Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

WORK REDUCTION IN FINANCIAL SIMULATIONS

Jeremy Staum Samuel Ehrlichman
Vadim Lesnevski
Industrial Engineering & Management Sciences
Northwestern University Operations Research & Industrial Engineering
Evanston, IL 60208-3119, U.S.A. Cornell University
Ithaca, NY 14853, U.S.A.

ABSTRACT reduce the computational co#t per path, and investigate
when they improve the efficiency of financial simulations.
We investigate the possibility of efficiency gains from Some work reduction schemes we investigate create

schemes that reduce the expected cost of a simulated pathbias, soVW is not the appropriate figure of merit. For
which allows more paths given a fixed computational budget. biased simulations, it is standard to focus on the mean
Many such schemes impart bias, so we look at the bias- squared error (MSE), seeking to reduce it given the fixed
variance tradeoff in terms of mean squared error. The work computational budget. We focus on samples of moderate
reduction schemes we consider are fast numerical evaluationsize, not asymptotics as do Fox and Glynn (1989).

of functions, such as the exponential, as well as changes Instead of fixing the budget, one may fix a target MSE
to simulation structure and sampling schemes. The latter and seek to reduce the work required to achieve it. This is
include descriptive sampling, reducing the number of time often appropriate in financial applications, where achieving a
steps, and dispensing with some factors in a multi-factor very low MSE merely wastes time, Spock-like, on unhelpful
simulation. In simulations where computational budgets are precision. Forexample, if the derivative security to be priced
tightly constrained, such as risk management and calibration trades with a bid-ask spread of 1% of its value, it is not
of financial models, using cheaper, less accurate algorithms much use to attain a root mean squared error (RMSE) of

can reduce mean squared error. less than, say, 0.1% of its value. More importantly, model
risk also puts limits on how much precision is profitable
1 INTRODUCTION and suggests that one should not be too concerned about

bias. If our models are not all that close to being correct,
This paper explores several ideas that might enable practi- why worry about computing an expected discounted payoff
tioners to improve the efficiency of their simulations. These or a quantile of portfolio value too precisely under this
ideas are work reduction techniques because they reduceparticular probability measure?
the time spent per simulated path, rather than reducing the Nonetheless, it is worth worrying about the efficiency of
variance per simulated path, as variance reduction tech- financial simulations. At present, the computational burden
nigues typically do. Efficiency improvement in simulation of simulation hinders accurate large-scale risk measurement,
is generally thought of as variance reduction, that is, a making it more difficult to manage risks and price them
reduction in the variance of the simulation estimate given in the context of a firm’s overall risk profile. For a dif-
a fixed budgetC of computer time. In the prototypical ferent approach to simulation design for risk measurement,
case, the simulation estimateXs= Zi”:l Xi/n where the balancing the number of paths simulating the state at the
X; are iid copies of an unbiased estimadrcomputed on risk measurement time horizon against the number of paths
one sample path. Variance reduction often means a schemeused to simulate security prices at that time, see Lee (1998)
to reduce the varianc¥ of X. Such schemes frequently and Lee and Glynn (1999). The computational burden also
require more workW, i.e. computer time, per path than a slows the recalibration of models, degrading the quality of
standard simulation does. Given a fixed budget, they have pricing and hedging. The application of variance or work
fewer paths than a standard simulation. To be effective, reduction methods can make such simulations faster and
such a variance reduction method must produce a reduction more practical.
in V which outweighs the increase W the figure of merit The computationally demanding applications for which
is VW because the variance ¥fis V/n = VW/C. In this these work reduction ideas might be worth implementing,
paper, we consider some work reduction schemes, which such as calibration and risk management, are generally

310

Staum, Ehrlichman, and Lesnevski

performed frequently, perhaps daily. The parametersdo not 2 REDUCED COST APPROXIMATIONS
change much from one repetition to the next. Therefore
if we optimize the level of work reduction for yesterday’s
simulation, having seen its result, this level is very likely

best today too.

In this section, we investigate the effect of using different
algorithms to approximate the exponential on the speed and
MSE of simple simulations. We assume that the requi-
The first work reduction method to apply would be not site standard normal random variates are stored. (If it is
one of the ones we described here, but simply writing a faster, they could be generated anew or regenerated using
computer program that refrains from unnecessary memory a fixed seed for the random number generator.) In these
operations and tailors the algorithm to the machine’s ar- examples, the expectations are actually known, allowing us
chitecture. Memory access is rather expensive. We found to compute MSEs. Although simulation is not necessary
that it tends to take longer than generation of a uniform for these examples at all, the results are suggestive in that
random variate, costing as much as 10-20 additions. Ac- the best exponential algorithms here may be good for other

cording to Goedecker and Hoisie (2001): “Achieving high
performance on modern architectures is intimately related
to a coding style that, by minimizing memory traffic, max-
imizes processor utilization.” “Memory access problems
are usually the single most detrimental factor leading to
large performance degradation. The basic principles are
rather simple and rewards are large.” “Applying optimiza-
tion techniques when writing a code, leading to an optimal
mapping of algorithms to the computer architecture, can
significantly speed up a program, often by a factor of 10
to 100.”

