ARIMA (0, 1, 3) 7 1 ARIMA (3, 1, 0) 29 3
ARIMA (0, 1, 4) 1 1 ARIMA (4, 1, 0) 11 2
ARIMA (0, 1, 5) 3 ARIMA (5, 1, 0) 5
ARIMA (0, 1, 6) 2 ARIMA (6, 1, 0) 1
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captured the marked curvature in the initial behavior of th
original series—see Figure 8.

4 CONCLUSIONS AND RECOMMENDATIONS

In this work, we propose an approach that is valid for mea
ingfully analyzing the output produced by non-stationar
stochastic simulations. Based on what we might callthe
classical time series methodfor simulation output analysis,
the approach can be used to obtain effective meta-mode
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Figure 6: Original and Fitted Series: Average
Queue Length (M/M/2 Queue, withρ = 1 and
1t = 0.5)
s,

namely, for queueing system simulation. A significan
experimental evaluation of our approach showed that it pe
formed quite well for two queueing systems under critica
traffic conditions.
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Figure 7: Average Sojourn Time (M/M/2 Queue,
with ρ = 1 and1t = 0.5)
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Figure 8: Original and Fitted Series: Average
Sojourn Time (M/M/2 Queue, withρ = 1 and
1t = 0.5)

It is clear that much has to be done to develop an
fundament the approach presented here. Also more comp
hensive experimental evaluations, new examples of app
cations, other analytical models relating selected simulati
responses with model parameters... However, we feel th
this is a very promising area of undoubtedly practical in
terest, and we intend to continue exploring it.
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