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ABSTRACT

This paper presents a brief introduction to the use of dua
theory and simulation in financial engineering. It focuses
American option pricing and portfolio optimization prob
lems when the underlying state space is high-dimensio
In general, it is not possible to solve these problems
actly due to the so-called “curse of dimensionality” an
as a result, approximate solution techniques are requi
Approximate dynamic programming (ADP) and dual bas
methods have recently been proposed for constructing
evaluating good approximate solutions to these proble
In this paper we describe these ADP and dual-based m
ods, and the role simulation plays in each of them. So
directions for future research are also outlined.

1 INTRODUCTION

Portfolio optimization and American option pricing prob
lems are among the most important problems in fina
cial engineering. Portfolio optimization problems occ
throughout the financial services as pension funds, mu
funds, insurance companies, endowments and other fin
cial entities all face the fundamental problem of dynamica
allocating their resources across different securities in
der to achieve a particular goal. These problems are o
very complex owing to their dynamic and stochastic natu
their high dimensionality and the complexity of real-wor
constraints. While researchers have developed very sop
ticated models for addressing these problems, the cur
state-of-the-art is such that explicit solutions are availa
only in very special circumstances. (See, for example, M
ton 1990, Cox and Huang 1991, Karatzas and Shreve 19
and Liu 1998).

American option pricing has also presented several ch
lenges to the financial engineering community. Even in t
simple Black-Scholes framework (Black and Scholes 197
a closed form expression for the price of an American p
option is not available and so it must therefore be compu
numerically. As pricing an American option amounts
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solving an optimal stopping problem, Bellman’s curse o
dimensionality implies that pricing high-dimensional Amer
ican options using standard numerical techniques is n
practically feasible. Unfortunately, the same conclusio
also applies to solving general high-dimensional portfol
optimization problems.

Because these high-dimensional problems occur fr
quently in practice, they are of considerable interest
both researchers and practitioners. In recent years th
has been some success in tackling these problems us
approximate dynamic programming (ADP) and dual-bas
methods. ADP methods (see, for example, Bertsekas a
Tsitsiklis 1996) have had considerable success in tac
ling large-scale complex problems and have recently be
applied successfully to problems in financial engineerin
(Brandt et al. 2001; Longstaff and Schwartz 2001; an
Tsitsiklis and Van Roy 2001). One difficulty with ADP,
however, is in establishing how far the sub-optimal AD
solution to a given problem is from optimality. In the
context of optimal stopping problems and pricing Amer
can options, Haugh and Kogan (2001) and Rogers (200
showed how a stochastic duality theory could be used
evaluate sub-optimal strategies, including those obtain
from ADP methods. A stochastic duality theory also ex
ists for portfolio optimization problems and this has bee
developed by many researchers in recent years (see,
example, Shreve and Xu 1992a and 1992b, He and Pear
1991, Cvitanic and Karatzas 1992, and Karatzas and Shr
1997). While this theory has had considerable success
characterizing optimal solutions, explicit solutions are sti
rare (see Rogers 2003). Recently Haugh, Kogan and Wa
(2003) have shown how some of these dual formulatio
can be used to evaluate suboptimal policies by construct
lower and upper bounds on the true optimal value functio
These suboptimal policies could be simple heuristic polici
or policies resulting from some approximation technique
such as ADP.

Simulation techniques play a key role in both the AD
and dual-based evaluation methods that have been use
construct and evaluate solutions to these problems. While
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has long been recognized that simulation is an indispensa
tool for financial engineering (see the surveys of Boyl
Broadie and Glasserman 1997, and Staum 2002), it is o
recently that simulation has begun to play an importa
role in solvingcontrol problems in financial engineering
These control problems include portfolio optimization an
the pricing of American options, and they are the focus
this paper.

The remainder of the paper is outlined as follow
Sections 2 and 3 describe the American option prici
and portfolio optimization problems, respectively. We ve
briefly describe the ADP methods in Section 2.1 after whi
we will focus on the duality theory for both optimal stop
ping and portfolio optimization. Section 4 concludes an
outlines some future research directions. Results will n
be presented in their full generality, and technical deta
will be often be omitted as we choose to focus instead
the underlying concepts and intuition.