Aside from such optimization, there are also gains in
speed to be had from other ways of utilizing hardware more
efficiently. Using single instead of double precision for
floating-point numbers makes division and memory access
1.5-2 times as fast, but single precision may be inade-
guate for some applications. Simulations also tend to be
amenable to parallel processing, although this is not trivial
to implement. A simple, limited version of parallelization
is available for some processors, such as Intel Pentium IlI
and IV: single instruction multiple data (SIMD) processing,
which allows the same operation to be performed on four
single precision floating-point numbers at once. We found

applications where simulation is necessary.

Vendor algorithms optimized to their hardware are po-
tentially the most powerful tools to use here. We discuss
them separately in Section 2.5 because it is difficult to
separate the increase in speed they produce into elements
attributable to lower accuracy, tailoring to processor archi-
tecture, and vectorization—many of these functions process
an entire array of arguments in one function call instead of
being called repeatedly to process each element of the array
in turn. Throughout this section, except when mentioned,
results are reported from simulations run at single precision.

2.1 Candidate Algorithms

We compare five algorithms for approximating the expo-
nential. Two are highly accurate, while the others are
actually approximations in the sense that their accuracy is
substantially less than the computer’s precision.

One is the standard algorithm to which the compiler
automatically links. As the link is to the precompiled
library libm , we do not report what these standard algo-
rithmsdo. Anotheris_ieee754 exp ,whichisavailable
at http://www.netlib.org/fdlibm/e_exp.c Lt

that SIMD usually increases speed somewhat more than uses argument reduction to change the problem of comput-

threefold.

We focus not on these, but on work reduction schemes
that involve changing the simulation algorithm itself, not
just its implementation. First, in Section 2, we consider
reducing the cost of approximations to functions such as the
exponential. As Goedecker and Hoisie (2001) point out,
implementations in standard scientific computing libraries
are often very accurate, and there exist much faster, slightly
less accurate algorithms, including some optimized for par-
ticular processors by their vendors. Given our requirement
for only modest precision in most financial applications,

we might do better to use these cheaper approximations.

ing exp(x) to computing exp(r) wherex = kln 2+r and
Irl < (n2)/2~ 0.34657. Its core is a rational approxima-
tion to exgr) involving a polynomial of fifth degree in?.
Argument reduction is somewhat costly because the time
it takes to computé andr from x is nonnegligible com-
pared to that for computing the rational approximation itself.
However, it transforms a good approximation on a small
domain into an approximation that is good everywhere.
One approximation to exp) is the fourth-order Taylor
expansion 4 x 4+ x2/2 4+ x3/6 + x*/24 = (((0.0416x +
0.16)x +0.5)x 4+ 1)x + 1. The latter representation is faster
to compute. Argument reduction can enhance a Taylor

Second, there are schemes for avoiding the generation of expansion, which only approximates well near the expansion

random variables, including the descriptive sampling of

point, which is zero here. The algorithbargain is the

Saliby (1990, 1997). Third, we investigate changes to the fourth-order Taylor expansion dr-0.5, 0.5]. Elsewhere on
stochastic process or cashflows being simulated. These[—1.5, 1.5], it returns either 1e or e times the result of the

latter two topics are discussed in Section 3.

311

Taylor expansion for the reduced argumen{+0.5, 0.5].

Outside[—1.5, 1.5], it calls thelibm exponential. This

Staum, Ehrlichman, and Lesnevski

means that the execution time of the function is randomwhen where{Z;}i—1, .. m are iid multivariate standard normal ran-

the argument is random: it is faster when the arguments dom variablesg = L5)vik |12, andb;

tend to be near zero.

Finally, we also consider the approximation of Schrau-
dolph (1999). This macro uses one multiplication and one
addition, taking advantage of the structure of floating-point
representation, to achieve the effect of a lookup table with
linear interpolation.

