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ABSTRACT

We investigate the possibility of efficiency gains from
schemes that reduce the expected cost of a simulated p
which allows more paths given a fixed computational budge
Many such schemes impart bias, so we look at the bia
variance tradeoff in terms of mean squared error. The wo
reduction schemes we consider are fast numerical evaluat
of functions, such as the exponential, as well as chang
to simulation structure and sampling schemes. The lat
include descriptive sampling, reducing the number of tim
steps, and dispensing with some factors in a multi-fact
simulation. In simulations where computational budgets a
tightly constrained, such as risk management and calibrat
of financial models, using cheaper, less accurate algorith
can reduce mean squared error.

1 INTRODUCTION

This paper explores several ideas that might enable pra
tioners to improve the efficiency of their simulations. Thes
ideas are work reduction techniques because they red
the time spent per simulated path, rather than reducing t
variance per simulated path, as variance reduction tec
niques typically do. Efficiency improvement in simulation
is generally thought of as variance reduction, that is,
reduction in the variance of the simulation estimate give
a fixed budgetC of computer time. In the prototypical
case, the simulation estimate isX̄ = ∑n

i=1 Xi /n where the
Xi are iid copies of an unbiased estimatorX computed on
one sample path. Variance reduction often means a sche
to reduce the varianceV of X. Such schemes frequently
require more workW, i.e. computer time, per path than a
standard simulation does. Given a fixed budget, they ha
fewer paths than a standard simulation. To be effectiv
such a variance reduction method must produce a reduct
in V which outweighs the increase inW: the figure of merit
is V W because the variance ofX̄ is V/n = V W/C. In this
paper, we consider some work reduction schemes, wh
h,
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reduce the computational costW per path, and investigate
when they improve the efficiency of financial simulations

Some work reduction schemes we investigate crea
bias, soV W is not the appropriate figure of merit. For
biased simulations, it is standard to focus on the me
squared error (MSE), seeking to reduce it given the fixe
computational budget. We focus on samples of modera
size, not asymptotics as do Fox and Glynn (1989).

Instead of fixing the budget, one may fix a target MS
and seek to reduce the work required to achieve it. This
often appropriate in financial applications, where achieving
very low MSE merely wastes time, Spock-like, on unhelpfu
precision. For example, if the derivative security to be price
trades with a bid-ask spread of 1% of its value, it is no
much use to attain a root mean squared error (RMSE)
less than, say, 0.1% of its value. More importantly, mod
risk also puts limits on how much precision is profitabl
and suggests that one should not be too concerned ab
bias. If our models are not all that close to being correc
why worry about computing an expected discounted payo
or a quantile of portfolio value too precisely under thi
particular probability measure?

Nonetheless, it is worth worrying about the efficiency o
financial simulations. At present, the computational burde
of simulation hinders accurate large-scale risk measureme
making it more difficult to manage risks and price them
in the context of a firm’s overall risk profile. For a dif-
ferent approach to simulation design for risk measureme
balancing the number of paths simulating the state at t
risk measurement time horizon against the number of pa
used to simulate security prices at that time, see Lee (19
and Lee and Glynn (1999). The computational burden al
slows the recalibration of models, degrading the quality
pricing and hedging. The application of variance or wor
reduction methods can make such simulations faster a
more practical.

The computationally demanding applications for whic
these work reduction ideas might be worth implementin
such as calibration and risk management, are genera
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performed frequently, perhaps daily. The parameters do
change much from one repetition to the next. Therefo
if we optimize the level of work reduction for yesterday’s
simulation, having seen its result, this level is very likel
best today too.

The first work reduction method to apply would be no
one of the ones we described here, but simply writing
computer program that refrains from unnecessary memo
operations and tailors the algorithm to the machine’s a
chitecture. Memory access is rather expensive. We fou
that it tends to take longer than generation of a unifor
random variate, costing as much as 10–20 additions. A
cording to Goedecker and Hoisie (2001): “Achieving hig
performance on modern architectures is intimately relat
to a coding style that, by minimizing memory traffic, max
imizes processor utilization.” “Memory access problem
are usually the single most detrimental factor leading
large performance degradation. The basic principles a
rather simple and rewards are large.” “Applying optimiza
tion techniques when writing a code, leading to an optim
mapping of algorithms to the computer architecture, ca
significantly speed up a program, often by a factor of 1
to 100.”

