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ABSTRACT 

This paper discusses the problem of fitting mixture models 
to input data. When an input stream is an amalgam of data 
from different sources then such mixture models must be 
used if the true nature of the data is to be properly repre-
sented. A key problem is then to identify the different 
components of such a mixture, and in particular to deter-
mine how many components there are. This is known to be 
a non-regular/non-standard problem in the statistical sense 
and is technically notoriously difficult to handle properly 
using classical inferential methods. We discuss a Bayesian 
approach and show that there is a theoretical basis why this 
approach might overcome the problem. We describe the 
Bayesian approach explicitly and give examples showing 
its application. 

1 INTRODUCTION 

Simulation modelling often requires streams of random 
variables that represent input quantities that are subject to 
random variations. For example in a queueing model 
streams of random interarrival times and customer service 
times are required. Input modelling aims to identify appro-
priate probability distributions for characterising the be-
haviour of such variables. There is a significant literature 
on this topic. A good general reference is Law and Kelton 
(2000). Much of the focus is on relatively simple situations 
where input random variables are independently and iden-
tically distributed and drawn from well-known distribu-
tions such as the normal, lognormal, gamma or Weibull. In 
the simulation context, two generalisations have also been 
studied in some detail, namely: (i) where the random vari-
ables are multivariate, and (ii) where they are correlated. 
See for example Nelson and Yamnitsky (1998), Deler and 
Nelson (2001) and Ghosh and Henderson (2001). 
 A third generalisation has not been so well discussed 
where the random variables come from so-called finite 
mixture distributions. The purpose of this article is to dis-
cuss such distributions and their modelling. We discuss 
 
briefly their role in simulation and the kind of situation 
where they are of use. However the bulk of the paper ad-
dresses the problem of fitting an appropriate mixture dis-
tribution to existing data. 
 In Section 2 we give a formal statement of the problem 
of fitting a finite mixture model and show that it is a non-
standard one in a precise statistical sense.  We discuss why 
this non-standardness gives rise to difficult theoretical as 
well as practical issues. In Section 3 we discuss possible 
solution methods. In particular we concentrate on a Bayes-
ian approach using a computer intensive method. A 
Markov chain Monte Carlo method could be used with this 
Bayesian approach, however we have found that an impor-
tance sampling procedure is attractive and this is the 
method described in this article. 
 There are some significant practical problems arising 
from the underlying features and characteristics of the 
problem. It is the authors' contention that any robust and 
reliable procedure for fitting a mixture model to data, must 
explicitly address these issues. In Section 4 we discuss 
these problems and discuss some practical aspects of the 
Bayesian approach. 
 Section 5 gives two numerical examples.  

2 THE ESTIMATION PROBLEM 

A continuous finite mixture model is defined as a distribu-
tion whose probability density function takes the form 
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are the weights of the components whose individual densi-
ties are kixf ii  ..., 2, ,1  )|( =θ . This notation allows for the 
component densities to be different but it is more usual to 
assume that they all take the same form, i.e. 
 
 kixfxf iii  ..., ,2 ,1  ,)|()|( == θθ  
 
and this will be assumed for the remainder of the paper. A 
typical example is where the components are normal 
 

 





 −−






= 2

2/1

)(
2

exp
2

)|( i
ii

i xxf µτ
π

τθ      (3) 

 
where 
 
 . T

iii ),( τµθ =
 
Note that we follow the convention of many Bayesian for-
mulations in using the parameterization τ rather than the 
commonly used variance parameter .  In this model it is 
assumed that none of the 

2σ
iθ  are known and moreover the 

number of components k is also not known. This is a non-
regular situation and there is a large literature discussing 
the problem. See Cheng (1998) for a discussion of the is-
sues that are of particular concern in this paper. When the 
number of components is not known, the main problem is 
that standard asymptotic theory does not hold, and it is dif-
ficult to construct satisfactory statistical tests to identify the 
correct number of components. In what follows we shall 
assume that the true (but unknown) number of components 
is denoted by k*, and the unknown true parameters associ-
ated with the individual components are denoted by 