2.2 Examples

Our first financial example is pricing a European call option
under the Black-Scholes model. We simulate in a single
step under the risk-neutral meas@e The estimator is

(aexpbz) —c)t

where a Sexp—(0?/2)T), b oJT, ¢
exp(—rT)K, and Z is a standard normal random variate.
The parameters in our base case §e= 100, K = 100,
o = 20%, andr = 5%. Computingaexp(bZ) instead of
exp(lna + bZ) helps becauséZ tends to be near zero,

J/8vik. Then

1
= —(expXii+1) — 1

Li
é

and
i
Di =exp(Yi) where Y =) X 1.
=1

Conditional exponentiation is applicable here, as for
the European call option. The estimator can be rewritten
as

m

D UXi-1i > cilexp(Yi) (@Xp(Xi-1i) + C2)

i=1
wherec; = In(1 + é«) andco = —(1 + 8x). When the
indicator is zero at step, we need not evaluate the other
factors in that term. We just go to the next step, updating
Xii+1, ---» Xi.m andYj11, but we do not need to evaluate
the two exponentials at this step. Thus the work done

in methods that use it, and the Taylor approximations are
more accurate.
An alternative estimator is

1{Z > d}(aexpbZ) — c)

whered = (In(c/a)) /b, which saves computation of an ex-
ponential when the payoffis zero at the cost of adding an

expectation varies directly with how deep in the money the
cap is. Table 3 illustrates the effect this has.

We parametrized our example with =5, § = 0.25,
and made the initial yield curve flat at 5%. In the base
case, the strike was = 5%. All forward rate instantaneous
volatilities had magnituddoix| = 1%. The greatek — i,

i.e. the further into the future the time period of the forward
rate, the greater s coefficient on the second factor, leading

statement. Itis expected to be faster except when the option g correlations of 0.5—1 for forward rates. These forward

is extremely deep in the money. In the tables of Section 2.4, rate volatilities produce the bond instantaneous volatilities
these two variants of the example are referred to as call and yjig the equation = ZT:il ik

call-c (for “conditional exponentiation”) respectively.

The second financial example is pricing a cap under
a two-factor Gaussian HIM model. We simulate multiple
steps under the spot LIBOR meas@efor which see for
instance Musiela and Rutkowski (1997, §§13.3 and 14.3.3).
The estimator is

m—1

> Dipad(Li —0)F

i=1

where Dj 1 is the discount factor for a cashflow arriving
atTi;1 andL; is the spot LIBOR rate af; for the period
[Ti, Ti+1]. We simulate the negative log bond pricég =
—In B(T;, Tk) at time T; for maturity Ty by

Xik = Xi—pk — Xi—1,i +a& +bi - Zj,

312

2.3 Results: Bias

We will only use fast approximations to the exponential if
they lead to acceptably low bias in simulation applications.
Our guideline is that relative bias much greater than 0.1% is
not acceptable. We estimated the relative bias (one minus
the ratio of expected simulated price to true price) for each
approximation in various examples. This was done by
substituting a simulation estimate with a low standard error
(0.01% for call examples and 0.03% for cap examples) for
the unknown expected simulated price in the expression for
relative bias. The true price is known in these examples.
The__ieee754_exp function statesthatitis accurate
to within one unit in the last place at double precision,
while thelibm algorithms are accurate to double precision.
The bargain algorithm is not as accurate, but the 95%
confidence interval for its relative bias included zero for
every example that we checked. The fourth-order Taylor
approximation also had zero in the confidence interval for

Staum, Ehrlichman, and Lesnevski

the base call and cap examples, but generated significantperformance in the cap example, where the arguments tend

bias in other examples, listed in Table 1.

Schraudolph’s approximation algorithm is not accurate
enough for use in any of the examples we considered. It
had a relative bias of 4.3% for the call example and 300%
for the cap example. This approximation was designed
for use in neural networks, where the logistic function
(1 + expx))~1 is of more interest than exp) itself. By
contrast, in finance, it is functions of the form €xp— 1

to be the smallest.
2.4 Results: Speed

The relative speeds of different algorithms depend greatly
on whether exponentiation is done in isolation or as part
of a financial simulation in which other operations occur.
This is because a modern processor involves several subunits

that are of most interest, and these demand a greater degredhat perform operations simultaneously during execution of a

of precision in approximating exp) to attain an acceptable
relative error.

We further examine the quality of the fourth-order
Taylor and Schraudolph approximations by investigating
how they vary with the size of the argument. To illus-
trate this dependence, we show in Table 1 the bias of
an out-of-the-money European call pricing simulation with
varying maturity T. The longer the maturity, the greater
the variability of the argument to the exponential. The

nontrivial program, which is known as “on-chip parallelism.”
For this reason, it is not straightforward to deduce from the
speed of an approximation to the exponential when run alone
what speed-up it will produce when used in a particular
financial simulation. The examples we give thus can only
suggest what might happen in other applications. As we
will see, it is typical for the speed gains in a complicated
example to be less than those in isolation.

In Table 2, we report the number of seconds required to

moneyness of the option is held constant: in each case doten million simulations, for each of the algorithms and ex-

K = Sexp((r —o2/2)T +0+/T), so that the risk-neutral
probability of a nonzero payoff i®~1(—1) ~ 16%. Look-
ing at the relevant truncated normal distribution, we can see
that the simulation’s bias will reflect primarily the accu-
racy of the approximation to the exponential for arguments
whose size is I(K/S) or a small multiple of it.

