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ABSTRACT 

This paper deals with a new methodology to evaluate the 
real operating options embedded in a manufacturing sys-
tem investment. In a single product framework, the de-
mand is assumed as the main source of uncertainty, there-
fore as a stochastic variable following a Geometric 
Brownian Motion (GBM). Then, focusing on the real op-
tion to expand the capacity at a certain time in the future, 
we have developed a new approach for the option payoff, 
looking forward in the time interval from the expansion 
date to the end of the planning horizon. The payoff func-
tion is the expected Net Present Value (NPV), at the ex-
pansion date, of the additional investment to increase the 
capacity, and it is calculated using Monte Carlo simulation. 
The option value is computed with a binomial tree algo-
rithm. A numerical example and a sensitivity analysis of 
the option value as a function of some parameters are fi-
nally presented. 

1 INTRODUCTION 

When dealing with investment decisions, the traditional 
method is a simple NPV calculation of the different cash 
flows, in order to select the investment that has the highest 
positive NPV and discard the projects with negative NPV. 
In recent years, however, many researchers have shown 
that conventional economic analysis based on Discounted 
Cash Flow (DCF) techniques often undervalue projects 
with real operating options and other strategic interactions 
 
(Miller and Park, 2002). In particular, DCF analysis ig-
nores the “operating flexibility” that gives project manag-
ers options to revise decisions in response to changing ex-
ogenous economic conditions (Copeland, 2002). The 
importance of such operating options becomes critical 
when the environment is highly volatile (extreme varia-
tions in market demand and product prices) and the tech-
nology is flexible (CNC machines or Reconfigurable Ma-
chine Tools - RMTs), thus allowing managerial 
intervention at a reasonable cost. 

Real Option Analysis (ROA), by explicitly capturing 
the flexibility and its effects on uncertainty, provides for a 
consistent treatment of risk in the valuation of investment 
in production systems (Schwarz, 2001). An option is the 
right, but not the obligation, to take an action in the future. 
Options are most valuable when there is uncertainty; this is 
one of the most important shifts in thinking from the real 
options approach: uncertainty creates opportunities (Am-
ram and Kulatilaka, 1999). 

The most common real options are: the waiting-to-
invest option, the option to alter the operating scale (option 
to expand, to contract, to shut down and restart), the option 
to abandon, and the option to switch (option to change the 
product mix or processes). For instance, in the valuation of 
an investment in a Reconfigurable Manufacturing System 
(RMS), the classical NPV approach might not take cor-
rectly into account the value of the real options embedded 
in the project. Since RMS allow functionality expanding 
and production capacity upgrading exactly when needed 
and with a reasonable investment (Koren et al., 1999), the 
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value of real options for capacity or mix changes may be 
critical in the investment decision. 

The focus of this paper is the development of an in-
vestment evaluation methodology improving the traditional 
DCF approach when dealing with projects having real op-
erating options in an uncertain world. To accomplish this 
task, we have developed and tested an advanced decision 
support tool, able to compute the value of the real options 
embedded in an investment project. 

The paper is organized as follows. Section 2 describes 
the real option framework, compared to the financial frame-
work and other real option approaches in literature. Section 
3 focuses on the particular payoff function developed for this 
new approach. Section 4 deals with the numerical imple-
mentation issues, and Section 5 shows and analyzes the re-
sults of a numerical example. Finally, in Section 6 the con-
clusions and future developments are drawn. 

2 REAL OPTION FRAMEWORK 

The primary objective here is to develop a comparison be-
tween the financial option framework and a real option 
scenario for a production system investment. Let us focus 
only on the counterpart of the call option, which is the op-
tion to expand, i.e. to increase the system capacity by pur-
chase of additional equipment. Let us also assume that the 
system is producing a single product. 

The first step is to find the equivalent of the financial 
option framework in the production system scenario. This 
issue has been addressed in various approaches presented 
in the literature; the most common is the one shown in Ta-
ble 1 (Trigeorgis, 1991). 
 