.   ..., 2, ,1  , ∗∗ = kiiθ

3 A BAYESIAN FITTING METHOD 

Certain of the methods that have been proposed for fitting 
mixture models are theoretically interesting but seem 
rather elaborate to implement or require careful, sometimes 
rather subjective, selection of key critical values needed by 
the methodology. An example is the so-called sieve 
method which requires a sequence of parameter regions of 
increasing size to be selected as sample size increases. See 
Barron, Schervish and Wasserman (1999). An exception is 
the sequential method described by Hsu, Walker and 
Ogren (1986). This latter method is one of the easiest to 
understand and implement and deserves to be better 
known. 
 We shall consider just one Bayesian method. It com-
bines a simplicity of approach with a clear rationale that is 
easily understood. 
 We shall for simplicity assume that, though k* is un-
known, we can specify an upper bound, K, for which we 
know that 

 
 . Kk <∗

 
 Bayesian analysis is well described in Gilks, Richard-
son and Spiegelhalter (1996), especially the MCMC ap-
proach. The basic idea of Bayesian estimation is as fol-
lows. We suppose that a prior distribution for the unknown 
parameters can be specified, which we write in the form 
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where 
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is the prior distribution for k and, where for given k, 

 is the conditional prior density, given k, of the 
component parameters 
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The posterior distribution, when fitting the model (1) to a 
sample , is then given by ) ..., , ,( 21 nxxxx =
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The expression  is the likelihood correspond-
ing to the mixture model with k components. 

),|( )( kxp kψ

 The major difficulty in determining  is 
evaluating the denominator in the above expression (7). 
Markov chain Monte Carlo (MCMC), is the most popular 
current method of constructing posterior distributions that 
does not require explicit evaluation of the denominator. 
However it is not easy to implement in the current situation 
because it requires random moves between different k val-
ues, and the form these moves should take is not straight-
forward to identify. The reversible jump method for doing 
this, described by Green (1995) and by Richardson and 
Green (1997), has received much recent attention, but 
seems quite elaborate to implement. A more attractive ap-
proach would seem to be that of George and McCulloch 
(1993) where indicator variables are used. A very simple 
variation of this approach using an embedded MCMC, and 
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that does not need the use of indicator variables, is de-
scribed by Cheng (1998). 
 An alternative to MCMC is importance sampling. 
The general consensus seems to be that importance sam-
pling is less robust than MCMC when the form of the 
posterior is not all that well known in advance. However 
in the case of mixture models we have found that it is 
much more easy to implement than MCMC. Our sug-
gested procedure is as follows: 
 Conditional on k we use numerical search to find 
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for each k = 1, 2, ..., K. For given k, the problem is regular, 
and as the sample size n tends to infinity the asymptotic 
distribution of )(~ kψ is normal with variance given by the 

inverse of the information matrix at )(~ kψ . Interpreting this 
result from the Bayesian viewpoint yields a limiting poste-
rior distribution for that is multivariate normal, 
namely 

)(kψ

 
 ),~  |()|( )()()()( kkkk kq ΞΦ= ψψψ      (9) 
 
where ),~|( )()()( kkk ΞΦ ψψ is the (degenerate) multivariate 

normal density with mean )(~ kψ and variance Ξ . This 
distribution is degenerate because condition (2) has to be 
satisfied. 

)(k

 For the importance sampling procedure we can now 
construct a candidate distribution as follows. The candidate 
distribution for the number of components is the uniform 
distribution 
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The complete candidate distribution is simply 
 
 ),~|()|()(),( )()()(1)( kkkk Kkqkqkq ΞΦ== − ψψψψ . 
 
The importance sampling is now easily implemented. A 
sample, of size m, of values ( , is 

drawn from the candidate distribution  as 
given in (9) and (10). The posterior distribution sample is 
then given by 
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 An attractive feature of the method is that the posterior 
distribution sample is a random sample. Moreover if the 
candidate distribution is similar in shape and location to 
that of the posterior distribution then the sample values 
(11) will be fairly constant and so will accurately repro-
duce the shape of the posterior distribution without need 
for the sample size m to be all that large. In contrast the 
MCMC procedure gives rise to a correlated sequence with 
convergence properties that can be hard to establish.  