2 PRICING AMERICAN OPTIONS

The Financial Market: We assume there exists a dynam
ically complete financial market that is driven by a vecto
valued Markov process,Xt = (X1

t , . . . , Xn
t ). In words,

we say a financial market is dynamically complete if an
random variable,WT , representing a terminal cash-flow ca
be attained by using aself-financing trading strategy. (A
self-financing trading strategy is a strategy where chan
in the value of the portfolio are only due to capital gain
or losses. In particular, no net addition or withdrawal o
funds is allowed after datet = 0 and any new purchases o
securities must be financed by the sale of other securitie
Xt represents the timet vector of risky asset prices as wel
as the values of any relevant state variables in the mar
We also assume there exists a risk-free security whose t
t price isBt = ert , wherer is the continuously compounded
risk-free rate of interest. Finally, since markets are assum
to be dynamically complete, there exists (see Duffie 199
a unique risk-neutral valuation measure,Q.

Option Payoff: Let ht = h(Xt ) be a nonnegative
adapted process representing the payoff of the option
that if it is exercised at timet the holder of the option will
then receiveht .

Exercise Dates: The American feature of the option
allows the holder of the option toexerciseit at any of the
pre-specified exercise dates inT = {0, 1, . . . , T}.

Option Price: The value process of the American
option,Vt , is the price process of the option conditional o
it not having been exercised beforet . It satisfies

Vt = sup
τ≥t

EQ
t

[
Bthτ

Bτ

]
. (1)

whereτ is any stopping time with values in the setT ∩ [t, T ].
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If Xt is high-dimensional, then standard solution tech
niques such as dynamic programming become impracti
and we cannot hope to solve the optimal stopping pro
lem (1) exactly. Fortunately, efficient ADP algorithms fo
addressing this problem have recently been developed in
pendently by Longstaff and Schwartz (2001) and Tsitsikl
and Van Roy (2001). We now briefly describe the mai
ideas behind these algorithms, both of which rely on th
ability to simulate paths of the underlying state vectors.

2.1 ADP for Pricing American Options

Once again, the pricing problem at timet = 0 is to compute

V0 = sup
τ∈T

EQ
0

[
hτ

Bτ

]
and in theory this problem is easily solved using valu
iteration. In particular, we would obtain

VT = h(XT ) and

Vt = max

(
h(Xt ), EQ

t

[
Bt

Bt+1
Vt+1(Xt+1)

])
.

The price of the option is then given byV0(X0) whereX0 is
the initial state of the economy. As an alternative to valu
iteration we could useQ-value iteration. If the Q-value
function is defined to be the value of the option condition
on it not being exercised today (i.e. the continuation valu
of the option) then we also have

Qt (Xt ) = EQ
t

[
Bt

Bt+1
Vt+1(Xt+1)

]
.

The value of the option at timet + 1 is then

Vt+1(Xt+1) = max(h(Xt+1), Qt+1(Xt+1))

so that we can also write

Qt (Xt ) = EQ
t

[
Bt

Bt+1
max(h(Xt+1), Qt+1(Xt+1))

]
. (2)

Equation (2) clearly gives a natural analog to value iteratio
namely Q-value iteration. As stated earlier, ifn is large
so Xt is high dimensional, then both value iteration an
Q-value iteration are not feasible in practice. Howeve
we could perform anapproximateand efficient version
of Q-value iteration, and this is precisely what the ADP
algorithms of Longstaff and Schwartz (2001) and Tsitsikl
and Van Roy (2001) do. We now describe their mai
contribution, omitting some of the more specific details th
can nevertheless have a significant impact on performan
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The first step is to choose a set ofbasis functions,
φ1(X), . . . , φm(X). These basis functions define thelinear
architecturethat will be used to approximate the Q-value
functions. In particular, we will approximateQt (Xt ) with

Q̃t (Xt ) = r 1
t φ1(Xt ) + . . . + r m

t φm(Xt )

wherert := (r 1
t , . . . , r m

t ) is a vector of timet parameters that
is determined by the algorithm which proceeds as follows