Aside from such optimization, there are also gains
speed to be had from other ways of utilizing hardware mo
efficiently. Using single instead of double precision fo
floating-point numbers makes division and memory acce
1.5–2 times as fast, but single precision may be inad
quate for some applications. Simulations also tend to
amenable to parallel processing, although this is not triv
to implement. A simple, limited version of parallelization
is available for some processors, such as Intel Pentium
and IV: single instruction multiple data (SIMD) processing
which allows the same operation to be performed on fo
single precision floating-point numbers at once. We foun
that SIMD usually increases speed somewhat more th
threefold.

We focus not on these, but on work reduction schem
that involve changing the simulation algorithm itself, no
just its implementation. First, in Section 2, we conside
reducing the cost of approximations to functions such as t
exponential. As Goedecker and Hoisie (2001) point ou
implementations in standard scientific computing librarie
are often very accurate, and there exist much faster, sligh
less accurate algorithms, including some optimized for pa
ticular processors by their vendors. Given our requireme
for only modest precision in most financial application
we might do better to use these cheaper approximatio
Second, there are schemes for avoiding the generation
random variables, including the descriptive sampling
Saliby (1990, 1997). Third, we investigate changes to t
stochastic process or cashflows being simulated. Th
latter two topics are discussed in Section 3.
t
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2 REDUCED COST APPROXIMATIONS

In this section, we investigate the effect of using different
algorithms to approximate the exponential on the speed an
MSE of simple simulations. We assume that the requi-
site standard normal random variates are stored. (If it is
faster, they could be generated anew or regenerated usin
a fixed seed for the random number generator.) In thes
examples, the expectations are actually known, allowing us
to compute MSEs. Although simulation is not necessary
for these examples at all, the results are suggestive in tha
the best exponential algorithms here may be good for othe
applications where simulation is necessary.

Vendor algorithms optimized to their hardware are po-
tentially the most powerful tools to use here. We discuss
them separately in Section 2.5 because it is difficult to
separate the increase in speed they produce into elemen
attributable to lower accuracy, tailoring to processor archi-
tecture, and vectorization—many of these functions proces
an entire array of arguments in one function call instead of
being called repeatedly to process each element of the arra
in turn. Throughout this section, except when mentioned
results are reported from simulations run at single precision

2.1 Candidate Algorithms

We compare five algorithms for approximating the expo-
nential. Two are highly accurate, while the others are
actually approximations in the sense that their accuracy is
substantially less than the computer’s precision.

One is the standard algorithm to which the compiler
automatically links. As the link is to the precompiled
library libm , we do not report what these standard algo-
rithms do. Another is__ieee754_exp , which is available
at http://www.netlib.org/fdlibm/e_exp.c . It
uses argument reduction to change the problem of compu
ing exp(x) to computing 2k exp(r ) wherex = k ln 2+r and
|r | ≤ (ln 2)/2 ≈ 0.34657. Its core is a rational approxima-
tion to exp(r ) involving a polynomial of fifth degree inr 2.
Argument reduction is somewhat costly because the time
it takes to computek and r from x is nonnegligible com-
pared to that for computing the rational approximation itself.
However, it transforms a good approximation on a small
domain into an approximation that is good everywhere.

One approximation to exp(x) is the fourth-order Taylor
expansion 1+ x + x2/2 + x3/6 + x4/24 = (((0.0416̄x +
0.16̄)x +0.5)x +1)x +1. The latter representation is faster
to compute. Argument reduction can enhance a Taylo
expansion, which only approximates well near the expansio
point, which is zero here. The algorithmbargain is the
fourth-order Taylor expansion on[−0.5, 0.5]. Elsewhere on
[−1.5, 1.5], it returns either 1/e or e times the result of the
Taylor expansion for the reduced argument in[−0.5, 0.5].
Outside[−1.5, 1.5], it calls the libm exponential. This
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means that the execution time of the function is random wh
the argument is random: it is faster when the argumen
tend to be near zero.

Finally, we also consider the approximation of Schra
dolph (1999). This macro uses one multiplication and o
addition, taking advantage of the structure of floating-poi
representation, to achieve the effect of a lookup table w
linear interpolation.