For the examples in Table 1, it was necessary to use
a better random number generator thanrdaed function
of libm , which introduced bias of up to 0.8%. We used
insteadVIRG32k3a which is described in LUEcuyer (1999).

Table 1: Effect of Argument Size
on Relative Biases in Call Pricing

Algorithm
T 4th order Schraudolpl
0.25| ~ 0% -3.7%
1 -0.04% 14%
2 -0.1% 7.5%
5 -0.8% -1.6%
10 -2.6% -1.2%

Table 1 shows that the relative bias induced in call prices
is unacceptably large for the Schraudolph approximation,
and is acceptable for the fourth order Taylor approximation
only when the arguments are small enough. The superi-
ority on small arguments of a Taylor approximation about
zero motivated the combination with elementary argument
reduction ideas to produce thmargain algorithm. The
Schraudolph algorithm performs best, although not well

enough, when arguments tend to be large because our con-Apparently, libm

cern with relative bias and a payoff function similar in form
to expx) — 1 makes the demand for precision greater when
x tends to be smaller. This also explains its disastrous

313

amples under consideration. The compilers and processors
used are:

¢ Microsoft Visual G-+ 7.0, Intel Pentium Il 1GHz
e Microsoft Visual G-+ 7.0, Intel Pentium IV 1.8GHz
e gcc 2.95, Sun UltraSparc Ili 440MHz.

To establish the reliability of these results, we replicated
them on different Pentium Il and IV processors. The results
were similar, up to adjustment for varying clock speeds.

We present a range of times for running thergain
__ieee754_exp , and Surlibm algorithms in isolation
because argument reduction causes the speed of an algorithm
to depend on its input. In the other examples, the arguments
are random, as specified by the financial simulation. In that
case, despite argument reduction, it makes sense to present
a total time, corresponding to an average time per path.

From Table 2 we see that, depending on the processor
and example, théargain algorithm compared tdéibm
produces increases in speed of about 1.3-1.7 (Sun), 1.6—
2.2 (Pentium 1), or 2.9-3.8 (Pentium IV) in these basic
financial simulations. In isolation, its relative speed is even
greater, but such outperformance is not to be expected in
the context of a simulation containing an overhead of other
computations not affected by the choice of algorithm for
the exponential.

The improvement ovelibm is greater on the faster
processors. (Even the highly accurateieee754_exp
outperformslibm significantly on the faster processors.)
is not much faster on a Pentium IV
1.8GHz than on a Pentium Il 1.0GHz. The call example is
even slower. The cap example is faster, but this relates pri-
marily to faster simulation of log bond prices, whichis alarge
overhead in this example. Likewise, ieee754 _exp in

Staum, Ehrlichman, and Lesnevski

Table 2: Effect of Approximations to the Exponential on Table 3 shows the effect of the cap’s strike on speed
Speed of Financial Simulations (Seconds /)10 gains from faster exponentials. As discussed in Section 2.2,
Sun a simulation of an out-of-the-money cap will have fewer
Method/Example alone call call-c cap nonzero cashflows, and thus less need for evaluations of the
4th-order Taylor 0.9 1.4 105 76 exponential. A strike of 10% is very seldom triggered, so
bargain 1.1-17 215 165 94 the choice of approximate exponential algorithm is almost
__ieee754_exp 2235 355 25 124 irrelevant. With a strike of 2%, the cap is deep in the
libm 2532 3.6 25 12§ money, and the exponentials are usually evaluated.
Pentium I Table 3: Effect of Moneyness on Speed of
Method/Example alone call call-c cap Cap Simulation (Seconds / 10
4th—or_der Taylor 0.28 0.85 065 41 Pentium 1II, 5 years
ba_rgaln 0.35-0.75 0.95 0.7 43 Strike 10% 7% 5% 2%
__leee754_exp 12-23 165 1.15 57 bargain 33 35 43 48
libm 17 21 135 69 ard
: libm 33 40 69 96
Pentium 1V Pentium 1V, 5 years
Method/Example alone call call-c cap Strike 10% 7% 5% 2%
4th—or_der Taylor 0.13 0.56 0.44 15 bargain 11 12 155 18
ba_rgaln 0.14-0.26 0.58 0.45 155 libm 11 18 54 87
__leee754_exp 1.4-2.1 1.3 08 31 -
libm 1.6 22 13 54 Pentium 1V, 1 year
Strike 10% 52% 5% 2%
. .)] bargain 1 1.6 25 28
isolation is no better with the Pentium IV. It has often liom 1 62 16.1 28.1