Approximate Q-Value Iteration

generateN paths of state vector,X
set Q̃T (Xi

T ) = 0 for all i = 1 to N
for t = T − 1 downto 1

Estimatert = (r 1
t , . . . , r m

t )

set Q̃t (Xi
t ) = ∑

k r k
t φk(Xi

t ) for all i
end for
set Ṽ0(X0) = max

(
h(X0), Q̃0(X0)

)
Two steps require further explanation. First, we es

timate rt by regressingα max
(
h(Xt+1), Q̃t+1(Xt+1)

)
on

(φ1(Xt ), . . . , φm(Xt )) whereα = Bt/Bt+1 is the discount
factor. We haveN observations for this regression and
N is usually taken to be somewhere between 10, 000 and
50, 000. Second, since allN paths have the same start-
ing point, X0, we can estimatẽQ0(X0) by averaging and
discountingQ̃1(·) evaluated at theN successor points of
X0.

Obviously many more details are required to fully spec
ify the algorithm. In particular, parameter values and bas
functions need to be chosen and specific implementatio
details can vary. In practice, it is quite common for an
alternative estimate,V0, of V0 to be obtained by simulat-
ing the exercise strategy that is defined implicity by the
sequence of Q-value function approximations. That is, w
define τ̃ = min{t ∈ T : Q̃t ≤ ht } and

V0 = EQ
0

[
hτ̃

B̃τ

]
.

V0 is then an unbiased lower bound on the true value o
the option as it is the price that corresponds to a feasib
adapted exercise strategy.

These algorithms have performed surprisingly wel
on realistic high-dimensional problems (see Longstaff an
Schwartz 2001 for numerical examples) and there has al
been considerable theoretical work (e.g. Tsitsiklis and Va
Roy 2001) explaining why this is so. The quality ofV0, for
example, can be explained in part by noting that exercis
errors are never made as long asQt (·) and Q̃t (·) lie on the
sameside of the optimal exercise boundary. This means i
particular, that it is possible to have large errors iñQt (·)
that do not impact the quality ofV0.
Clearly, simulation plays an important role in these ADP
algorithms as it is required to generate theN sample paths
of X and to estimateV0. There are also opportunities for
simulation techniques to significantly improve the efficiency
of these ADP algorithms as well as the dual-based metho
of Section 2.2 that can be used to evaluate ADP solution

2.2 Duality Theory for American Options

While ADP methods have been very successful, an im
portant weakness is their inability to determine how fa
the ADP solution is from optimality in any given problem.
Haugh and Kogan (2001) and Rogers (2002) independen
developed dual-based methods for evaluating any approx
mate solution by using it to construct an upper bound o
the true value function. (As we saw in Section 2.1, a lowe
bound is easy to compute. We also remark that Broad
and Glasserman (1997) were the first to demonstrate th
tight lower and upper bounds could be constructed usin
simulation techniques. Their method, however, does no
work with arbitrary approximations to the value function
and is not as efficient as the dual-ADP techniques.) W
now describe these dual based methods.

For an arbitrary adapted supermartingale,πt , the value
of an American option,V0, satisfies

V0 = sup
τ∈T

EQ
0

[
hτ

Bτ

]
= sup

τ∈T
EQ

0

[
hτ

Bτ

− πτ + πτ

]
≤ sup

τ∈T
EQ

0

[
hτ

Bτ

− πτ

]
+ π0

≤ EQ
0

[
max
t∈T

(
ht

Bt
− πt

)]
+ π0 (3)

where the first inequality follows from the optional sampling
theorem for supermartingales. Taking the infimum over a
supermartingales,πt , on the right hand side of (3) implies

V0 ≤ U0 := inf
π

EQ
0

[
max
t∈T

(
ht

Bt
− πt

)]
+ π0. (4)

On the other hand, it is known (see e.g. Duffie 1996) tha
the processVt/Bt is itself a supermartingale, which implies

U0 ≤ EQ
0

[
max
t∈T

(ht/Bt − Vt/Bt )

]
+ V0.

SinceVt ≥ ht for all t , we conclude thatU0 ≤ V0. There-
fore, V0 = U0, and equality is attained whenπt = Vt/Bt .