4 PRACTICAL IMPLEMENTATION 

A central problem in fitting mixture models, when using a 
classical likelihood approach, is how to obtain the “best” 
fit.  This problem occurs even when the number of compo-
nents is given. This problem is actually inherent in the 
problem rather than being a mere artefact of estimation 
method. The same problem is thus encountered with the 
Bayesian approach described in the previous section and 
manifests itself in the following way. 
 Note first that, in order to identify a candidate distribu-
tion that is a good approximation of the posterior distribu-
tion, we need to find the maximum of this posterior distri-
bution so that the candidate distribution can have the bulk 
of its probability located in the neighborhood of this 
maximum point. The key calculation is thus that of (8). 
 In evaluating (8), the Bayesian approach possesses a 
distinct theoretical advantage over classical methods that 
maximize the likelihood or any modified form of likeli-
hood. The problem with a mixture model is that it pos-
sesses unusual flexibility and this can result in spurious 
'good' fits being obtained. A simple example typifies the 
problem. Suppose that the data is actually drawn from a 
one-component model, but that we fit a two-component 
model. Then only one component is needed to give a satis-
factory fit. This means that the second component is avail-
able to be fitted to any minor departure of the data, not ac-
counted for by the main fit. To take the most extreme case, 
the spare component can even be fitted any one of the in-
dividual observations. This arbitrariness is reflected in the 
likelihood function which is always multimodal with infi-
nite spikes on the boundary of the parameter space corre-
sponding to degenerate delta function components posi-
tioned on individual data points. 
 For example if we place a normal component (3) on 
the datum point x1 then this will contribute the term 
 

    2
11

11
2
1

1111 )(
2

)
2

ln(
2
1)],|(ln[ µτ

π
τατµα −−= xxf  



Cheng and Currie 

 
to the likelihood function. It is easily seen that there are 
paths in the parameter space with ∞→→ 111  and  τµ x  for 
which ∞→)],|(ln[ 1111 τµα xf . 
 There are various ways of overcoming the problem, 
but the Bayesian approach handles the difficulty in a natu-
ral way. Whereas in the likelihood approach, preference is 
given to parameter values where the likelihood is large, in 
the Bayesian context it is actually the probability content 
that counts. Thus though a narrow component might in 
principle be located at a datum point, the probability con-
tent of the component will be determined by the weighting 
of the component; and this will be small. 
 The above consideration indicates why Bayesian im-
portance sampling might prove preferable to classical 
maximum likelihood methods. However the problem of sa-
tifactorily evaluating (8) is still not straightforward. 
 We suggest that a good approach for determining the 
best fit as given in (8), is to use a variant of the collapsing 
method suggested by Sahu and Cheng (2003).  The method 
begins by selecting K > k* and then fitting a K component 
model by finding )(~ Kψ  as in (8). 
 When K > k* the arbitrariness in how components 
might be fitted in different ways to a sample, is most 
marked and problematic. This is because there is an ample 
number of components to account for all the main features 
of the sample, which then leaves a freedom, but arbitrari-
ness, in how the additional components might be deployed. 
At least two different phenomena can arise. 
 One possibility is where two or more model compo-
nents combine to account for just one true component. This 
is not actually of great concern. It is merely a manifestation 
of the redundancy in the fit. 
 The other possibility is that model components will be 
fitted to minor, spurious or random, features of the sample. 
Again this is will not usually be of consequence, as such 
model components will not be significant, statistically 
speaking. 
 The important point to note is that such arbitrariness in 
the fit is not of real consequence provided that genuine fea-
tures of the data are captured in the fit. 
 Assuming that a satisfactory fit has been found with 
the K-component model, we then progressively reduce the 
number of components in a step by step manner. The Sahu 
and Cheng method does this by identifying the pair of 
components that are closest together according to a certain 
information-theoretic distance, and combining this pair of 
components. This method is fairly robust, but it may not 
corectly handle the situation where two components are 
close according to the distance measure, but both are nev-
ertheless needed to model an important feature of the data. 
For example, if the components are symmetric, a skewed 
mode might need two such components to capture its char-
acter. We therefore suggest a procedure that is still step-
wise, but which is more cautious, and can deal adequately 
with such a situation. 
 Suppose we have a k-component model fitted. We 
then drop each of the k fitted components in turn, and reop-
timize as in (8). We then select the best of the resulting (k-
1) component models as being the selected (k-1) compo-
nent model fit. 
 More elaborate sequential procedures can be adopted 
but we have not investigated this possibility any further. 
The procedure described above has been sufficiently robust 
in all the examples we have studied to date. 
 Another issue that is important in considering the 
number of components needed, is the shape of the distribu-
tion assumed for the component densities. For example if 
the components are normal distributions, and so are sym-
metric, then an unnecessarily, in effect incorrectly, large 
number of components will be required to represent data 
that is a mixture of skew components. 

