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ABSTRACT 

 

A large conglomerate such as a property/casualty insurance 
firm in this case, can be divided along business boundaries. 
This division might be along commercial lines, homeowner 
lines and perhaps across countries. An insurance firm’s 
capital can be interpreted as a buffer that protects the com-
pany from insolvency and its inability to pay policyholder 
losses. Rare events have been simulated over the two divi-
sions of an insurance firm. Different risk measures like 
conditional value at risk (CVaR) have been implemented 
into the optimization model. Decomposition methods will 
be applied in the context of decentralized decision making 
of a multi-divisional firm.  

1 INTRODUCTION 

In the context of risk management, the primary decision 
variables entail three elements – asset and liability deci-
sions, under a range of stochastic scenario system. The in-
surance arena has several advantages. The scenarios have 
been well vetted and are employed on a routine basis for 
important decisions such as pricing hurricane insurance; 
there are several leading companies supplying these scenar-
ios of losses (RMS, AIR, EQECAT, see SwissRe (2002) 
for further discussion); and the loss distributions are highly 
skewed – extremely large losses possible with minute 
probabilities discussed in Berger, Mulvey and Nish (1998). 
Large global insurance companies can be analyzed via de-
centralized optimization to reduce the enterprise risks and 
to improve the company’s portfolio of businesses. The 
topic of integrated risk management has several names, de-
pending upon the application:  

1. Asset and Liability Management in banks and 
pension plans, 

2. Enterprise Risk Management for non-financial 
companies, 

3. Dynamic Financial Analysis called DFA for in-
surance companies. 
 See Laster and Thorlacius (2000), Lowe and Stanard 
(1996), Mango and Mulvey (2000), Cariño et al. (1994), 
Mulvey et al. (2000) for applications of DFA. Also, see 
Boender (1997), Consigli and Dempster (1998) for applica-
tions in other financial domains.  The insurance portfolio 
manager and the underwriter require sophisticated analyti-
cal tools to achieve enterprise goals. For example, the in-
surance portfolio manager needs to understand the effects 
of adding an additional account to the business line.  

 

 A developed decision support system, called Smart-
Writer answers these questions for one application area, the 
catastrophe property business.  SmartWriter employs data 
from earthquake and hurricane modeling systems to show 
the effects of adding a new account or subtracting an exist-
ing account from the current portfolio. In addition, Smart-
Writer optimizes the portfolio composition to produce a 
portfolio meeting user-specified characteristics. See refer-
ences Berger et al. (1998) for details (Also see Wallace 
(2001) for generating scenarios over a stochastic program-
ming tree and Boender (1997), Kouwenberg (2001) and 
Cariño and Ziemba (1998) for different scenario-generation 
methods).   
 In the light of Berger et al. (1998), insurance compa-
nies can also be analyzed within the DFA context to reduce 
the enterprise risks and to improve the company’s busi-
nesses. The insurance portfolio manager and underwriter 
require sophisticated analytical tools to assist decision-
making.  
 The insurance portfolio manager needs to understand 
the effects of adding an additional account to the business 
line. In addition, there are many other issues the manager 
must address, such as: (1) Should an existing account be 
renewed and, if so, at what price? (2) Where are the best 
areas to expand the current portfolio? (3) How can two 
books of business be merged profitably? 
 The developed decision support system, called Smart-
Writer answers these questions for one application area, the 
catastrophe property business.  SmartWriter employs data 
from earthquake and hurricane modeling systems to show 
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the effects of adding a new account or subtracting an exist-
ing account from the current portfolio. In addition, Smart-
Writer optimizes the portfolio composition to produce a 
portfolio meeting user-specified characteristics.  
 Suppose there is a portfolio of insurance liabilities. As 
an example, Berger et al. (1998) consider a portfolio of 
commercial businesses insured against earthquakes in Cali-
fornia by St. Paul, a large property and casualty insurance 
company. A potential new piece of business is presented to 
the portfolio manager, who must decide whether to write 
the account or reject it. Of course, some negotiating with 
the insurance broker who presents the account is possible, 
so the portfolio manager would also like to know the re-
quired premium to meet a profitability hurdle. Before ana-
lyzing the incremental business, there is a need to define a 
profitability measure for the existing portfolio. Two meas-
ures are return on allocated capital and expected utility (see 
Bell (1995) for an example). Their comparison is summa-
rized in Table 1. Table 2 displays the analysis. 