Table 1:  Financial and Manufacturing Frameworks 
Financial framework Manufacturing framework 

stock price: S project DCF without the ini-
tial investment I0: DCF 

stock price volatility: σ volatility of DCF: σ 
exercise time: T expansion time: T 

exercise price: X investment outlay at time T 
to increase the capacity: I1 

risk-free rate: r risk-free rate: r 
payoff function: 

max {S(T ) – X, 0} 
payoff function: 

max {e·DCF (T ) – I1, 0} 
 

The advantage of this approach is that it even enables 
use of Black-Scholes model, since it matches perfectly the 
financial framework: it is enough to substitute the vari-
ables. Nevertheless, it also has several weak points and 
drawbacks: 

• 

• 

the main source of uncertainty is the demand, 
more than the DCF of the project; 
the payoff of the option, for instance, to expand 
the capacity, cannot be estimated using only the 
• 

• 

information at the exercise date, because it de-
pends on the cash flows generated by the new in-
vestment in the future, until the end of the plan-
ning horizon; 
the exercise price is set a priori and the expansion 
value is just a percentage e·100% of the asset 
value at the expansion time, so there is no connec-
tion with the capacity change due to the demand 
increase; 
there is a time delay between the investment time 
and the date of the additional capacity installation 
and the system readiness to produce at the new 
throughput level, and this issue is not considered. 

Karsak and Ozogul (2002) value expansion flexibility 
using American exchange options. Their model has two 
stochastic variables: the return and the cost of the expan-
sion investment follow two correlated GBM. However, the 
payoff still depends on the difference between the two as-
sets at the exercise time. 

Feinstein and Lander (2002) value real options dis-
counting expected cash flows at a weighted average of the 
risk-free interest rate and the project cost of capital. It is 
very close to the traditional NPV approach, but it is limited 
to one period binomial options. 

Our approach differs from the ones presented in litera-
ture so far, because its focus is on the demand. Starting 
from the stochastic process of the demand, a real options 
framework is built in order to estimate the value of the op-
tion to expand the capacity in the future. The focus on a 
particular real option, for example the option to expand, is 
not restrictive at all, because all of the following theory can 
be easily applied to any real option.  

The scenario is based on a production system able to 
manufacture a single product. The initial capacity C0 is 
based on the initial investment I0, therefore we are able to 
produce C0 items per year of a single product and to sell 
them with a contribution margin m. We assume that the 
contribution margin does not change with passing of time. 

Primary uncertainty lies in the market demand of the 
product, which is a stochastic variable D(t). If the demand 
is D items per year, then we can sell min{D, C0} items and 
gain the net income NI(D) = m ·min{D, C0}. The previous 
expression is a very simple net income function, but any 
more complex function can be used, as long as it is a func-
tion of the demand. 

Let f (t, D(t)) be the pricing function of a real option, 
depending on the time t and the demand D(t). We assume 
the demand follows the GBM: 

 
  (1) ( ) ( ) ( ) ( )dD t D t dt D t dW tµ σ= ⋅ ⋅ + ⋅ ⋅
 
where dW(t) is a Wiener process, µ is the expected growth 
rate (drift) of the demand and σ is the volatility of the de-
mand. These two parameters can be easily estimated from 
historical data. 