This shows that an upper bound on the price of th
American option can be constructed simply by evaluatin
the right-hand-side of (3) for a given supermartingale,πt .
In particular, if such a supermartingale satisfiesπt ≥ ht/Bt ,
the option priceV0 is bounded above byπ0.
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When the supermartingaleπt in (3) coincides with the
discounted option value process,Vt/Bt , the upper bound
on the right-hand-side of (3) equals the true price of t
American option. This suggests that a tight upper bou
can be obtained by using an accurate approximation,Ṽt , to
defineπt . One possibility (see Haugh and Kogan 2001, a
Andersen and Broadie 2001 for further comments rela
to the choice ofπt ) is to defineπt as a martingale:

π0 = Ṽ0 (5)

πt+1 = πt + Ṽt+1

Bt+1
− Ṽt

Bt
− Et

[
Ṽt+1

Bt+1
− Ṽt

Bt

]
. (6)

Let V0 denote the upper bound we get from (3) correspon
ing to our choice of supermartingale in (5) and (6). Th
it is easy to see that the upper bound is explicitly given

V0 = Ṽ0+EQ0

max
t∈T

 ht

Bt
− Ṽt

Bt
+

t∑
j =1

EQj −1

[
Ṽj

Bj
− Ṽj −1

Bj −1

] .

(7)

As may be seen from (7), obtaining an accurate estim
of V0 is computationally demanding. First, a number
sample paths must be simulated to estimate the outerm
expectation on the right-hand-side of (7). While this numb
need not be large in practice, we also need to accura
estimate a conditional expectation at each time period al
each simulated path. This requires some effort and clea
variance reduction methods would be useful in this conte

Variations and extensions of these algorithms have a
been developed recently and are a subject of ongoing
search. Andersen and Broadie (2001), for example, c
struct upper bounds by using an approximation to the optim
exercise frontier instead of an approximation to the Q-va
function, while Meinshausen and Hambly (2003) use si
ilar ideas to price options that may be exercised multip
times.

3 PORTFOLIO OPTIMIZATION

Motivated by the success of ADP methods for pricing Ame
ican options, Brandt et al (2001) apply similar ideas
approximately solve a class of high-dimensional portfo
optimization problems. In particular, they simulate a lar
number of sample paths of the underlying state variables
then working backwards in time, they usecross path regres-
sions(as we described in the approximate Q-value iterati
algorithm) to efficiently compute an approximately optim
strategy. Propagation of errors is largely avoided,and tho
the price for this is an algorithm that is quadratic in th
number of time periods, their methodology can comfortab
handle problems with a large number of time periods. Th
specific algorithm does not handle portfolio constraints a
certain other complicating features, but it should be possi
d
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to tackle these extensions using the ADP methods that th
and others have developed.

As was the case with ADP solutions to optimal stoppin
problems, a principal weakness of ADP solutions to portfoli
optimization problems is the difficulty in determining how
far a given solution to a given problem is from optimality
This issue has motivated in part the research of Haug
Kogan and Wang (2003) (hereafter HKW) who use portfoli
duality theory to evaluate the quality of suboptimal solution
to portfolio optimization problems by constructing lower
and upper bounds on the optimal value function. Thes
bounds are evaluated by simulating the stochastic different
equations (see Kloeden and Platen 1992) that describe
evolution of the state variables in the model in question
In section 3.1 we describe the particular portfolio dualit
theory that was used in HKW and that was developed by X
(1990), Shreve and Xu (1992a, 1992b), Karatzas, Lehock
Shreve and Xu (1991), and Cvitanic and Karatzas (1992

Before doing so, we remark on the role that simulatio
has to play in applying this theory in practice. First, since th
portfolio optimization problems in question are too difficul
to solve either analytically or numerically, approximate
solution techniques are necessary. To date, ADP metho
appear to be the most promising and as we have se
simulation plays an important role when applying thes
methods. Second, once we have an approximate solut
we would like to evaluate it by using the solution itself
to construct lower and upper bounds on the true valu
function. Again, we can only do this by simulating path
of the relevant state variables as will be discussed at t
end of Section 3.1.