2.2 Examples

Our first financial example is pricing a European call optio
under the Black-Scholes model. We simulate in a sing
step under the risk-neutral measureQ. The estimator is

(a exp(bZ) − c)+

where a = S0 exp(−(σ 2/2)T), b = σ
√

T , c =
exp(−rT )K , and Z is a standard normal random variate
The parameters in our base case areS0 = 100, K = 100,
σ = 20%, andr = 5%. Computinga exp(bZ) instead of
exp(ln a + bZ) helps becausebZ tends to be near zero,
which means that less argument reduction needs to be d
in methods that use it, and the Taylor approximations a
more accurate.

An alternative estimator is

1{Z > d}(a exp(bZ) − c)

whered = (ln(c/a))/b, which saves computation of an ex
ponential when the payoff is zero at the cost of adding anif
statement. It is expected to be faster except when the opt
is extremely deep in the money. In the tables of Section 2
these two variants of the example are referred to as call a
call-c (for “conditional exponentiation”) respectively.

The second financial example is pricing a cap und
a two-factor Gaussian HJM model. We simulate multip
steps under the spot LIBOR measureQ̃, for which see for
instance Musiela and Rutkowski (1997, §§13.3 and 14.3.
The estimator is

m−1∑
i=1

Di+1δ(Li − κ)+

where Di+1 is the discount factor for a cashflow arriving
at Ti+1 and Li is the spot LIBOR rate atTi for the period
[Ti , Ti+1]. We simulate the negative log bond pricesXik =
− ln B(Ti , Tk) at time Ti for maturity Tk by

Xik = Xi−1,k − Xi−1,i + ai + bi · Zi ,
or
or
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where{Zi }i=1,...,m are iid multivariate standard normal ran
dom variables,ai = 1

2δ‖νik‖2, andbi = √
δνik . Then

Li = 1

δ
(exp(Xi,i+1) − 1)

and

Di = exp(Yi ) where Yi =
i∑

j =1

X j −1, j .

Conditional exponentiation is applicable here, as f
the European call option. The estimator can be rewritt
as

m∑
i=1

1{Xi−1,i > c1} exp(Yi )(exp(Xi−1,i ) + c2)

where c1 = ln(1 + δκ) and c2 = −(1 + δκ). When the
indicator is zero at stepi , we need not evaluate the othe
factors in that term. We just go to the next step, updati
Xi,i+1, . . . , Xi,m andYi+1, but we do not need to evaluate
the two exponentials at this step. Thus the work do
in exponention per path is significantly random, and i
expectation varies directly with how deep in the money th
cap is. Table 3 illustrates the effect this has.

We parametrized our example withT = 5, δ = 0.25,
and made the initial yield curve flat at 5%. In the bas
case, the strike wasκ = 5%. All forward rate instantaneous
volatilities had magnitude‖σik‖ = 1%. The greaterk − i ,
i.e. the further into the future the time period of the forwar
rate, the greaterσik ’s coefficient on the second factor, leadin
to correlations of 0.5–1 for forward rates. These forwa
rate volatilities produce the bond instantaneous volatiliti
via the equationνik = δ

∑k−1
j =i σ j k .

2.3 Results: Bias

We will only use fast approximations to the exponential
they lead to acceptably low bias in simulation application
Our guideline is that relative bias much greater than 0.1%
not acceptable. We estimated the relative bias (one min
the ratio of expected simulated price to true price) for ea
approximation in various examples. This was done
substituting a simulation estimate with a low standard err
(0.01% for call examples and 0.03% for cap examples) f
the unknown expected simulated price in the expression
relative bias. The true price is known in these examples

The__ieee754_exp function states that it is accurate
to within one unit in the last place at double precisio
while thelibm algorithms are accurate to double precisio
The bargain algorithm is not as accurate, but the 95%
confidence interval for its relative bias included zero fo
every example that we checked. The fourth-order Tayl
approximation also had zero in the confidence interval f
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the base call and cap examples, but generated signifi
bias in other examples, listed in Table 1.

Schraudolph’s approximation algorithm is not accura
enough for use in any of the examples we considered
had a relative bias of 4.3% for the call example and 300
for the cap example. This approximation was design
for use in neural networks, where the logistic functio
(1 + exp(x))−1 is of more interest than exp(x) itself. By
contrast, in finance, it is functions of the form exp(x) − 1
that are of most interest, and these demand a greater de
of precision in approximating exp(x) to attain an acceptable
relative error.