Amico, Pasek, Asl, and Perrone 

 

The aim is now to find the price f for a derivative de-
pending only on demand and time. The payoff of this de-
rivative at the expiration date T is given by the function 
Φ(D(T )), which depends on the derivative we are consid-
ering and it can be any kind of function. The pricing func-
tion is (Bjork, 1998): 

 
 . (2) (( )

,( , ) ( )r T t Q
t Df t D e E D T− ⋅ −= ⋅ Φ )

• 

 
The previous expression is the well-known result on 

pricing a derivative discounting at the risk-free interest rate 
the expected payoff from the option at its maturity in a risk 
neutral world. Taking the expectation in a risk neutral 
world means that we have to use the risk neutral probabil-
ity measure Q. Under this new probability measure, the 
demand follows a different process, with expected growth 
rate α = µ – λ·σ  (risk neutral drift) instead of µ: 

 
  (3) ( ) QdD D dt D dWµ λ σ σ= − ⋅ ⋅ ⋅ + ⋅ ⋅
 
where dWQ denotes a Q-Wiener process, and λ is the mar-
ket price of risk, which can be estimated using the Capital 
Asset Pricing Model (CAPM) (Hull, 2002). 

Using the binomial tree approximation with time in-
terval ∆t1, the parameters to be used are: 

up movement coefficient: 1tσ ⋅ ∆=u e , 

• down movement coefficient: 
1 1td e uσ− ⋅ ∆= = , 

• risk neutral probability of an up movement: 
( ) ( )1( ) tq e d u dµ λ σ− ⋅ ⋅∆= − −

. 
Obviously, the smaller ∆t1 the better the approxima-

tion; we actually choose the number of steps 1 1n T t= ∆ . 
In order to have a stable numeric scheme, the probabil-

ity q must be limited between 0 and 1, meaning the follow-
ing condition must hold: 

 
 ( )2 2

11t n Tµ σ λ µ λ σ σ− ⋅ ∆ < ⇔ > ⋅ − ⋅ . (4) 
 

Therefore, it is always possible to choose a number of 
steps, n1, that is big enough to satisfy the previous con-
straint.  

3 THE PAYOFF FUNCTION 

Now, we need to define a payoff function for the option 
value at the expiration date T, which is less or equal than 
the planning horizon Tend. At the expiration date, T, it is 
possible to increase the production capacity from C0 to C1 
(C1> C0) with the investment outlay I1. 

Hence, the real option we are considering is the coun-
terpart of an European call option with exercise price I1. In 
addition, we assume we know the Net Income of the pro-
duction, which is a function NI (D) of the demand. 

To calculate the payoff we need to look forward to the 
additional Net Incomes due to the new capacity C1 from T 
to the end of the planning horizon Tend, and compare their 
values, discounted at time T, with the additional investment 
I1. So the payoff is basically the net present value of the 
additional investment at time T. This expected NPV might 
be computed using another binomial tree, starting from 
each terminal node of the first one. The expected value 
would be the weighted sum of the NPVs of all the possible 
paths in the tree, being the weights the probabilities of fol-
lowing each path. To implement this payoff calculation we 
need to generate and evaluate all the possible paths in the 
tree. If the time step in the time interval [T, Tend] is ∆t2 
(which can be different than the time step ∆t1 in the time 
interval [0, T ] ) then there are n2 = (Tend – T )/∆t2 steps. 
The number of paths grows exponentially with n2, since it 
is given by . Therefore, the execution of this algorithm 
would be very slow even with small values of n

22n

2. 
To evaluate the payoff function Φ(D(T )), which ac-

tually does not depend only on the demand at the exercise 
date T, but on the demand on all the time interval [T, 
Tend], we can overcome the drawbacks of the algorithm 
described in the previous paragraph using the Monte 
Carlo simulation. Since the payoff is a function of the 
path in the interval [T, Tend], and we already know the pa-
rameters for a risk neutral simulation of the demand sto-
chastic process, Monte Carlo simulation seems to be the 
best way to approach this problem. 

Let us consider the node h at the end of the binomial 
tree (h goes from –n1 to n1 with step 2). The demand in this 
node is given by Dh(T ) = uh·D0·∆t1, where D0 is the initial 
demand. Since in the interval [T, Tend] we are using a dif-
ferent time step ∆t1, the demand has to be rescaled, so that 
the initial demand for the simulation starting at time t0 = T 
is finally D(t0) = Dh(T )·∆t2/ ∆t1= uh·D0·∆t2. The capacity 
must be rescaled as well, so C0,2 = C0·∆t2 and C1,2 = C1·∆t2. 