We also remark that duality theory of Section 3.1 applie
mainly to problems in continuous time. ADP techniques
on the other hand, are generally more suited to a discre
time framework, This inconsistency can easily be overcom
by extrapolating discrete-time ADP solutions to construc
continuous-time solutions.

3.1 Dual Methods for Portfolio Optimization

We assume that the financial market hasN stocks whose
time t prices are given by theN-vector, Pt , and a cash
account that earns interest at the instantaneously risk-fr
rate, rt . We let theM-vector Xt denote the timet value
of the state variables in the market. The dynamics of the
variables is governed by the following system of stochast
differential equations (SDE’s):

rt = r (Xt ) (8a)

d Pt = Pt [µP(Xt ) dt + 6P(Xt ) d Bt ] (8b)

d Xt = µX(Xt ) dt + 6X(Xt ) d Bt (8c)
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where Bt = (B1t , ..., BNt) is a vector ofN independent
Brownian motions,µP andµX areN- andM-dimensional
drift vectors, and6P and 6X are diffusion matrices of
dimensionN by N andM by N, respectively. Without loss of
generality, we assume thatM < N and that the lastM rows
of (8b) coincide with (8c). We defineηt = 6−1

Pt (µPt−rt ) so
that in a market without portfolio constraints,ηt corresponds
to the vectormarket price of risk.

The time t portfolio weights are denoted byθt =
(θ1t , . . . , θNt) and the interpretation is thatθit is the fraction
of wealth, Wt , that is invested in thei th stock at timet .
(This implies 1−∑

θit is invested in the cash account a
time t .) The wealth dynamics are then given by (e.g. Duffi
1996)

dWt = Wt

{[
rt + θ>

t (µPt − rt )
]

dt + θ>
t 6Pt d Bt

}
(9)

and for ease of exposition, we are now dropping the d
pendence of terms onXt .

To describe the constraints that a portfolio strategy mu
satisfy, we letK be a closed convex set inRN that contains
the 0 vector. We assume thatθt must satisfy

θt ∈ K for all t ∈ [0, T]. (10)

For example, if short sales are not allowed, thenK = {θ :
θ ≥ 0}. If in addition borrowing is also not allowed, then
K = {θ : θ ≥ 0, 1>θ ≤ 1}.

The portfolio optimization problem is to maximize
expected utility of terminal wealth,E[U(WT )]. In particular,
we must solve for

V0 ≡ sup
{θt }

E0 [U(WT )] (P)

subject to (8), (9) and (10)

where V0 denotes the value function att = 0 and where
the initial wealth is assumed to beW0.

Because the number of Brownian motions,N, is equal
to the number of stocks in the financial market described b
(8), it can be shown that the market would be adynamically
completemarket if there were no portfolio constraints. Dy-
namic completeness would imply the existence of a uniqu
market-price-of-risk process,ηt , or equivalently, a unique
state-price-density(SPD) process,πt . πt (ω) may be in-
terpreted as the time 0 price per-unit-probability of $1 a
time t in the eventω occurs. (See Duffie 1996 for further
details.)

It so happens that a portfolio optimization problem in
complete markets is particularly easy to solve using marti
gale methods as the problem can essentially be decoup
(Cox and Huang 1991, and Karatzas, Lehocky and Shre
t

d
e

1997). First the optimal wealth,W∗
T , is chosen in such a

way that the budget constraint,

E0
[
πT W∗

T

] = W0

is satisfied. The second step is to solve for the portfol
strategy,θ∗, that attainsW∗

T . This decoupling is not pos-
sible in incomplete markets since it is not the case th
every random terminal wealth,WT , is attainable using a
self-financing trading strategy. In problem (P) above, the
imposition of portfolio constraints implies that we do no
have a complete financial market and so the simple mart
gale decoupling approach cannot be used. In general,
are then left with a problem that cannot be solved explicitl
Moreover, it might be very difficult to solve the problem
numerically and it will be impossible to do so if the problem
is also high-dimensional.