We further examine the quality of the fourth-orde
Taylor and Schraudolph approximations by investigati
how they vary with the size of the argument. To illus
trate this dependence, we show in Table 1 the bias
an out-of-the-money European call pricing simulation wi
varying maturityT . The longer the maturity, the greate
the variability of the argument to the exponential. Th
moneyness of the option is held constant: in each c
K = S0 exp((r − σ 2/2)T + σ

√
T), so that the risk-neutral

probability of a nonzero payoff is8−1(−1) ≈ 16%. Look-
ing at the relevant truncated normal distribution, we can s
that the simulation’s bias will reflect primarily the accu
racy of the approximation to the exponential for argume
whose size is ln(K/S0) or a small multiple of it.

For the examples in Table 1, it was necessary to u
a better random number generator than therand function
of libm , which introduced bias of up to 0.8%. We use
insteadMRG32k3a, which is described in L’Ecuyer (1999)

Table 1: Effect of Argument Size
on Relative Biases in Call Pricing

Algorithm
T 4th order Schraudolph

0.25 ≈ 0% -3.7%
1 -0.04% 14%
2 -0.1% 7.5%
5 -0.8% -1.6%
10 -2.6% -1.2%

Table 1 shows that the relative bias induced in call pric
is unacceptably large for the Schraudolph approximati
and is acceptable for the fourth order Taylor approximati
only when the arguments are small enough. The sup
ority on small arguments of a Taylor approximation abo
zero motivated the combination with elementary argum
reduction ideas to produce thebargain algorithm. The
Schraudolph algorithm performs best, although not w
enough, when arguments tend to be large because our
cern with relative bias and a payoff function similar in form
to exp(x)−1 makes the demand for precision greater wh
x tends to be smaller. This also explains its disastro
t

t

ee

f

e
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performance in the cap example, where the arguments te
to be the smallest.

2.4 Results: Speed

The relative speeds of different algorithms depend grea
on whether exponentiation is done in isolation or as pa
of a financial simulation in which other operations occu
This is because a modern processor involves several subu
that perform operations simultaneously during execution o
nontrivial program,which is known as “on-chip parallelism.”
For this reason, it is not straightforward to deduce from th
speed of an approximation to the exponential when run alo
what speed-up it will produce when used in a particula
financial simulation. The examples we give thus can on
suggest what might happen in other applications. As w
will see, it is typical for the speed gains in a complicate
example to be less than those in isolation.

In Table 2, we report the number of seconds required
do ten million simulations, for each of the algorithms and ex
amples under consideration. The compilers and process
used are:

• Microsoft Visual C++ 7.0, Intel Pentium III 1GHz
• Microsoft Visual C++ 7.0, Intel Pentium IV 1.8GHz
• gcc 2.95, Sun UltraSparc IIi 440MHz.

To establish the reliability of these results, we replicate
them on different Pentium III and IV processors. The resul
were similar, up to adjustment for varying clock speeds.

We present a range of times for running thebargain ,
__ieee754_exp , and Sunlibm algorithms in isolation
because argument reduction causes the speed of an algori
to depend on its input. In the other examples, the argume
are random, as specified by the financial simulation. In th
case, despite argument reduction, it makes sense to pres
a total time, corresponding to an average time per path.

From Table 2 we see that, depending on the process
and example, thebargain algorithm compared tolibm
produces increases in speed of about 1.3–1.7 (Sun), 1
2.2 (Pentium III), or 2.9–3.8 (Pentium IV) in these basic
financial simulations. In isolation, its relative speed is eve
greater, but such outperformance is not to be expected
the context of a simulation containing an overhead of oth
computations not affected by the choice of algorithm fo
the exponential.