 
Table 1: Compare Allocated Capital & Exp. Utility 

  Advantages Disadvantages 
Allocated 
Capital 

-Easy to explain -Extra work to sort 
discrete distributions 

 -Returns have 
intuitive mean-
ing 

-Limited points on 
loss distribution 

Expected 
Utility 

-Handle entire 
loss distribution 
at once 

-Hard to determine 
utility function 

 -Convex math 
program 

-Results not intuitive 

 
Table 2: New Account Analysis, Numbers ($000) 

 Current 

Portfolio 

New 

Account 

Combined 

Premium $98 $3,800 $4,780 

Expenses $294 $1,140 $1,434 

Expected Cat 

Loss 

$71 $615 $686 

Expected Profit $615 $2,045 $2,660 

Loss at 99th%= 

F-1(0.99) 

$5,200 $14,300 $18,100 

Capital Required $4,200 $11,600 $14,700 

Return on Capital 

(ROC) 

14.6% 17.6% 18.1% 

Return on Mar-

ginal (ROMAC) 

19.8%   
 There is a SmartWriter analysis (Table 2) of an ac-
count recently offered to St. Paul’s commercial property 
business. The SmartWriter output is divided into three col-
umns. The first column is the new account as a stand-alone 
business. The expected income for the account, after taking 
expenses and expected catastrophe losses from the pre-
mium, is $615,000. The new account requires $4,200,000 
in capital based on the 1-in-100 year loss of $5,200,000.  
This yields a return of 14.6%, which is below our hurdle 
rate of 15%.   
 The second column contains data on the portfolio as it 
stands today, and the final column is the portfolio perform-
ance if the new account were added. The capital require-
ment for the combined portfolio is less than the sum of the 
new account and current portfolio capital:  This indicates 
that the new account will diversify the business to some ex-
tent.  Two additional items help quantify this diversifica-
tion.  The return on marginally allocated capital (ROMAC) 
for the new account is 19.8%, which means that the mar-
ginal return for adding the account divided by the marginal 
capital is significantly over the hurdle rate.  The second 
item is the increase in the return on capital (ROC) for the 
portfolio from 17.6% to 18.1% if the account is added.  For 
these reasons, the account was considered a good prospect, 
even though on a stand-alone basis it was slightly below 
the hurdle rate. 
 For a portfolio of large commercial accounts, the 
optimizer could locate the five accounts most in need of 
repricing, or the subset of the current portfolio that maxi-
mizes return. For a homeowners portfolio, the book of 
business is managed less on a home-by-home basis and 
more on a zip code, county, or state level; the optimizer can 
focus on which counties to expand market penetration and 
which zip codes to reduce premium volume. 
 The variables and the objective function are defined as 
follows. Define the following sets: 

{1, 2, … N} – set of accounts in the portfolio 
 {1, 2, … S} – set of loss scenarios. 
 Define the following input parameters: 
 pi = premium for account i 
 ei = non-catastrophe expense for account i 
 lis = loss (in dollars) for account i in scenario s 
 πs = probability of scenario s 
 ρ = discount factor. 
 Define the following decision variables: 
 xi, i=1,…,N – amount of account i in the portfolio. 
 The objective is to maximize expected return on capital  

 

 
s i i i is

s 1,S i 1,N

1
i i i

i 1,N

(x  (p  -  e  -  l )) 
Max 

F (0.99) x (p e )

= =

−

=

Π

 
ρ − − 
 

∑ ∑

∑
 (1) 

 
where F-1(0.99) is calculated from the revised loss distribu-
tion xi*lis. Correlations are implicitly captured in the analy-
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sis.  Since the entire loss distribution is calculated for the 
objective function, the correlation among accounts will af-
fect the return on capital.  
 The following constraints can be added to the model. 
An account can either be in the portfolio or out of the port-
folio so we add a binary constraint xi ∈  {0,1}.If one or 
more properties must be retained, then xi = 1. 
 The total premium for the portfolio must exceed a 
specified level, MinPrem: 

 
       (2) i i

i 1,N
x p MinPrem.