been remarked that increased clock speed is no guarantee
of superior performance for real applications. The cheaper Itturns out that the increase in speed on the exponentials
exponential algorithms seem better able to take advantagealone, excluding the overhead for doing the deep-out-of-
of the opportunities for on-chip parallelism, breaking down the-money simulation with no exponentials, does not match
into smaller sub-tasks which finish more quickly on the the ratios for small arguments in Table 2: for instance,
faster processor, while the more accurate standard algo- (96— 33)/(48— 33) # 1.7/0.35. One possible explanation
rithms do not fare so well. Improvements in processors, far for this is on-chip parallelism. We also see that for another
from diminishing the importance of fast approximations, realistic example, an at-the-money 1-year chargain
are increasing it. performs even better again#m , increasing speed more
We also see that argument reduction makes argument than 6.4-fold. In this example, there is relatively much
size affect the speed of the algorithm by a factor of as much |ess overhead, because fewer log bond prices need to be
as two. Moreover, théf statements required to imple- simulated.
ment it have a nonnegligible cost even when the argument
is already small and they are not needed. This is why 2.5 Vendor-Specific Products
bargain always costs more than the fourth-order Taylor
approximation, which is the same thing without argument There are a variety of highly efficient functions optimized
reduction. However, the cost of argument reduction in fi- to specific processors and made available by the hardware
nancial simulations usingargain diminishes for faster manufacturer. We maintain our focus on the exponential
processors. function and report briefly on the Intel Performance Prim-
Another interesting point is that conditional evaluation jtives (IPP) package. We also report on SIMD, which was
of exponentials only when in the money speeds up the mentioned in the introduction. It is not a separate package,
simulation by a factor of 1.3-1.4 fdrargain or 1.5-1.7 but rather a set of instructions intrinsic to the processor,
for libm . The example given here is an at-the-money which some compilers know how to access. There is also
option; the effect would be greater for out-of-the-money an Intel Math Kernel Library, which like IPP has vectorized
options. functions for single or double precision, and in versions
One anomaly in Table 2 is that on the Pentium IV, whose accuracy is high or low (but not as low as in IPP).
the call simulation with__ieee754_exp is faster than For the Sun platform, the Sun C compiler includes optimized
running that function alone, even on small arguments. Itis exponential functions in scalar and vector form.
hard to know what to make of this, but it may be simply a Vectorization is itself a form of optimization to the
surprising effect of on-chip parallelism. hardware. Evaluating a function on many arguments in one
call, taking advantage of the processor’'s memory cache, can

314

be more efficient than calling the function many times in

Staum, Ehrlichman, and Lesnevski

that of the same example without SIMD, which works by

a row. However, there is a drawback to using vectorized processing four numbers at once, ordinarily speeding up a
functions, or even SIMD, which processes four arguments simulation by a factor of less than four.

at once. Vectorization is not straightforward to implement

Vendor-supplied packages of optimized functions con-

unless all paths have same structure. For instance, condi-tain many potentially useful things, but one of the most im-

tional evaluation of the exponential in the European call
example seems difficult to implement with vectorization.
There would be an array of one thousand standard normal or multiplications.
random variate€ on which the exponential is to be eval-
uated whenZ > d. Those numbers satisfying > d are

portant is approximate division. We found regular division

to be about as costly as memory access, about ten additions

SIMD contains a faster approximate
division. When this is available, rational approximations
such as found in__ieee754_exp , or most routines for

only a subset, and not stored contiguously in memory. For approximating the standard normal inversedf:, become
similar reasons, even argument reduction is nontrivial to more attractive.

implement in vectorized form.

When using vectorized functions, the size ofthememory 3 AVOIDING WORK

cache limits the number of arguments that can be processed

in one call. On these Pentiums, one thousand seemed to beThe previous section dealt with choices of algorithm for
optimal, so a loop of ten thousand calls to an IPP vectorized evaluating functions approximately. We now turn to changes
function performed ten million exponentiations.

IPP includes two approximations to the exponential,

in the structure of the simulation itself, not in the functions
it uses. We have already explored one such change: in the

guaranteeing 11 and 24 bits of accuracy respectively. On difference between the call and call-c examples, Table 2
the Pentium lll, these appeared to be the same function— shows that evaluating exponentials only when the option
there was no cheaper 11-bit version. On the Pentium IV, finishes in the money can produce a noticeable savings of
they took respectively 0.045 and 0.075 seconds per ten time. Another such work reduction idea involves stopping
million. The exponential with 24 bits of accuracy generated some simulated paths early (Glasserman and Staum 2002).
no statistically significant bias in the call pricing examples Neither of these produces bias.

listed in Table 2.3. The 11-bit version produced biases of
0.02% forT = 1 and 0.04% forT = 0.25.

Here we focus on the mortgage-backed security (MBS),
described in Section 3.1, as an example of a complicated

Table 4 presents the speed in isolation and on the call simulation in which several corners can be cut in the hope
example of the IPP 11-bit exponential and the fourth-order of saving time while incurring an acceptably small bias.
Taylor approximation implemented with SIMD, compared The possibilities including dropping factors in a multi-
to libm without the use of any special features.