The improvement overlibm is greater on the faster
processors. (Even the highly accurate__ieee754_exp
outperformslibm significantly on the faster processors.
Apparently, libm is not much faster on a Pentium IV
1.8GHz than on a Pentium III 1.0GHz. The call example i
even slower. The cap example is faster, but this relates p
marily to faster simulation of log bond prices,which is a larg
overhead in this example. Likewise,__ieee754_exp in
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Table 2: Effect of Approximations to the Exponential on
Speed of Financial Simulations (Seconds / 107)

Sun
Method/Example alone call call-c cap
4th-order Taylor 0.9 1.4 1.05 76
bargain 1.1–1.7 2.15 1.65 94
__ieee754_exp 2.2–3.5 3.55 2.5 122
libm 2.5–3.2 3.6 2.5 125

Pentium III
Method/Example alone call call-c cap
4th-order Taylor 0.28 0.85 0.65 41
bargain 0.35–0.75 0.95 0.7 43
__ieee754_exp 1.2–2.3 1.65 1.15 57
libm 1.7 2.1 1.35 69

Pentium IV
Method/Example alone call call-c cap
4th-order Taylor 0.13 0.56 0.44 15
bargain 0.14–0.26 0.58 0.45 15.5
__ieee754_exp 1.4–2.1 1.3 0.85 31
libm 1.6 2.2 1.3 54

isolation is no better with the Pentium IV. It has often
been remarked that increased clock speed is no guaran
of superior performance for real applications. The cheap
exponential algorithms seem better able to take advanta
of the opportunities for on-chip parallelism, breaking dow
into smaller sub-tasks which finish more quickly on th
faster processor, while the more accurate standard alg
rithms do not fare so well. Improvements in processors, f
from diminishing the importance of fast approximations
are increasing it.

We also see that argument reduction makes argume
size affect the speed of the algorithm by a factor of as mu
as two. Moreover, theif statements required to imple-
ment it have a nonnegligible cost even when the argume
is already small and they are not needed. This is wh
bargain always costs more than the fourth-order Taylo
approximation, which is the same thing without argume
reduction. However, the cost of argument reduction in fi
nancial simulations usingbargain diminishes for faster
processors.

Another interesting point is that conditional evaluatio
of exponentials only when in the money speeds up th
simulation by a factor of 1.3–1.4 forbargain or 1.5–1.7
for libm . The example given here is an at-the-mone
option; the effect would be greater for out-of-the-mone
options.

One anomaly in Table 2 is that on the Pentium IV
the call simulation with__ieee754_exp is faster than
running that function alone, even on small arguments. It
hard to know what to make of this, but it may be simply
surprising effect of on-chip parallelism.
an
e
r
e

-

t

t

Table 3 shows the effect of the cap’s strike on spee
gains from faster exponentials. As discussed in Section 2
a simulation of an out-of-the-money cap will have fewe
nonzero cashflows, and thus less need for evaluations of t
exponential. A strike of 10% is very seldom triggered, so
the choice of approximate exponential algorithm is almos
irrelevant. With a strike of 2%, the cap is deep in the
money, and the exponentials are usually evaluated.

Table 3: Effect of Moneyness on Speed of
Cap Simulation (Seconds / 107)

Pentium III, 5 years
Strike 10% 7% 5% 2%
bargain 33 35 43 48
libm 33 40 69 96

Pentium IV, 5 years
Strike 10% 7% 5% 2%
bargain 11 12 15.5 18
libm 11 18 54 87

Pentium IV, 1 year
Strike 10% 5.2% 5% 2%
bargain 1 1.6 2.5 2.8
libm 1 6.2 16.1 28.1

It turns out that the increase in speed on the exponentia
alone, excluding the overhead for doing the deep-out-o
the-money simulation with no exponentials, does not matc
the ratios for small arguments in Table 2: for instance
(96− 33)/(48− 33) 6= 1.7/0.35. One possible explanation
for this is on-chip parallelism. We also see that for anothe
realistic example, an at-the-money 1-year cap,bargain
performs even better againstlibm , increasing speed more
than 6.4-fold. In this example, there is relatively much
less overhead, because fewer log bond prices need to
simulated.

2.5 Vendor-Specific Products

There are a variety of highly efficient functions optimized
to specific processors and made available by the hardwa
manufacturer. We maintain our focus on the exponenti
function and report briefly on the Intel Performance Prim
itives (IPP) package. We also report on SIMD, which wa
mentioned in the introduction. It is not a separate packag
but rather a set of instructions intrinsic to the processo
which some compilers know how to access. There is als
an Intel Math Kernel Library, which like IPP has vectorized
functions for single or double precision, and in version
whose accuracy is high or low (but not as low as in IPP
For the Sun platform, the Sun C compiler includes optimize
exponential functions in scalar and vector form.

