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ABSTRACT

This paper presents an overview of techniques for improvi
the efficiency of option pricing simulations, including quas
Monte Carlo methods, variance reduction, and methods
dealing with discretization error.

1 INTRODUCTION

Simulation is a valuable tool for pricing options, as Boyl
(1977) pointed out. It is easy to price most options b
simulation under most models, even those that are com
cated or high-dimensional. (American options are a notab
exception.) Simulation tends to perform better than ma
other numerical techniques on high-dimensional problem
for instance, those that involve many underlying securiti
or their prices at many times. In particular, the rate of co
vergence of a Monte Carlo estimate does not depend on
dimension of the problem. Another attraction of simulatio
is the confidence interval that it provides for the Mont
Carlo estimate. A survey of the field is Boyle, Broadi
and Glasserman (1997). Recent textbooks are Glasserm
(2003) and Herzog and Lord (2003).

These textbooks cover the application of simulation
financial engineering in general, including other problem
such as risk management. The present paper restricts it
to option pricing, broadly construed in the sense of pri
ing any derivative security, for instance, mortgage-back
securities and swaps as well as the many kinds of optio
It is a revised version of Staum (2002), which has mo
background on option pricing and extra sections on es
mating Greeks and on pricing American options, but le
material on variance reduction and quasi-Monte Carlo.
this paper, the focus is on the efficiency of option pricin
simulations: avoiding (Section 2) or mitigating (Section 3
bias from discretization, variance reduction (Section 4), a
quasi-Monte Carlo (Section 5). Section 2 begins with a bri
review of how to price options by simulation.
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2 HOW TO PRICE BY SIMULATION

The theory of financial engineering states that (in a comple
market) pricing an option is evaluating the expectation of i
discounted payoff, under a specified measure. The canoni
example is the European call option under the Black-Schol
model. The European call option’s payoff is max{ST −K , 0},
where ST is the price of a stock at timeT , and K is a
prespecified amount called the strike price. Under th
Black-Scholes model, the stock price follows the stochast
differential equation (SDE)

dSt = St (r dt + σ dWt )

whereW is a Wiener process (Brownian motion) under th
risk-neutral probability measureQ. Applying Itô’s formula
and integrating,

ln St − ln S0 = (r − σ 2/2)t + σWt .

Here S0 is the initial stock price,r is the instantaneous
interest rate on a riskless money market account, andσ

is the volatility. BecauseWt is normally distributed with
mean 0 and variancet , the terminal log stock price lnST is
normal with mean lnS0 + (r − σ 2/2)T and varianceσ 2T .

Pricing the European call option under the Black
Scholes model therefore requires the generation of o
standard normal random variate per path. The simulat
value of ST on thei th path is

S(i )
T = S0 exp

((
r − σ 2/2

)
T + σ

√
T Z(i )

)
and the estimated option value is

1

n

n∑
i=1

e−rT max
{

S(i )
T − K , 0

}
.

In this model, the situation is not appreciably more
difficult when pricing a path-dependent option whose payo



Staum

o
e

re

-
n
d

e
e

n

e

e

s

ly
’

h

t
ive.
n

, the

f-
s,
an

uce
e

r

m

e
n

d
en

ro-

he
ple

s

he
depends on the value of the state vector at many times. F
instance, a discretely monitored Asian call option has th
payoff max{S̄T − K , 0} where S̄T = ∑m

k=1 Stk/m is the
average price. Now the simulation must generate the enti
path St1, St2, . . . , Stm. Assumetk = T k/m = kh. The way
to simulate the whole path is to generatem independent
standard normal random variablesZ(i )

1 , . . . , Z(i )
m for the i th

path and set

S(i )
(k+1)h = S(i )

kh exp
((

r − σ 2/2
)

h + σ
√

hZ(i )
k

)
.

This provides the correct multivariate distribution for
(St1, . . . , Stm) and hence the correct distribution forS̄T .

Another challenge in path generation is continuous path
dependence. While the payoff of the European call optio
depends only on the terminal value of the state vector, an
the payoff of the discretely monitored Asian call option
depends only on a finite set of observations of the stat
vector, some derivatives have payoffs that depend on th
entire continuous-time path. An example is a down-and-i
option that pays off only if a stock price goes below some
barrier, or equivalently, if the minimum stock price is below
the barrier. Suppose the stock price obeys the Black-Schol
model. Because

min
k=1,...,m

Stk > min
t∈[0,T] St

almost surely, the former is not an acceptable substitute fo
the latter. It is necessary to introduce a new componentMt =
minu∈[0,t ] Su into the state vector; this can be simulated since
the joint distribution ofSt and Mt is known (Karatzas and
Shreve 1991).