In recent years, however, the martingale approach f
complete markets has been generalized to incomplete m
kets by a number of researchers using stochastic dua
theory to allow for portfolio constraints and non-spanne
risks. Research in this direction includes He and Pea
son (1991), Karatzas, Lehoczky, Shreve, and Xu (199
Cvitanic and Karatzas (1992), Cuoco (1997), and Cuo
and Liu (2000), to name a few. Rogers (2003) provide
a synthesis of many of the results to date. Explicit solu
tions to these problems are rare and notable exceptions
problems with logarithmic preferences, or problems wit
constant relative risk aversion (CRRA) preferences and
deterministic investment opportunity set (see, for examp
Karatzas and Shreve 1997, Section 6.6).

All is not lost, however, for even though explicit solu-
tions are rare, it might still be possible to use this dualit
theory in practice. In particular, HKW show how the duality
theory of Cvitanic and Karatzas (1992) and others may
used to evaluate approximate solutions to difficult portfo
lio optimization problems. Their methods, which apply to
problems in a multidimensional diffusion setting, should b
of value when exact solutions are not available.

Starting with the portfolio choice problem (P), we
can define a fictitious problem (P (ν)), based on a fictitious
financial market andwithout the portfolio constraints. First
we define thesupport functionof K , δ(·) : RN → R ∪∞,
by

δ(ν) ≡ sup
x∈K

(−ν>x). (11)

The effective domain of the support function is given by

K̃ ≡ {ν : δ(ν) < ∞}. (12)

For suitably well-behaved processes,νt , that satisfyδ(ν) <

∞ almost surely for allt , we define a fictitious marketM(ν),
in which theN stocks and the cash account are traded witho
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constraints. The diffusion matrix of stock returns inM(ν) is
the same as in the original market. However, the risk-fre
rate and the vector of expected stock returns are differen
In particular, the risk-free rate process and the price dri
vector in the fictitious market are defined respectively by

r (ν)
t = rt + δ(νt )

µ
(ν)
Pt = µPt + δ(νt ) + νt

where δ(ν) is the support function defined in (11). The
dynamic portfolio optimization problem in the fictitious
market, M(ν), without portfolio constraintsis a complete
markets problem and so there exists a unique SPD proce
π

(ν)
t . As stated above, the decoupling approach can be us

to solve this problem. In particular, it may be formulated
as a static problem as follows:

V (ν)
0 ≡ sup

{WT }
E0 [U(WT )] (P (ν))

subject to E0
[
π

(ν)
T WT

]
= W0.

(Note that in problemP (ν) we focus on finding the optimal
terminal wealth,WT , and do not need to worry about
the optimal strategy,θt .) Due to its static nature, the
problem (P (ν)) is easy to solve. For example, when the
utility function is of the formU (W) = W1−γ /(1 − γ ),
the corresponding value function in the fictitious market is
given explicitly by

V (ν)
0 = W1−γ

0

1 − γ
E0

[
π

(ν)
T

γ−1
γ

]γ

. (14)

It is easy to see that for any suitably well-behaved choic
of ν, the value function in (14) gives an upper bound fo
the optimal value function,V0, of the original problem. In
the fictitious market, the wealth dynamics of the portfolio
are given by

dW(ν)
t = W(ν)

t

[(
r (ν)
t + θ>

t (µ
(ν)
Pt − r (ν)

t )
)

dt + θ>
t 6Pt d Bt

]
so that

dW(ν)
t

W(ν)
t

− dWt

Wt
=

[
δ(νt ) + θ>

t νt

]
dt.

If θt ∈ K then (11) implies that the last expression is non
negative. ThereforeW(ν)

t ≥ Wt ∀ t ∈ [0, T] and sinceU(·)
is assumed to be an increasing function, we haveV (ν)

0 ≥ V0.
Clearly we also have

inf
(ν)

V (ν)
0 ≥ V0. (15)
t.

s,
d

Cvitanic and Karatzas (1992) and other researchers (e
Schroder and Skiadis 2003) have shown that in many c
cumstances there is no duality gap. That is, there existsν∗
such thatV (ν∗)

0 = V0. HKW show then that

η
(ν∗)
t = −Wt

∂2Vt/∂W2
t

∂Vt/∂Wt
6>

Ptθ
∗
t (16)