Vectorization is itself a form of optimization to the
hardware. Evaluating a function on many arguments in on
call, taking advantage of the processor’s memory cache, c
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be more efficient than calling the function many times i
a row. However, there is a drawback to using vectorize
functions, or even SIMD, which processes four argumen
at once. Vectorization is not straightforward to impleme
unless all paths have same structure. For instance, con
tional evaluation of the exponential in the European ca
example seems difficult to implement with vectorization
There would be an array of one thousand standard norm
random variatesZ on which the exponential is to be eval
uated whenZ > d. Those numbers satisfyingZ > d are
only a subset, and not stored contiguously in memory. F
similar reasons, even argument reduction is nontrivial
implement in vectorized form.

When using vectorized functions, the size of the memo
cache limits the number of arguments that can be proces
in one call. On these Pentiums, one thousand seemed to
optimal, so a loop of ten thousand calls to an IPP vectoriz
function performed ten million exponentiations.

IPP includes two approximations to the exponentia
guaranteeing 11 and 24 bits of accuracy respectively.
the Pentium III, these appeared to be the same function
there was no cheaper 11-bit version. On the Pentium
they took respectively 0.045 and 0.075 seconds per
million. The exponential with 24 bits of accuracy generate
no statistically significant bias in the call pricing example
listed in Table 2.3. The 11-bit version produced biases
0.02% forT = 1 and 0.04% forT = 0.25.

Table 4 presents the speed in isolation and on the c
example of the IPP 11-bit exponential and the fourth-ord
Taylor approximation implemented with SIMD, compare
to libm without the use of any special features.

Table 4: IPP and SIMD Speed (Seconds / 107)

precision double single single
feature none IPP SIMD
algorithm libm IPP(11) 4th-order

Pent. alone 1.7 0.24 0.12
III call 2.35 0.34 0.35

Pent. alone 1.7 0.045 0.045
IV call 2.2 0.23 0.088

Table 4 is comparable to Table 2, which reported th
performance, without hardware-specific enhancement,
approximate exponential algorithms alone and on the c
example. We see that the IPP vectorized exponential w
11-bit accuracy is faster than any algorithm in Table 2. F
the call example, it yields speeds about 2.5 times grea
than those reported in Table 2. The performance of t
fourth-order Taylor approximation implemented in SIMD
was similar, except that it was highly favorable in the ca
example on the Pentium IV. The use of SIMD led to a 25
fold improvement over the standard use oflibm at double
precision. This particular entry in the table is somewh
surprising, because the speed is over six times greater t
i-
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that of the same example without SIMD, which works b
processing four numbers at once, ordinarily speeding up
simulation by a factor of less than four.

Vendor-supplied packages of optimized functions co
tain many potentially useful things, but one of the most im
portant is approximate division. We found regular divisio
to be about as costly as memory access, about ten addit
or multiplications. SIMD contains a faster approximat
division. When this is available, rational approximation
such as found in__ieee754_exp , or most routines for
approximating the standard normal inverse cdf8−1, become
more attractive.

3 AVOIDING WORK

The previous section dealt with choices of algorithm fo
evaluating functions approximately. We now turn to chang
in the structure of the simulation itself, not in the function
it uses. We have already explored one such change: in
difference between the call and call-c examples, Table
shows that evaluating exponentials only when the opti
finishes in the money can produce a noticeable savings
time. Another such work reduction idea involves stoppin
some simulated paths early (Glasserman and Staum 20
Neither of these produces bias.

Here we focus on the mortgage-backed security (MBS
described in Section 3.1, as an example of a complica
simulation in which several corners can be cut in the ho
of saving time while incurring an acceptably small bia
The possibilities including dropping factors in a multi
factor simulation, reducing the number of time steps belo
the number of dates specified in the financial contract, a
replacing some random variates with things that are chea
to compute.

As described below, our MBS simulation requires thre
factors to simulate an interest rate, a stochastic disco
factor, and a mortgage rate. However, either or both of t
latter two processes may be approximated as functions
the first, in which case the corresponding factor does n
need to be simulated.