Table 4: IPP and SIMD Speed (Seconds /)10

precision | double single single
feature none IPP SIMD
algorithm | libm IPP(11) 4th-order
Pent. | alone 1.7 0.24 0.12
11 call 2.35 0.34 0.35
Pent. | alone 1.7 0.045 0.045
vV | call 2.2 0.23 0.088

factor simulation, reducing the number of time steps below

the number of dates specified in the financial contract, and
replacing some random variates with things that are cheaper
to compute.

As described below, our MBS simulation requires three
factors to simulate an interest rate, a stochastic discount
factor, and a mortgage rate. However, either or both of the
latter two processes may be approximated as functions of
the first, in which case the corresponding factor does not
need to be simulated.

In reality, a mortgage has 360 monthly payments, so

Table 4 is comparable to Table 2, which reported the it is natural to price a MBS with a simulation of 360 time
performance, without hardware-specific enhancement, of steps. We also simulated a mortgage of 240, 180, 120, or 30
approximate exponential algorithms alone and on the call equally spaced paymentsinstead. We considered altering the
example. We see that the IPP vectorized exponential with mortgage rate as well, so as to keep the annualized percentage
11-bit accuracy is faster than any algorithm in Table 2. For rate the same no matter the number of payments. It might
the call example, it yields speeds about 2.5 times greater be thought that this would ameliorate the bias that changing
than those reported in Table 2. The performance of the the number of payments introduces, but we found that it
fourth-order Taylor approximation implemented in SIMD made it worse. There is another aspect to this bias, which

was similar, except that it was highly favorable in the call
example on the Pentium IV. The use of SIMD led to a 25-
fold improvement over the standard uselibfin at double

is that longer payment periods lead to a slower amortization
of the mortgage. These two effects are partially offsetting
in this example. Indeed, it turns out that offsetting bias

precision. This particular entry in the table is somewhat effects were crucial to any improvements identified in this
surprising, because the speed is over six times greater thansection.

Staum, Ehrlichman, and Lesnevski

Setting the number of time steps to be less than the We assume a very simple interest rate model: the
number of cashflows in order to reduce work is differentfrom spot interest rate and the mortgage refinancing rake
the problem addressed by Duffie and Glynn (1995). They both follow Ornstein-Uhlenbeck processes, i.e. the &&lsi™
considered setting the number of time steps to be greater model. To avoid bias, itis necessary to simulate a third factor,
than the number of cashflows in order to reduce bias from the log incremeny; 1 = In Dj;1 — In D; of the stochastic
discretization of the stochastic differential equation (SDE) discount factorD; = [g r(s)ds, which is jointly normal
describing the underlying process. In this example, the SDE with ri;1 =r(ti+1). We assume conditional independence
is integrated exactly. betweerR; andD; givenr; and all information from previous
The MBS example is high-dimensional, so we can time steps, butthe instantaneous correlation betweeal R
apply Latin hypercube sampling (LHS) with 100 strata as is 0.9. The initial rates amg = 6.5% andRy = 8.5%, butr
a variance reduction technique. If random variates are andR have the same parameters otherwise: mean reversion
generated during the simulation, not stored, a lower-cost level 10%, mean reversion strength 0.15, and instantaneous
alternative to LHS is the descriptive sampling (DS) of Saliby volatility 1%.
(1990). DS differs from LHS in always using the midpoint When we want to avoid simulatin® with a separate
of a cell rather than sampling uniformly within a cell. Itwas factor, we use the approximation
intended as a variance reduction technique (Saliby 1997,

Saliby and Pacheco 2002), but the variance reduction is only j-1
substantial when the number of strata is low, in which case Dj =exp| -6 er
the bias of DS tends to be very high. Here we consider it as i=0

a work reduction technique—we save the cost of generating

a uniform random variate by simply using the cell midpoint. When we want to avoid simulating as a separate factor,

The results of Section 3.2 show that this savings tends to we replaceR;;1 with E[R y1]ri+1, Ri].

be quite small. However, the decision about whether to

implement a simulation efficiency improvement depends on 3.2 Results

the relationship between the effort of implementation and

the magnitude of the gains. Here the gains are small, but There is no closed-form expression for the value of a MBS,

it is easier to implement DS than LHS. SO we use a very precise Monte Carlo estimate as the true
A similar modification would be to replace, forinstance, mean for purposes of calculating MSE. For each method,

normal random variates with random variates that are cheaperwe report the RMSE given a fixed computational budget.

to generate. Kloeden and Platen (1992, p. 458) discuss this The results of this section are from tigec 3.2 compiler

possibility in terms of asymptotic convergence rates as the on an Intel Pentium Ill 450MHz, using double precision.