=

≥∑
 
 The expected income on the portfolio cannot be re-
duced past a specified level, MinInc: 

 
  (3) ( )( )i i i is

i 1,N
x p e l MinInc.

=

− − ≥∑
 
 Below is the SmartWriter output for a California 
earthquake portfolio with 173 accounts (Berger et al. 
(1998)). The results are from an actual company data, but 
the numbers have been disguised to protect client confiden-
tiality. The optimizer recommended the removal of 16 ac-
counts from the portfolio. Table 3 shows summary infor-
mation before and after the optimization for the portfolio as 
a whole.  
 On the whole, this was a profitable book of business, 
but there were a small number of relatively poorly perform-
ing accounts.  Not only did these accounts have a poor ex-
pected return, but also they had a severe effect in the tail of 
the distribution.  Expected income only decreased by 
$100,000 (3%), but the loss at the 99th percentile decreased 
by over $15M.  Return on capital jumped from 14.7% to 
37.5%.  We have seen this with other books of business as 
well:  a small percentage of accounts represent a large por-
tion of the tail of the loss distribution.   

 
Table 3: Portfolio Before-After Optimization 

 Portfolio 
Today 

Optimized 
Portfolio 

Number of accounts 173 157 
   
Premium $5,600 $5,200 
Expenses $1,700 $1,600 
Expected Cat Loss $500 $300 
Expected Income $3,400 $3,300 
   
Loss at 99%=F-1(0.99) $28,600 $12,900 
Capital Required $23,200 $8,800 

Return on Capital(ROC) 14.7% 37.5% 
 Ideally, the portfolio manager should reprice these ac-
counts upon renewal instead of terminating them.  Al-
though market conditions will determine the extent to 
which this is feasible, SmartWriter provides output on all 
the accounts targeted by the optimizer.  Table 4 contains 
information for one of these accounts. 

 
Table 4: Acc.Targeted for Removal/Repricing 

 Account 

A 

Premium $20 

Expenses $6 

Expected Cat Loss $12 

Expected Profit $2 

  

Loss at 99th%=F-1(0.99) $780 

Capital Required $740 

Return on Capital (ROC) 0.3% 

Return on Marginal (ROMAC) 0.4% 

  

Premium needed to meet 15% ROC hurdle $150 

Premium needed to meet 15% ROMAC 

hurdle 

$145 

 
 For this example, the premium needed to meet the 
stand-alone return on capital hurdle of 15% is $150,000, 
much greater than the current premium of $20,000.  Re-
pricing is most likely not an option for this account, but for 
examples where the current ROC is closer to the hurdle 
rate, repricing can be viable.  
 While applying the SmartWriter analysis, we have in 
mind that multi-normal distributions cannot be used, even 
as crude approximations, and the risk adjusted return on 
capital (RAROC) methods will have problems with esti-
mating the rare events across the divisions.  The scenario 
set approach should improve decision-making; this hy-
pothesis should also be tested.  
 We will mention a two-divisional optimization model 
of a p/c insurance company where both divisions are simu-
lated over the same scenario set generated by the Smart-
Writer.  
 The large-scale optimization literature (Baumol et al. 
1964, Bradley et al. 1977, Dantzig and Wolfe 1961) will be 
applied to maintain the privacy of the information within 
the specific divisions and to increase the profit of the whole 
company by watching out the performance of the divisions 
simulated over the same batch of scenarios.  
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First, we will discuss the need of decentralization and 
the advantages and drawbacks of DFA and DQA algo-
rithms.  

Next, we will introduced the centralized model and the 
multi-divisional optimization model to which the decentral-
ized algorithms will be applied throughout our research.  

Lastly, we will refer two the implementation of the 
conditional value at risk (CVaR) to the optimization model 
as a coherent risk measure(Artzner et al. 1999).  