In reality, a mortgage has 360 monthly payments,
it is natural to price a MBS with a simulation of 360 time
steps. We also simulated a mortgage of 240, 180, 120, or
equally spaced payments instead. We considered altering
mortgage rate as well, so as to keep the annualized percen
rate the same no matter the number of payments. It mi
be thought that this would ameliorate the bias that chang
the number of payments introduces, but we found that
made it worse. There is another aspect to this bias, wh
is that longer payment periods lead to a slower amortizati
of the mortgage. These two effects are partially offsettin
in this example. Indeed, it turns out that offsetting bia
effects were crucial to any improvements identified in th
section.
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Setting the number of time steps to be less than t
number of cashflows in order to reduce work is different fro
the problem addressed by Duffie and Glynn (1995). Th
considered setting the number of time steps to be grea
than the number of cashflows in order to reduce bias fro
discretization of the stochastic differential equation (SD
describing the underlying process. In this example, the S
is integrated exactly.

The MBS example is high-dimensional, so we ca
apply Latin hypercube sampling (LHS) with 100 strata a
a variance reduction technique. If random variates a
generated during the simulation, not stored, a lower-c
alternative to LHS is the descriptive sampling (DS) of Salib
(1990). DS differs from LHS in always using the midpoin
of a cell rather than sampling uniformly within a cell. It wa
intended as a variance reduction technique (Saliby 19
Saliby and Pacheco 2002), but the variance reduction is o
substantial when the number of strata is low, in which ca
the bias of DS tends to be very high. Here we consider it
a work reduction technique—we save the cost of generat
a uniform random variate by simply using the cell midpoin
The results of Section 3.2 show that this savings tends
be quite small. However, the decision about whether
implement a simulation efficiency improvement depends
the relationship between the effort of implementation a
the magnitude of the gains. Here the gains are small,
it is easier to implement DS than LHS.

A similar modification would be to replace, for instance
normal random variates with random variates that are chea
to generate. Kloeden and Platen (1992, p. 458) discuss
possibility in terms of asymptotic convergence rates as
number of time steps goes to infinity, giving a binomia
example. Such methods may improve MSE, for instan
when the overall budget is small, the number of time ste
is large, and there is not too much path-sensitivity, b
we do not investigate them here. Of course, in simulati
applications where random variates are stored, none of th
substitutions are helpful.

3.1 Mortgage-Backed Securities

For background on mortgage-backed securities (MBS),
for instance Richard and Roll (1989). We consider a secur
whose payments are the 360 monthly cashflows from a p
of 30-year mortgages. Simulations involving MBS are ofte
demanding in part because of the large number of time ste
and possibly complexity in interest rate modeling. Th
characteristic feature of MBS is the homeowner’s optio
to prepay the mortgage. In this example, we model t
number of mortgages prepaying as a function (involving
arctangent and fitting the data of Richard and Roll 198
of the newly available mortgage refinancing rate, althou
other factors may be modeled in practice.
r

t

,

t

r
s

e

l

,

We assume a very simple interest rate model: t
spot interest rater and the mortgage refinancing rateR
both follow Ornstein-Uhlenbeck processes, i.e. the Vasiˇcek
model. To avoid bias, it is necessary to simulate a third fact
the log incrementYi+1 = ln Di+1 − ln Di of the stochastic
discount factorDi = ∫ ti

0 r (s) ds, which is jointly normal
with r i+1 = r (ti+1). We assume conditional independenc
betweenRi andDi givenr i and all information from previous
time steps, but the instantaneous correlation betweenr andR
is 0.9. The initial rates arer0 = 6.5% andR0 = 8.5%, butr
andR have the same parameters otherwise: mean revers
level 10%, mean reversion strength 0.15, and instantane
volatility 1%.

When we want to avoid simulatingD with a separate
factor, we use the approximation

Dj = exp


−δ

j −1∑
i=0

r j


 .

When we want to avoid simulatingR as a separate factor
we replaceRi+1 with E[Ri+1|r i+1, Ri ].