−
(

∂Vt

∂Wt

)−1
6>

Xt

(
∂2Vt

∂Wt ∂ Xt

)

whereθ∗
t denotes the optimal portfolio policy for the origina

problem andη(ν∗)
t is themarket-price-of-riskprocess in the

optimal fictitious market. We remark that the importan
feature of (16) is that it provides a link between the prima
and dual optimal solutions. Since finding optimal solution
to these problems is generally not possible, we have to ma
do with finding suboptimal solutions,̃Vt and θ̃t . We can
evaluate such a suboptimal solution by using it to constru
a particular fictitious market. In particular, we can replac
Vt andθ∗

t in (16) with Ṽt and θ̃t to obtain

η
(̃ν)
t = −Wt

(
∂W WṼt

∂WṼt

)
6>

Pt θ̃t (17)

− (
∂WṼt

)−1
6>

Xt
(
∂W XṼt

)
.

We can then useη(̃ν)
t to defineν̃t . If these processes are

suitably well behaved (e.g.δ(̃νt ) < ∞ almost surely for all
t) they can be used to define an upper bound on the true va
function, V0. This upper bound is given by equation (14
and it is shown in HKW how a good approximate prima
solution,̃θt , leads to a good upper bound onV0. (Computing
a lower bound is generally easy: simply simulate the polic
implicitly defined by the initial approximation.)

We also mention that in the special but important case
a CRRA (constant relative risk aversion) utility function, th
expression forη(ν∗)

t can be shown to simplify considerably
In particular, the first term in (16) is then a function ofθ∗

t only,
while approximations to the value function and only its firs
derivatives with respect to the state variables,Xt , are needed
to evaluate the second term. This simplifies numeric
implementation significantly, but of course approximatin
functions and their partial derivatives is still very challengin
in practice.

Simulation: The expectation in (14) cannot be evalu
ated explicitly and so it has to be estimated by simulatin
the underlying SDE’s. This is a computationally intensiv
task, particularly wheñνt cannot be guaranteed in advanc
to be well-behaved. In such circumstances it is necessary
solve a quadratic optimization problem at each discretiz
tion point on each simulated path in order to convertη

(̃ν)
t

and ν̃t into well-behaved versions that can then be used
construct an upper bound onV0. (See HKW for further
details.)
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Besides the actual ADP implementation that construc
the initial approximate solution, simulation is also ofte
necessary to approximate the value function and its par
derivatives in (17). This occurs when we wish to evaluate
given portfolio policy,̃θt , but do not know the corresponding
value function,̃Vt . In such circumstances, it seems that it
necessary to simulate the policy,θ̃t , in order to approximate
the required functions. Once again, this is computationa
demanding and seeking efficient simulation techniques
all of these tasks will be an important challenge as we se
to solve ever more complex problems.

4 CONCLUSIONS

Simulation has an important role to play in the optimal con
trol problems that are found in financial engineering. The
control problems include optimal stopping and portfolio op
timization problems which in many circumstance cannot b
solved exactly. When this is the case, approximate soluti
techniques are required and the most successful techniq
to date are probably the approximate dynamic programm
(ADP) techniques. A particular weakness with the AD
methodology, however, is that it is difficult to determin
how far a particular solution to a particular problem is from
optimality. Dual-based methods have recently proved us
ful for evaluating approximate solutions by enabling th
computation of lowerand upper bounds on the true value
function.

Simulation is a necessary and important tool for co
structing the initial solution as well as evaluating it b
computing lower and upper bounds. Since all of the
methods are computationally intensive, it is expected th
more sophisticated simulation techniques will have a grea
role to play in future research. Moreover, in the conte
of portfolio optimization, there are many different ‘formu
lations’ of the duality theory (see Rogers 2003), and it
expected that many of these formulations can be used
a computational framework just as the dual formulation
Cvitanic and Karatzas (1992) was used in HKW (2003
This is a topic of ongoing research and simulation tec
niques will certainly be an important tool in furthering this
agenda.
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Cvitanić, J., and I. Karatzas. 1992. Convex Duality in
Constrained Portfolio Optimization.Annals of Applied
Probability 2:767-818.

Duffie, D. 1996.Dynamic Asset Pricing Theory. Princeton,
New Jersey: Princeton University Press.