2 DFA, DQA AND DECENTRALIZED 
OPTIMIZATION 

Dynamic financial analysis (DFA) provides a tool to ana-
lyze various business strategies and risk/return structures 
within enterprise-wide planning systems. DFA aims at 
maximizing the shareholder value and tracking the free 
cash flow over the time.  
 Leading insurance and reinsurance companies have 
begun applying DFA, in order to increase profitability, re-
duce enterprise risks, and identify the optimal capital struc-
ture of the firm.  
 DFA process should analyze the financial status of an 
insurance enterprise, namely the ability of the firm’s capital 
and earnings path to adequately support its future opera-
tions in light of stochastic external factors affecting the en-
terprise.  
 A DFA model should combine the asset/liability struc-
ture of the enterprise and dynamic optimization of the 
strategies together with the headquarter decisions. A DFA 
system consists of three major elements: a stochastic sce-
nario generator (also see Wallace (2001) for generating 
scenarios over a stochastic programming tree and see 
Boender (1997) and Kouwenberg (2001) for different sce-
nario-generation methods), a multi-period simulator and an 
optimization module displayed in Figure 1.  

 
 

MODEL 
UNCERTAINITIES 
Calibrate and Sample 

 
SIMULATE  

ORGANIZATION scenarios 
 

OPTIMIZE 

what if’s 

 
Figure 1: Optimization Module is One of the Major 
Components of the DFA System. 

 
Linking the assets and liabilities in a consistent fashion 

requires modeling the driving factors. The factor models 
are well placed to support  DFA displayed in Figure 2.   
 DFA is described further in Mulvey, Pauling, Britt and 
Morrin (2003). We discuss the scenario tree in Figure 3. 
 

ECONOMIC 
 
Inflation 
Interest Rates 
Credit Costs 
Currency Exchange 
GDP 

COMPANY STRATEGY 
 
Asset Mix 
Product Mix 
Capital Structure 
Reinsurance 

NOISE 

ASSET BEHAVIOR MODEL 

NOISE 

PRODUCT BEHAVIOR MODEL 

OPTIMIZE 

PROJECTED 

FINANCIALS 

Risk Profile = 

Distribution of Future

Financial Results 

Pr
ob
ab
ili
ty

 
Figure 2: DFA Factor Models 

 
 Asset j∈J, time t ∈T, scenario s ∈S 

s
tjX ,

 
Figure 3: Scenario Tree 

 
Considering these external dynamic factors the sce-

nario tree is built up. A fundamental issue in the area of 
stochastic programming is the selection of the scenario set. 
Figure 4 visualizes the centralized DFA model of a large-
scale enterprise: 

 
sPHeadquarters

Division 1 Division 2 Division 3 

s
3ρ

s
2ρ

s
1ρ

( )22,yx ( )33,yx( )11,yx

1c 2c 3c

 
Figure 4: Centralized DFA Scheme 

 
 Many alternative large-scale algorithms have been de-
veloped and tested for computational efficiency. However, 
the standard risk management approach employs capital 
allocation concepts. Thus the first research task will be to 
adapt the optimization algorithms for managing a large de-
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centralized organization.  Previous work on decomposition, 
for example, involves solving stochastic programs(Birge 
and Louveaux 1997, Dantzig and Infanger 1993). But 
again, these approaches have not formed the basis for de-
centralized decision-making under uncertainty within large 
financial organizations.  Three of the leading optimization 
approaches (Dantzig-Wolfe, Benders decomposition, and 
augmented Lagrangian methods (Bertsekas 1982) such as 
the DQA algorithm) will be evaluated on several dimen-
sions.   
 The DW method is compatible with common practice 
as dictated by the aforementioned capital allocation proce-
dure.  However, this method must be adapted for the multi-
scenario formulation (for risk management). We call the 
resulting algorithm – state price coordination in order to 
emphasize the nature of the information that is transmitted 
across the organization. The process goes as follows: the 
headquarters sends out capital to each division based on a 
rough estimate of the division’s projected risks. (Actual 
capital may be transferred in certain cases such as legal en-
tities (private companies), or the capital is a device for pro-
tecting the organization.  In addition, the headquarters must 
transmit the state prices for each scenario. 
 For instance, we will study their acceptance by senior 
management and other decision makers in the organization. 
As most current methods rely on capital allocation, we 
must be able to project the state prices onto this fundamen-
tal mechanism and extend it, if the algorithms are to be ac-
cepted in a practical context. 
 In addition, we will research the convergence proper-
ties of the decentralized algorithms under a variety of risk 
measures.  There is no general agreement regarding a 
proper definition of risks; many alternative metrics have 
been proposed and compared.  See Artzner et al. (1999) for 
a sample.  In some cases, the corresponding optimization 
model will result in a non-convex optimization problem, 
such as Value at Risk.  