Using the solution to the risk neutral demand process 
(3), we can easily generate the demand path in the time in-
terval [T, Tend]: 

 

 ( ) ( )
2

1 2exp
2 2j j jD t D t t tσα σ−

  
= ⋅ − ⋅ ∆ + ⋅ ∆ ⋅     

ε

),

 (5) 

 
where j = 1,…n2 and εj ~ N(0,1) are n2 independent sam-
ples drawn from a standardized normal distribution. At 
each time tj, the income differential due to the increase of 
capacity is given by: 

 
 . (6) ( )( ) ( )(0, 2 0,1,j j jNI NI D t C NI D t C∆ = −
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To discount the net incomes at time T, the rate to be 
used is a “risk adjusted rate” of the project, R, which is the 
company cost of capital if the expansion investment has the 
same risk of the existing business. As a general rule, if the 
project risk is different from the one of the existing assets, 
the project should be evaluated at its own opportunity cost of 
capital. Both the company and the project cost of capital can 
be estimated using the CAPM (Brealey and Myers, 1996). 

Discounting at the rate R, the DCF at time T is: 
 

  (7) ( )
2

2
0
exp

n

i
j

DCF R j t NI
=

= − ⋅ ⋅ ∆ ⋅ ∆∑ j

 
where the subscript i stands for the ith replication. Hence, 
if we switch the node index from h to k = 0,..n1, with h = 
2·k – n1, then the ith payoff at the node k is: 

 
 { }, max , 0k i iDCF IΦ = − 1 . (8) 
 

Denoting with n the number of replications, the ex-
pected payoff at the node k is the average over the n repli-
cations 1

1 ,
n

k i k in−
=Φ = ⋅ Φ∑ . 

Once the payoffs at all the terminal nodes are known, 
the option value Vt at time t < T, can be computed using the 
expression (9), where pk is the probability density function 
of the binomial distribution with parameters n1 and q, re-
ported in the equation (10): 

 

 ( )( )
1

0

exp
n

kt
k

V r T t p
=

= − ⋅ − ⋅ ⋅Φ∑ k  (9) 

 

 . (10) 11 (1 )n kk
k

n
p q q

k
− 

= ⋅ ⋅ − 
 
Figure 1 shows the combined methodologies, binomial 
tree and Monte Carlo simulation. 

4 NUMERICAL IMPLEMENTATION 

Since we are using a discrete time algorithm, to obtain a 
result that is a good approximation of the real solution 
(which is unknown), the number of steps in the binomial 
tree n1 should be appropriately high. On the other hand, the 
number of steps in the simulation equals the number of 
cash flows to be taken into account in the time interval [T, 
Tend] when comparing the alternative investments “increase 
the capacity” and “do nothing”. Therefore, the time step 
∆t2 depends on what time basis the sales are surveyed and 
the cash flows are computed in the company. We assumed 
∆t2 = 0.1 years. 

The code was written and executed with MATLAB®. 
This software tool provides fast implementation, high pre-
cision in numerical computations, and quick execution 
when the code is properly vectorized. In addition, there are 
tools that allow data import/export with a Microsoft Excel® 
worksheet. The Monte Carlo simulation was implemented 
using MATLAB® internal normal random generator; it is a 
table lookup algorithm developed by Marsaglia, which 
uses a step function to approximate the normal probability 
density function (“ziggurat algorithm”). The resulting dis-
tribution is exactly normal, the generation is as fast as for 
the uniformly distributed numbers, and the generator pe-
riod is 264 (Moler, 2001). 
 As far as the binomial algorithm is concerned, using 
MATLAB® it is very easy and fast to implement the sum 
of expression (9), with the statistical function that effi-
ciently returns the binomial probability density function 
(10), even when n1 is a big number.  
 