3.2 Results

There is no closed-form expression for the value of a MB
so we use a very precise Monte Carlo estimate as the t
mean for purposes of calculating MSE. For each metho
we report the RMSE given a fixed computational budge
The results of this section are from thegcc 3.2 compiler
on an Intel Pentium III 450MHz, using double precision

First suppose that the MBS pricing simulation uses sim
ple random sampling (SRS). One work reduction techniq
is decreasing the number of time steps in the simulati
from 360 to 240, 180, 120, or 30. The other is reducing t
number of factors from three by approximating eitherD or
bothD andR in terms ofr . We considered all combinations
of these techniques. Table 5 shows, for different values
the computational budget, which combination produced t
lowest RMSE, and how much less that was than the ba
case of SRS with 360 time steps and three factors. T
MBS value was about 1.07.

Table 5: RMSE Improvement over SRS for MBS
Pricing

budget base Best Method
(seconds) RMSE steps factors gain

10 0.0023 240 1 33%
50 0.0010 240 2 7%
100 0.0007 360 3 0%

Next suppose that the MBS pricing simulation use
Latin hypercube sampling (LHS). This produces a 35
reduction in RMSE (i.e. standard error, because there
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no bias) in the base case of three factors and 360 t
steps. We now consider all of the above possibilities
approximation, as well as the use of descriptive sampl
(DS) instead of LHS. Whether the budget was 10, 50,
100 seconds, we found that the best method was to
one factor, 360 time steps, and DS, leading to a reduct
in RMSE of 42–45%. This is not so much because D
reduces the time per path (the reduction is only 4%), b
because of a surprising cancellation of the bias introdu
by using one factor. On its own, DS introduces a bias
−0.0002 into a simulation of three factors and 360 tim
steps. When used in a simulation with one factor and 3
time steps, which has a bias of 0.0019, it reduces the bias
to 0.00005.

The utility of results such as these depends on
stability of biases from day to day as simulation paramet
change. If a bias cancellation such as this one betw
DS and the one-factor approximation is relatively robust
changes in parameters, it can be used for a while with so
confidence. Perhaps tests to find the currently optimal w
reduction scheme could be run on the weekend, then u
for one week.

We checked whether such robustness is present in
example by running the simulations with initial valuesr0 =
7.5% andR0 = 9.5%, a fairly large increase of 1% in the
interest rates over the base case. For this example too, s
of the possible approximations provide a reduction in MS
of almost half. However, the approximation of one facto
360 time steps, and DS increased MSE by 175%. The b
of this simulation is 0.00264: no favorable cancellation o
bias takes place for these changed parameters. This sh
that the approximations considered here are not suitable
this problem, at least unless the the parameters change
little inside an optimization or over the relevant timespa

4 CONCLUSIONS

The work reduction techniques studied here have the
tential to increase significantly the speed of computatio
intensive financial simulations in reach an MSE target. Th
success (or lack thereof) will vary greatly from proble
to problem. These work reduction techniques may e
ily be combined with variance reduction techniques, b
this too changes their effectiveness. In particular, they
compatible with quasi-Monte Carlo.

Cheap function evaluation with fast but moderate
accurate approximations is a technique that can be app
fairly safely to most financial problems. A change to th
exponential algorithm alone can increase the simulat
speed by factors ranging from three to over six, for realis
examples on a Pentium IV processor. Using techniqu
specific to the processor can lead to a 25-fold increase
speed. However, efficient coding practices, such as avoid
e

n
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e

s

s
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ry

-

-

d

g

unnecessary computation and memory access, are jus
important, if not more so.

We also saw that changes to the structure of the sim
lation could also almost double its speed. Here the appro
mations that can be made depend on the particular proble
as does the combination that works best. Each problem h
to be studied separately, but this may well be worthwhile
the case of expensive problems that are repeated frequen
A serious issue surrounding the use of these technique
the question of the stability of bias with respect to chang
in parameters; unless such stability exists, these techniq
are not safe to use.

Academics may be interested in applying these tec
niques when they study variance reduction methods. F
quently a variance reduction method decreases variance
path while increasing cost per path. Cost per path depen
on the accuracy of numerical function evaluation and codin
style, which makes it hard to assess. The ideas presen
here can help to design an efficient baseline simulation, a
thus give a realistic picture of the efficiency gains from
variance reduction. Most of all, practitioners may find
beneficial to check whether any of the techniques describ
here help to reduce the RMSE in their toughest simulatio
applications, given a fixed budget, or allow them to reac
an RMSE target in less time.
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