5 EXAMPLES 

In the examples we used a normal mixture with compo-
nents as given in (3). For the parameters iµ  a normal prior 
was used with the sample mean and sample variance as 
hyper-parameters; for the iτ  we used an exponential prior; 
for the weights iα  we used a prior uniform Dirichlet dis-
tribution. 
 The first example considers three sets of observed 
processing times of vehicles at toll booths of one of the 
Severn Bridge river crossings. This data was originally re-
ported by Griffiths and Williams (1984), and is also de-
scribed by Cheng, Holland and Hughes (1996).  The data 
are for vehicles grouped into three categories: private cars, 
light vans, and heavy goods vehicles. We carried out the 
Bayesian fitting procedure to observations from each group 
on their own using a normal mixture model; we also ap-
plied the fitting procedure with all three groups combined 
pretending that the groupings were unknown. The fre-
quency plots and fitted mixture distributions are shown in 
Figure 1, with the calculated posterior distributions for the 
number of components given in Figure 2. It will be seen 
that there is clear evidence that both the Private cars and 
the HGV's have a distribution where the bulk of the obser-
vations can be explained by one component, but that there 
is a, rather distinct, long tail that requires a separate distinct 
component. The light vans are a more uniform group, and 
though the data seem slightly skewed, the mixture model 
fitting indicates that one component is quite sufficient. 
 When all three groups are combined, then there is a 
marked skewness that is distinct from the long tail behav-
iour, and the posterior distribution now indicates the need 
for two main components to explain this skewness and a 
separate component to handle the separate long tail. 
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Figure 1: Posterior Distributions for the Number of Components in a Normal 
Mixture Describing Data from (a) Private Cars, (b) Light Vans, (c) HGVs and 
(d) All Vehicles 
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Figure 2: Fitted Mixture Distributions with Individual Components Shown for (a) Private Cars, (b) Light Vans, (c) 
HGVs, (d) All Vehicles 
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 The second example is taken from observations of 
headway gaps between vehicles in a separate traffic survey 
by Cowan (1975). There are theoretical reasons for believ-
ing that the distribution in this case is positively skewed. 
Figure 3 shows the data and Figure 4 gives the posterior 
distribution of the number of components using a mixture 
of normal distributions. The spread of probabilities across a 
number of components is a good indication that the shape 
of the distribution (normal in this case) used for the indi-
vidual components is not very appropriate. If we log the 
data then a very good fit is obtained from just one compo-
nent as is shown in Figure 5. 
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Figure 3: Fitted Mixture Distribution with Individual Com-
ponents Shown for the Cowan Data 
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Figure 4: Posterior Distribution for the Number of Compo-
nents in a Normal Mixture Describing the Cowan Data 

6 CONCLUSION 

We have tested, fairly extensively, the method for fitting 
mixture models proposed in this paper, and have found it to 
be quite robust. The major computational problem is in ob-
taining the maximum point )(~ kψ , for k = K, because of the 
arbitrariness phenomenon discussed in Section 4. However 
provided K is sufficiently large (values we have used range 
from 6-10 when the correct k* is 2-4) the problem does not 
seem to give rise to any practical difficulties in estimating 
the correct value for k*. We have tested this not only with  
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Figure 5: Fitted Normal Distribution to the Log of the 
Cowan Data 
 
real data but with simulated data where the number of com-
ponents is known. The method appears to have little diffi-
culty in identifying the correct value for k*.  An Excel spread-
sheet version is available at www.maths.soton.ac. 
uk/staff/Cheng which allows data to be input easily. 

REFERENCES 

Barron, A., Schervish, M. J. and Wasserman, L. 1999. The 
consistency of Posterior Distributions in non-
parameteric problems. Annals of Statistics 120: 536-
561. 

Cheng, R.C.H. 1998. Bayesian model selection when the 
number of components is unknown. In Proceedings of 
the 1998 Winter Simulation Conference, ed. 
D.J.Medeiros, E.F. Watson, J.S. Carson and M.S. 
Manivannan, 653-659. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers. 

Cheng, R.C.H., Holland, W. and Hughes, N.A. 1996. Se-
lection of input models using bootstrap goodness-of-
fit. In Proceedings of the 1996 Winter Simulation Con-
ference, ed. J.M. Charnes, D.J. Morrice, D.T. Brunner 
and J.J. Swain, 317-322. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers. 