3 RISK MANAGEMENT IN  
INSURANCE ARENA 

The risk management can be implemented in a centralized 
fashion where the optimization takes the company as a sin-
gle entity into consideration. However the need for coordi-
nation across divisional boundaries in order to improve the 
efficiency of large financial organizations suggests a plan-
ning in the division level. So that the optimization model is 
consistent with current managerial procedures, we will di-
vide the model into subproblems along divisional struc-
tures. Figure 5 displays the coordination among headquar-
ters and divisions. 
 Importantly, all of the divisions are given the same set 
of scenarios. A two division model has been proposed in 
Mulvey and Erkan (2003a) where the optimization solution 
consists of the optimal capital allocation to the divi- 
 

 

Insurance Company– x1,y1 Bank – x2,y2 

Headquarters 

Brokerage Firm – x3,y3

Allocate Capital 
(risk) 

Decisions

(w0, x0, y0 )– Capital Structure

 
Figure 5: Coordination Among Headquarters and Divisions 
- The Headquarters Decide on the Capital allocation and 
the asset-liability management of the company  
 
sions and the optimal investment strategies of the two divi-
sions so that after the investment horizon, the whole com-
pany is better off. 
 In Mulvey and Erkan (2003a), we interpret the prob-
lem as a utility maximization of the certainty equivalent for 
an insurance firm with two divisions. There are 216 ac-
counts to invest and 50,000 scenarios for uncertain losses 
associated with each account. The loss data for each ac-
count is generated by the SmartWriter. There are two levels 
of decision-making – headquarter and division. The cen-
tralized decision-making model allows only the headquar-
ters to decide on the accounts to be invested and on the 
leverage. This large-scale convex programming problem is 
solved and analyzed numerically by using the software 
LOQO.  
 The whole firm is modeled as a single entity as fol-
lows. The maximization of the expected utility of ending 
capital forms the objective function in the convex pro-
gramming formulation of the centralized model (4). Defini-
tional constraints set up the initial capital and the ending 
capital in terms of borrowings and investments. 

 
s s 1 2 s s

s s

a a
a

s
s a a

a

      Maximize     *z f *exp( f * *z )           

      subject  to:
      x w p * y c                                                           

      z (1 r)*x (1 b)*w l * y           s

Π − − Π

− − =

= + − + − ∀ ∈

∑ ∑

∑

∑

a

scen     

      x k *c                                                                               
      0 w f *c                                                                         
      0 y 1

≤
≤ ≤
≤ ≤ ∀a acc                                 ∈

 (4)  

 
The objective function in (4) maximizes the utility 

from the certainty equivalent of the capital at the end of the 
investment horizon with respect to the losses in each sce-
nario. The first constraint equates the initial asset to the 
sum of the amount borrowed and the return of the invest-
ments at the beginning of the time period. The second 
batch of constraints imply that the ending capital is calcu-
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lated by subtracting the amount borrowed with the interest 
on it and the losses with respect to each scenario from the 
initial asset together with the return on it. We also have the 
constraint setting the asset-capital ratio to k. Other than 
that, we limit the amount to borrow by a factor f times the 
initial capital we start with.  
 The last constraint sets the bounds to the fraction we 
can invest in each account. However in the decentralized 
optimization, the initial capital of the firm will be allocated 
to each of the divisions and being the capital allocation a 
variable itself allows defining the initial assets as two dis-
tinct variables for each division.  
 Moreover the divisions will invest into the accounts 
mutually exclusively. Each division can only invest in a 
certain number of accounts. It is totally the division’s deci-
sions how much in which account to invest and how much 
to borrow. In that manner each division can decide on its 
own strategies and the capital allocation should not exceed 
the initial capital of the firm.  
 Proceeding with the decentralization at the division 
level (5) , the objective function is still the maximization of 
the utility of the certainty equivalent. Different from the 
centralized model, we define seperate variables for the ini-
tial asset, amount borrowed, ending capital with respect to 
the scenarios and fractions invested in each account regard-
ing to both divisions.  
 The first couple of constraints define the initial assets 
in terms of amount borrowed and revenues from accounts 
according to the fractions invested. The second couple of 
constraints calculate the ending capital by taking the ac-
count losses with respect to the scenarios into account. The 
amount borrowed cannot exceed k multiple of capital allo-
cated to that division.  
 The capital allocation should adapt to the initial capital 
the company starts with. We have the upper and lower 
bounds for the amount borrowed in total and the fractions 
invested in each account. In the convex programming for-
mulation of the decentralized model each division decides 
on its own asset-liability management by watching out the 
complicating resource constraints.  