 

0
0, 2u D⋅0

0,1u D⋅  

1
0,1u D⋅  

1
0,1u D− ⋅  

0
0,1u D⋅

2
0,1u D⋅

2
0,1u D− ⋅

∆t1 

0 T 

∆t2 

0,1 0 1D D t= ⋅∆  0, 2 0 2D D t= ⋅ ∆

 
Figure 1:  Binomial Tree and Monte Carlo Simulation 
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Another critical parameter that deeply affects the 
goodness of the result is the number of replications n, run 
during the Monte Carlo simulation of the demand paths. 
Since the number of replications is set to be at least 50 and, 
above all, the samples Φi (in the following we omitted the 
subscript k because we are considering the payoff for a ge-
neric node) are independent, then it is possible to calculate 
the number of replications in order to control the relative 
error of the estimate. To perform this task, one should 
choose n such that the following criterion is met: 
 

 ( ) ( )2
1 2 1z s nα γ γ− ⋅ Φ ≤ −  (11) 

 
where z1-α /2 is the inverse cumulative standard distribution 
function, s2 is the variance of the samples Φi, and γ is the 
maximum relative error allowed with probability 1 – α 
(Brandimarte, 2001). We assumed 1 – α = 95%. 

The only additional computation required is the esti-
mation of the mean Φ  and the variance s2 for a first trial 
of 50 pilot replications; then, solving n from the previous 
expression, we can find the minimum number of replica-
tions to run. After running n replications, the algorithm 
checks whether the condition (11) still holds with the new 
estimates of Φ  and s2; if not, more replications are added 
solving again the expression (11). Actually, the condition 
is checked also at some values before n, to avoid waiting 
for useless replications when the initial estimates are not 
very good. Furthermore, no more replications are added if 
the condition (11) is not met yet after a running time of 5 
minutes since the beginning of that simulation. 

In order to reduce the number of replications we im-
plemented the antithetic sampling as a variance reduction 
technique. Therefore, two demand paths are generated for 
each replication, using two opposite random sequences εj 
and – εj. After the payoffs of these sequences are com-
puted, the average of them is the sample Φi to be consid-
ered. This methodology actually works only if the negative 
correlation in the input random numbers yields a negative 
correlation in the output payoffs as well. This actually hap-
pens, because of the monotonic relationship between the 
random input and the payoff, through the composition of 
the demand function (5), the net income function (6), the 
DCF function (7) and the payoff function (8). As a result 
of this variance reduction technique, the number of replica-
tions to run in order to get an estimate with a given relative 
error is, on average, at least 60% less. 

5 NUMERICAL EXAMPLE 

The numerical data assumed to test the algorithm are re-
ported in Table 2. In the following example we did not con-
sider any historical data, because it is not a real case study. 
Therefore, the values of the parameters µ, σ, and λ, and all 
the other input values as well, are just arbitrary numbers. 
Table 2:  Numerical Data 
risk free rate r = 5 % per year 
planning horizon Tend = 4 years 
exercise time T = 2 years 
initial demand D0 = 125,000 products per year 
drift of demand µ = 0.9 per year 
volatility of demand σ = 0.5 per year 
market price of risk λ = 0.8 per year 
initial capacity C0 = 160,000 products per year 
contribution margin m = $ 15.00 per product 
expansion invest-
ment I1 = $ 1,000,000  

new capacity C1 = 250,000 products per year 
risk adjusted rate R = 15 % per year 

 
We are interested in the option value V0 at time t = 0; 

hence, everywhere in the following, we will denote it sim-
ply as V or “option value.” 

A first analysis focused on the tuning of the parame-
ters n1, number of steps in the binomial tree, and γ, maxi-
mum relative error allowed for the payoffs estimates. They 
both affect the precision of the option value calculation. 