Haugh, M.B., and L. Kogan. 2001. Pric-
ing American Options: A Duality Ap-
proach. Forthcoming inOperations Research.
<http://www.columbia.edu/∼mh2078/Research.html>.

Haugh, M.B., L. Kogan and J. Wang. 2003. Portfo-
lio Evaluation: A Duality Approach. Working pa-
per, Department of IE & OR, Columbia University.
<http://www.columbia.edu/∼mh2078/Research.html>.

He, H., and N.Pearson. 1991. Consumption and Portfoli
Policies with Incomplete Markets and Short-sale Con
straints: The Infinite Dimensional Case.Journal of
Economic Theory54 (2):259-304.

Karatzas, I., J.P. Lehocky and S.E. Shreve. 1987. Opt
mal Portfolio and Consumption Decisions for a “Small
Investor" on a Finite Horizon.SIAM J. Control Opti-
mization25:1557-1586.

Karatzas, I., J.P. Lehocky, S.E. Shreve and G.L. Xu. 199
Martingale and Duality Methods for Utility Maximiza-
tion in an Incomplete Market.SIAM J. Control Opti-
mization259:702-730.

Karatzas, I., and S.E. Shreve. 1997.Methods of Mathe-
matical Finance. New York: Springer-Verlag.

Kloeden, P., and E. Platen. 1992.Numerical Solution of
Stochastic Differential Equations. Berlin: Springer-
Verlag.

Liu, J. 1998. Dynamic Portfolio Choice and Risk Aversion.
Working paper, Stanford University, Palo Alto.



Haugh

s

s.
-

-
k-
,

-
.

-

.

s

.

ol
-
s

Longstaff, F., and E. Schwartz. 2001. Valuing Ameri-
can Options by Simulation: A Simple Least-Square
Approach.Review of Financial Studies14:113-147.

Meinshausen, N., and B.M. Hambly. 2003. Monte Carlo
Methods for the Valuation of Multiple Exercise Options.
Working paper, Oxford University.

Merton, R.C. 1990.Continuous-Time Finance. New York:
Basil Blackwell.

Rogers, L.C.G. 2002. Monte-Carlo Valuation of American
Options. Mathematical Finance. 12(3):271-286.

Rogers, L.C.G. 2003. Duality in Constrained Optimal in-
vestment and Consumption Problems: A Synthesi
Working paper, Statistical Laboratory, Cambridge Uni
versity. <http://www.statslab.cam.ac.uk/∼chris/>.

Schroder, M. and C. Skiadas. 2003 Optimal Lifetime
Consumption-Portfolio Strategies under Trading Con
straints and Generalized Recursive Preferences. Wor
ing Paper No. 285. Kellogg School of Management
Northwestern University, Evanston.

Shreve, S.E., and G.L. Xu. 1992a. A Duality Method
for Optimal Consumption and Investment under Short
Selling Prohibition, Part I: General Market Coefficients
Annals of Applied Probability2:8-112.

Shreve, S.E., and G.L. Xu. 1992b. A Duality Method
for Optimal Consumption and Investment under Short
Selling Prohibition, Part I: Constant Market Coeffi-
cients. Annals of Applied Probability2:314-328.

Staum, J. 2002. Simulation in Financial Engineering. In
Proceedings of the 2002 Winter Simulation Conference,
ed. E. Yücesan, C.-H. Chen, J.L. Snowdon, and J.M
Charnes, 1481-1492.

Tsitsiklis, J., and B. Van Roy. 2001. Regression Method
for Pricing Complex American–Style Options.IEEE
Transactions on Neural Networks12(4):694–703.

Xu, G.L. 1990. A Duality Method for Optimal Consumption
and Investment under Short-Selling Prohibition. Ph.D
Dissertation, Carnegie Mellon University.

AUTHOR BIOGRAPHY

MARTIN B. HAUGH is an Assistant Professor of Indus-
trial Engineering and Operations Research in the Scho
of Engineering and Applied Science at Columbia Univer
sity. He received his PhD in 2001. His email address i
<martin.haugh@columbia.edu> and his web page
is at <www.columbia.edu/˜mh2078/> .


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 327
	02: 328
	03: 329
	04: 330
	05: 331
	06: 332
	07: 333
	08: 334