number of time steps goes to infinity, giving a binomial First suppose that the MBS pricing simulation uses sim-

example. Such methods may improve MSE, for instance, ple random sampling (SRS). One work reduction technique

when the overall budget is small, the number of time steps is decreasing the number of time steps in the simulation

is large, and there is not too much path-sensitivity, but from 360 to 240, 180, 120, or 30. The other is reducing the

we do not investigate them here. Of course, in simulation number of factors from three by approximating eitfeor

applications where random variates are stored, none of thesebothD andRin terms ofr. We considered all combinations

substitutions are helpful. of these techniques. Table 5 shows, for different values of
the computational budget, which combination produced the
3.1 Mortgage-Backed Securities lowest RMSE, and how much less that was than the base

case of SRS with 360 time steps and three factors. The
For background on mortgage-backed securities (MBS), see MBS value was about.Q7.
forinstance Richard and Roll (1989). We consider a security Table 5: RMSE Improvement over SRS for MBS
whose payments are the 360 monthly cashflows from a pool Prici
of 30-year mortgages. Simulations involving MBS are often ficing
demanding in part because of the large number of time steps, budget base Best Method
and possibly complexity in interest rate modeling. The (seconds) RMSE steps factors _gair
characteristic feature of MBS is the homeowner’s option 10 0.0023) 240 1 33%
to prepay the mortgage. In this example, we model the 50 0.0010} 240 2 7%
number of mortgages prepaying as a function (involving an 100 0.0007] 360 3 0%
arctangent and fitting the data of Richard and Roll 1989)
of the newly available mortgage refinancing rate, although
other factors may be modeled in practice.

Next suppose that the MBS pricing simulation uses
Latin hypercube sampling (LHS). This produces a 35%
reduction in RMSE (i.e. standard error, because there is

316

Staum, Ehrlichman, and Lesnevski

no bias) in the base case of three factors and 360 time unnecessary computation and memory access, are just as
steps. We now consider all of the above possibilities for important, if not more so.
approximation, as well as the use of descriptive sampling We also saw that changes to the structure of the simu-
(DS) instead of LHS. Whether the budget was 10, 50, or lation could also almost double its speed. Here the approxi-
100 seconds, we found that the best method was to use mations that can be made depend on the patrticular problem,
one factor, 360 time steps, and DS, leading to a reduction as does the combination that works best. Each problem has
in RMSE of 42-45%. This is not so much because DS to be studied separately, but this may well be worthwhile in
reduces the time per path (the reduction is only 4%), but the case of expensive problems that are repeated frequently.
because of a surprising cancellation of the bias introduced A serious issue surrounding the use of these techniques is
by using one factor. On its own, DS introduces a bias of the question of the stability of bias with respect to changes
—0.0002 into a simulation of three factors and 360 time in parameters; unless such stability exists, these techniques
steps. When used in a simulation with one factor and 360 are not safe to use.
time steps, which has a bias 00019, it reduces the bias Academics may be interested in applying these tech-
to 0.00005. niques when they study variance reduction methods. Fre-
The utility of results such as these depends on the quently a variance reduction method decreases variance per
stability of biases from day to day as simulation parameters path while increasing cost per path. Cost per path depends
change. If a bias cancellation such as this one between on the accuracy of numerical function evaluation and coding
DS and the one-factor approximation is relatively robust to style, which makes it hard to assess. The ideas presented
changes in parameters, it can be used for a while with some here can help to design an efficient baseline simulation, and
confidence. Perhaps tests to find the currently optimal work thus give a realistic picture of the efficiency gains from
reduction scheme could be run on the weekend, then usedvariance reduction. Most of all, practitioners may find it

for one week. beneficial to check whether any of the techniques described
We checked whether such robustness is present in this here help to reduce the RMSE in their toughest simulation
example by running the simulations with initial valugs= applications, given a fixed budget, or allow them to reach

7.5% andRg = 9.5%, a fairly large increase of 1% in the = an RMSE target in less time.
interest rates over the base case. For this example too, some
of the possible approximations provide a reduction in MSE ACKNOWLEDGMENTS
of almost half. However, the approximation of one factor,
360 time steps, and DS increased MSE by 175%. The bias This material is based upon work supported by the National
of this simulation is 00264: no favorable cancellation of Science Foundation under Grant No. DMS-0202958. We
bias takes place for these changed parameters. This showghank Paul Glasserman, Peter Glynn, and Keith Lewis for
that the approximations considered here are not suitable for discussions and references, but the views expressed are those
this problem, at least unless the the parameters change veryof the authors, who are solely responsible for any errors.
little inside an optimization or over the relevant timespan.