Figure 2 shows the option values when n1 increases 
from 10 to 100, and γ is 10%, 5% and 1%. The precision 
improvement costs, on average, a running time 3.5 times 
greater when γ decreases from 10% to 5%. If we want γ to 
decrease from 5% to 1%, then the running times grow by a 
factor of 16.5. The convergence when n1 increases is al-
most the same when γ = 5% and 1%; the curve with γ = 1% 
is just a little smoother. Furthermore, there is no observ-
able improvement tied to n1 increase, when the values are 
already within the precision allowed by γ. Hence we as-
sumed n1 = 50 and γ = 5%. The average running time was 
about 1.2 minutes. Of course, with better computational 
power available and higher precision required, these pa-
rameters should have greater values. 

 

 
Figure 2:  Convergence and Error 
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After the algorithm has been tested and its parameters 
properly tuned, it is very interesting to understand how the 
option value changes when the main input variables 
change. The option values have then been computed for 
different values of the parameters µ, σ, and λ, according to 
the plan reported in Table 3, featuring 7*7*5 = 245 points. 

 
Table 3:  Experimental Plan µ, σ, λ 

 min max step points 
µ – 0.75 0.75 0.25 7 
σ 0.2 1.1 0.15 7 
λ 0 2 0.5 5 

 
Figure 3 shows the contour plot for the function V (µ, 

σ ) when λ = 0.5. When the market price of risk λ increases 
the result is similar, only with much lower option values.  
It can be readily noticed in Figure 3, that the option 
value grows with the increasing demand drift µ, while the 
dependency on the demand volatility σ is more complex.  

Looking at the down half of the contour plot, the op-
tion value seems to grow with the volatility, exactly like it 
happens in the financial framework.  

However, if we look at the top half of the plot, then the 
option value decreases when the volatility increases. Fur-
thermore, if we look closer at the area around the half of 
the plot, the relationship between the option value and the 
volatility might not even be monotonic.  

This result deserves a further analysis, so we have re-
ported the graphs of V (µ ) for the 7 values of σ , and V (σ ) 
for the 7 values of µ. These curves are shown respectively 
in Figure 4 and Figure 5. 

 

 

 
Figure 3:  V (σ, µ ) when λ = 0.5 
 

 
Figure 4:  V (µ ) when λ = 0 
 
Figure 5:  V (σ ) when λ = 0 
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In Figures 4 and 5 we set λ = 0, primarily because the 
option values are greater and it improves legibility of the 
graphs. The option value always increases with respect to 
the demand drift µ. On the other hand, when µ > 0, the op-
tion value decreases with the volatility in the range [0.2, 
1.1]. To better understand what happens when µ ≤ 0 we 
need to zoom in the lower part of Figure 5, because the op-
tion values are much smaller when µ ≤ 0. This is showed in 
the following Figure 6. 

 

 
Figure 6:  Enlargement of Figure 5 when µ ≤ 0 

 
Looking at Figure 6 it is clear that when µ = 0 the op-

tion value grows up to a maximum, and then it decreases. 
When µ < 0 the maximum shifts to the right, so that within 
the interval of σ [0.2, 1.1] the option value looks like it is 
almost always increasing. 

This quite surprising result can be explained looking at 
the payoff function, which is the main difference between 
this algorithm for a real European call and the financial 
European call. In particular, let us consider the demand 
process (5). The demand changes according to a determi-
nistic term that depends on α’ = α – 0.5 σ 2 = µ – λ·σ  – 
0.5 σ 2, and a stochastic term that depends on σ . When the 
volatility σ  increases, α’ decreases and becomes negative, 
covering the linear increase and the randomness of the sto-
chastic term. Therefore, the payoff decreases with the vola-
tility, and so does the option value. This effect is high-
lighted when the drift µ > 0, whereas when µ < 0, α’ is 
always negative, and the effect of the stochastic term is 
greater. 