Cowan, R.J. 1975. Useful headway models. Transportation 
Research 9: 371-375. 

Deler, B. and Nelson, B.L. 2001. Modeling and Generating 
Multivariate Time Series with Arbitrary Marginals and 
Autocorrelation Structures. In Proceedings of the 2001 
Winter Simulation Conference, ed. B.A. Peters, J.S. 
Smith, D.J. Medeiros, and M.W. Rohrer, 275-282. 
Piscataway, New Jersey: Institute of Electrical and 
Electronics Engineers. 

George, E.I. and McCulloch, R.E. 1993. Variable Selection 
via Gibbs sampling. Journal of the American Statisti-
cal Asociation 85: 398-409. 

http://www.maths.soton/
http://www.maths.soton/


Cheng and Currie 

 

 
Ghosh, S. and Henderson, S.G. 2001.  Chessboard Distri-

butions. In Proceedings of the 2001 Winter Simulation 
Conference, ed. B.A. Peters, J.S. Smith, D.J. 
Medeiros, and M.W.Rohrer, 385-393.  Piscataway, 
New Jersey: Institute of Electrical and Electronics En-
gineers. 

Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. 1996. 
Markov Chain Monte Carlo in Practice. London: 
Chapman and Hall. 

Green, P.J. 1995. Reversible jump Markov chain Monte 
Carlo computation and Bayesian model determination. 
Biometrika 82: 711-732. 

Griffiths, J.D. and Williams J.E. 1984. Traffic Studies on 
the Severn Bridge. Traffic Engineering and Control 
25: 268-71, 274. 

Hsu, Y-S, Walker, J.J. and Ogren, D.E. 1986. A stepwise 
method for determining the number of component dis-
tributions in a mixture. Mathematical Geology 18: 
153-160. 

Law, A.M. & Kelton, W.D. 2000. Simulation Modeling 
and Analysis. New York: McGraw-Hill. 

Nelson, B.L. and Yamnitsky. M. 1998. Input Modeling 
Tools for Complex Problems. In Proceedings of the 
1998 Winter Simulation Conference, ed. D.J. 
Medeiros, E.F. Watson, J.S. Carson and M.S. Mani-
vannan, 105-112. Piscataway, New Jersey: Institute of 
Electrical and Electronics Engineers. 

Richardson, S. and Green, P.J. 1997. On Bayesian analysis 
of mixtures with an unknown number of components. 
Journal of the Royal Statistical Society B 59: 473-484. 

Sahu, S.K. and Cheng, R.C.H. 2003. A fast distance-based 
approach for determining the number of components 
in mixtures. The Canadian Journal of Statistics 31: 3-
22. 

AUTHOR BIOGRAPHIES 

RUSSELL C. H. CHENG is Professor, Head of Opera-
tional Research, and Deputy Dean of the Faculty of 
Mathematical Studies at the University of Southampton. 
He has an M.A. and the Diploma in Mathematical Statistics 
from Cambridge University, England. He obtained his 
Ph.D. from Bath University. He is a former Chairman of 
the U.K. Simulation Society, a Fellow of the Royal Statis-
tical Society, and Member of the Operational Research So-
ciety. His research interests include: variance reduction 
methods and parametric estimation methods. He was a 
Joint Editor of the IMA Journal of Management Mathemat-
ics. His email and web addresses are <R.C.H.Cheng@ 
maths.soton.ac.uk> and <www.maths.soton. 
ac.uk/staff/Cheng>. 

CHRISTINE CURRIE is a PhD student at the University 
of Southampton.  She has an MPhys from Oxford Univer-
sity and an MSc in Operational Research from the Univer-
sity of Southampton.  Her research interests include 
mathematical modeling of epidemics, Bayesian statistics 
and variance reduction methods. Her email address is: 
<C.S.M.Currie@maths.soton.ac.uk> 

mailto:R.C.H.Cheng@�maths.soton.ac.uk
mailto:R.C.H.Cheng@�maths.soton.ac.uk
mailto:niels@stchedroff.com
mailto:R.C.H.Cheng@maths.soton.ac.uk
mailto:R.C.H.Cheng@maths.soton.ac.uk
mailto:niels@stchedroff.com

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 392
	02: 393
	03: 394
	04: 395
	05: 396
	06: 397
	07: 398