REFERENCES
4 CONCLUSIONS

Duffie, D., and P. Glynn. 1995. Efficient Monte Carlo

The work reduction techniques studied here have the po- Simulation of Security PricesAnnals of Applied Prob-
tential to increase significantly the speed of computation- ability 5(4): 897-905.

intensive financial simulations in reach an MSE target. Their Fox, B. L., and P. W. Glynn. 1989. Replication Schemes for
success (or lack thereof) will vary greatly from problem Limiting Expectations.Probability in the Engineering

to problem. These work reduction techniques may eas- and Informational Science3: 299-318.

ily be combined with variance reduction techniques, but Glasserman, P., and J. Staum. 2002. Resource Allocation
this too changes their effectiveness. In particular, they are among Simulation Time Steps. Forthcomir@pera-
compatible with quasi-Monte Carlo. tions Research

Cheap function evaluation with fast but moderately Goedecker, S., and A. Hoisie. 200Performance Opti-
accurate approximations is a technique that can be applied mization of Numerically Intensive CodeBhiladelphia:

fairly safely to most financial problems. A change to the Society of Industrial and Applied Mathematics.
exponential algorithm alone can increase the simulation Kloeden, P. E., and E. Platen. 1992umerical Solution of
speed by factors ranging from three to over six, for realistic Stochastic Differential Equation®New York: Springer-

examples on a Pentium IV processor. Using techniques Verlag.

specific to the processor can lead to a 25-fold increase in L'Ecuyer, P. 1999. Good Parameter Sets for Combined

speed. However, efficient coding practices, such as avoiding Multiple Recursive Random Number Generatap-
erations ResearchA7(1): 159-164.

317

Staum, Ehrlichman, and Lesnevski

Lee, S.-H., 1998Monte Carlo Computation of Conditional
Expectation QuantilesDoctoral dissertation, Stanford
University.

Lee, S.-H., and P. W. Glynn. 1999. Computing the Dis-
tribution Function of a Conditional Expectation via
Monte Carlo: Discrete Conditioning Spaces. Rro-
ceedings of the 1999 Winter Simulation Conference
ed. P. A. Farrington, H. B. Nembhard, D. T. Sturrock,
and G. W. Evans, 1654-1663. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers.
Available online via<http://www.informs-cs.
org/wsc99papers/239.PDF>

Musiela, M., and M. Rutkowski. 199'Martingale Methods
in Financial Modelling New York: Springer-Verlag.

Richard, S. F., and R. Roll. 1989. Prepayments on Fixed-
Rate Mortgage-Backed Securitiekournal of Portfolio
Management5: 73-82.

Saliby, E. 1990. Descriptive Sampling: A Better Approach
to Monte Carlo SimulationThe Journal of the Oper-
ational Research Socie#1(12): 1133-1142.

Saliby, E. 1997. Descriptive Sampling: An Improve-
ment over Latin Hypercube Sampling. IRro-
ceedings of the 1997 Winter Simulation Conference
ed. S. Andradoéttir, K. J. Healy, D. H. Withers,
and B. L. Nelson, 230-233. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers.
Available online via<http://www.informs-cs.
org/wsc97papers/0230.PDF>

Saliby, E., and F. Pacheco. 2002. An Empirical Evalua-
tion of Sampling Methods in Risk Analysis Simulation:
Quasi-Monte Carlo, Descriptive Sampling, and Latin
Hypercube Sampling. IRroceedings of the 2002 Win-
ter Simulation Conferen¢ed. E. Yiicesan, C.-H. Chen,
J. L. Snowdon, and J. M. Charnes, 1606-1610. Piscat-
away, New Jersey: Institute of Electrical and Electron-
ics Engineers. Available online vighttp://www.
informs-cs.org/wsc02papers/220.PDF>

Schraudolph, Nicol N. 1999. A Fast, Compact Approxima-
tion of the Exponential FunctioriNeural Computation
11: 853-862.

AUTHOR BIOGRAPHIES

JEREMY STAUM is Assistant Professor in the Depart-
ment of Industrial Engineering and Management Sciences
at Northwestern University. He received his Ph. D. in
Management Science from Columbia University in 2001.
His research interests include variance reduction tech-
nigues and financial engineering. His e-mail address is
<staum@iems.northwestern.edu> , and his web
page is<www.iems.northwestern.edu/ staum>

SAMUEL EHRLICHMAN is a doctoral student at Cornell
University, School of Operations Research and Industrial

318

Engineering. He received his B.A. in Mathematics and
Computer Science from Swarthmore College in 1995. Prior
to studying at Cornell, he worked as a software developer
in the financial services industry. His email address is
<seb2@cornell.edu>

VADIM LESNEVSKI is a doctoral student at Cornell Uni-
versity, School of Operations Research and Industrial Engi-
neering. His email address<vadim@orie.cornell.

edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 310
	02: 311
	03: 312
	04: 313
	05: 314
	06: 315
	07: 316
	08: 317
	09: 318