Another parameter worthwhile taking into account, is 
the initial value of the demand D0. It is actually better to 
consider the new parameter β = D0 / C0, which is related to 
the extra capacity existing in the production system at the 
beginning (when β < 1).  
So far we have assumed β = 0.78; now let it go from 
0.5 to 1.5 with step 0.25. Assuming the market price of risk 
λ = 0.5, the new experimental plan is reported in Table 4.  
 

Table 4:  Experimental Plan µ, σ, β 
 min max step points 

µ – 0.75 0.75 0.25 7 
σ 0.2 1.1 0.15 7 
β 0.5 1.5 0.25 5 

 
Figure 7 shows the contour plot for the function V (σ, 

β ) when µ = 0.5. Predictably, the option value grows with 
β, whereas it again decreases with the increase of volatility 
σ . Like in the previous analysis, this trend reverses when 
µ < 0. Figure 8 shows the same plot when µ = – 0.5, and 
the option value clearly increases with the volatility σ, at 
least when β ≤ 1. 

 

 
Figure 7:  V (σ, β ) when µ = 0.5 

 

 
Figure 8:  V (σ, β ) when µ = – 0.5 
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To better understand the effect of β, Figure 9 shows 
the graphs of V (σ ) for the 5 values of β. The option value 
increases with σ  when β ≤ 1, whereas it has a maximum 
when β > 1. 

 

 
Figure 9:  V (σ ) when µ = – 0.5 

 
Like 0 for the drift µ, 1 seems to be a critical value for 

β, impacting on the option value as a function of the vola-
tility σ. 

6 CONCLUSIONS 

In this paper, we have shown a new approach to evaluate 
real operating options of a production system making a 
single product. The originality of the methodology is: 

• 

• 

• 
• 
• 
• 

the stochastic variable is the product demand, 
therefore the market price of risk λ has been in-
troduced in the model; 
the payoff function depends on the demand be-
tween the expansion date and the end of the plan-
ning horizon, and is estimated using Monte Carlo 
simulation. 

These two points are addressing some of the draw-
backs of most of the approaches found in the literature, as 
highlighted in Section 2. The other shortcomings will be 
addressed in the future developments of this research. 

We have focused on an expansion option, and we have 
developed a tool able to compute the option value for a 
wide range of input parameters. 

A sensitivity analysis has been performed on the op-
tion value as a function of the following parameters: 

µ the drift of the demand, 
σ the volatility of the demand, 
λ the market price of risk, 
β the ratio between initial demand and capacity. 

The surprising result is that the option value is not al-
ways increasing with the volatility, such as it happens with 
financial options. We showed that the option value is al-
ways increasing with the volatility only when µ < 0 and 
β ≤ 1. When µ > 0, it is always decreasing, while for other 
values it can have a maximum.  

Davis (2002) found a very similar result, even though 
with a different real option model. He shows that growth 
option value is very likely to be declining in volatility for 
at- or in-the-money options, whereas it is likely to increase 
for out-of-the-money growth options. This is not different 
from our conclusions; actually, when the option value is 
always increasing with the volatility, the option is almost 
out-of-the-money, as the reader can notice from the low 
values on the vertical axes of Figures 6 and 9 (the order of 
magnitude is 104 and 103). On the other hand, when the op-
tion value is always decreasing with the volatility, the op-
tion is deeply in-the-money, as the reader can notice from 
the high values on the vertical axes of Figure 5 (the order 
of magnitude is 105 and 106). 

Davis (2002) states that firms holding at- or in-the-
money growth options are justified in avoiding increased 
market volatility. According to the model presented in this 
paper, we can extend this result to manufacturing systems 
holding expansion options. 

Nevertheless, the presented results are only the first 
step in the development of a decision support tool able to 
evaluate real options embedded in investment in produc-
tion systems. Future research will focus on different kinds 
of real options, a varying exercise time (American option), 
multiple options models, and different kinds of stochastic 
processes other than the GBM.  
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