The capital allocation is one of major outputs of the 
decentralized model (see Mulvey and Erkan (2003a) for 
convergence and numerical experimentation). The decom-
position will be utilized to simulate the divisions through 
the same set of scenarios and to come up with better capital 
allocation and risk management consequences. That is a 
stochastic simulation where we consider all of the 50,000 
scenarios in the earthquake context. The losses in this area 
display highly skewed distributions with enormous conse-
quences. Thus, multi-normal distributions cannot be used, 
even as crude approximations, and the RAROC methods 
will have problems with estimating the rare events across 
the divisions. 
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4 OPTIMIZATION USING CVAR AS A 
COHERENT RISK MEASURE 

CVaR is a risk measure with significant advantages com-
pared to VaR and is an excellent tool for risk management 
(see Rockafellar and Uryasev (2000) and also Rockafellar 
and Uryasev (2001)). It has a parallel in Expected Policy-
holder Deficit or EPD that uses expected loss as its base, 
expressing the target deficit as a percentage of expected 
loss. The paper by Mango and Mulvey (2002) discusses the 
merits and weaknesses of different risk measures.  
 Similar measures as CVaR have been analyzed earlier 
in the stochastic programming literature, although not in fi-
nancial mathematics context. The reader interested in other 
applications of optimization techniques in finance area can 
find relevant papers in Ziemba and Mulvey (1998).  
 Artzner et al. (1999) presents and justifies a set of four 
desirable properties for measures of risk, and calls the 
measures satisfying these constraints “coherent”. Espe-
cially the sub-additivity property of CVaR makes this risk 
measure indispensable for decentralized risk management 
involving multiple divisions and headquarters. CVaR is 
considered as a more consistent measure than VaR. CVaR 
supplements the information provided by VaR and calcu-
lates the quantity of the excess loss. Since CVaR is greater 
than or equal to VaR, portfolios with a low CVaR also 
have a low VaR. Under quite general conditions, CVaR is a 
convex function with respect to positions (see Rockafellar 
and Uryasev (2000)), allowing the construction of efficient 
optimization algorithms.  
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 In particular, it has been shown in Rockafellar and 
Uryasev (2000) that CVaR can be minimized using linear 
programming (LP) techniques. A simple description of the 
approach for minimization of CVaR and the optimization 
problems with CVaR constraints can be found in Uryasev 
(2000).  
 The optimization problem with CVaR constraint for 
the insurance company is formulated below: 
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 In the optimization model (6), B designates the maxi-
mum tolerance set for the CVaR constraint. The optimiza-
tion model is solved for different upper bounds on CVaR. 
By solving the model, we find the optimal investment 
strategy, the optimal capital allocation, corresponding VaR, 
which equals to the optimal ζ*, and the CVaR.  
 See Mulvey and Erkan (2003b) for the efficient fron-
tiers similar to return-variance analysis and the results. 

5 FUTURE WORK 

The decentralized model will provide guidance among as-
set and liability managers (who invest their portion of the 
overall portfolio). The state prices depict the enterprise 
risks on a scenario-by-scenario basis. We will currently ex-
tending the research to the application of decomposition 
methods on our multi-divisional optimization model for 
which the state prices will act as scenario dependent pa-
rameters in the objective  of divisions optimization.  
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