A slightly subtler example occurs in the Hull-White
model of stochastic interest rates. The SDE governing th
instantaneous interest ratert is

drt = α(r̄ − rt )dt + σ dWt

wherer̄ is the long-term mean interest rate,α is the strength
of mean reversion, andσ is the interest rate’s volatility.
Integration of this SDE yields the distribution ofrt , which
is normal. Then the simulated pathrt1, . . . , rtm is adequate
for evaluating payoffs that depend only on these interest rate
but not for evaluating the discount factorDT = ∫ T

0 ru du;
the discrete approximationh

∑m
k=1 rkh does not have the

right distribution. Instead one must addDt to the state vector
and simulate using its joint distribution withrt , which is
easily computable.

3 DISCRETIZATION ERROR

Some financial models feature SDEs that are not easi
integrable, as the Black-Scholes and Hull-White models
r

s

r

,

are. An example is the Cox-Ingersoll-Ross model, in whic
the SDE is

drt = α(r̄ − rt )dt + σ
√

rt dWt .

This model’s principal advantage over Hull-White is tha
the instantaneous interest rate must remain nonnegat
However, there is no useful expression for the distributio
of rt given r0. A simulation of this model must rely on
an approximate discretization̂r of the stochastic processr .
Because the laws of these processes are not the same
Monte Carlo estimate based onr̂ may be biased for the
true price based onr . This bias is known as discretization
error.

Kloeden and Platen (1992) have written a major re
erence on the rather involved topic of discretizing SDE
whose surface this paper barely scratches. Faced with
SDE of the generic form

d Xt = µ(Xt )dt + σ(Xt )dWt

one simulates a discretized processX̂t1, . . . , X̂tm. Even if
the only quantity of interest is the terminal valueXT , it is
necessary to simulate intermediate steps in order to red
discretization error. The question is how to choose th
scheme for producing the discretized processX̂ and the
number of stepsm.

The most obvious method of discretizing is the Eule
scheme

X̂(k+1)h = X̂kh + µ
(

X̂kh

)
h + σ

(
X̂kh

)√
hZk+1

whereZ1, . . . , Zm are independent standard normal rando
variates. The idea is simply to pretend that the driftµ and
volatility σ of X remain constant over the period[kh, (k +
1)h] even thoughX itself changes. Is there a better schem
than this, and what would it mean for one discretizatio
scheme to be better than another?

There are two types of criteria for judging discretize
processes. Strong criteria evaluate the difference betwe
the paths of the discretized and original processes p
duced on the same elementω of the probability space. For
example, the strong criterionE[maxk ‖X̂tk − Xtk‖] mea-
sures the maximum discrepancy between the pathX̂(ω)

and the pathX(ω) over all times, then weights the ele-
mentsω with the probability measureP. On the other
hand, weak criteria evaluate the difference between t
laws of the discretized and original processes: an exam
is supx |P[X̂T < x]−P[XT < x]|, measuring the maximum
discrepancy between the cumulative distribution function
of the terminal values of̂X and X. Weak criteria are of
greater interest in derivative pricing because the bias of t
Monte Carlo estimatorf (X̂t1, . . . , X̂tm) of the true price
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E[ f (Xt1, . . . , Xtm)], where f is the payoff, depends only
on the distribution of(X̂t1, . . . , X̂tm).

Given a choice of weak criterion,a discretization schem
has weak order of convergenceγ if the error is of order
m−γ as the number of stepsm goes to infinity. Under some
technical conditions on the stochastic processX and the
exact nature of the weak criterion, the weak order of th
Euler scheme is 1, and a scheme with weak order 2 is

X̂(k+1)h = X̂kh + σ Zk+1h1/2

+
(

µ + 1

2
σσ ′ (Z2

k+1 − 1
))

h

+1

2

(
µ′σ + µσ ′ + 1

2
σ 2σ ′′

)
Zk+1h3/2

+1

2

(
µµ′ + 1

2
µ′′σ 2

)
h2

whereµ, σ , and their derivatives are evaluated atX̂kh. This
is known as the Milstein scheme, but so are some othe
schemes. This scheme comes from the expansion of t
integral

∫ (k+1)h
kh d Xt to second order inh using the rules of

stochastic calculus.
The weak order of convergence remains the same

simple random variables with appropriate moments replac
the standard normal random variablesZ. Not only can such
a substitution improve speed, but it may be necessary whe
the SDE involves multivariate Brownian motion, whose
multiple integrals are too difficult to simulate.

It is also possible to use Richardson extrapolation in
order to improve an estimate’s order of convergence. Fo
instance, letf (X̂(h)) denote the payoff simulated under the
Euler scheme with step sizeh. The Euler scheme has weak
order of convergence 1, so the leading term in the bia
E[ f (X̂(h))] − E[ f (X)] is of orderh. The next term turns
out to be of orderh2. Because the orderh terms cancel, the
bias of 2E[ f (X̂(h))] − E[ f (X̂(2h))] is of orderh2, and this
extrapolated Euler estimate has weak order of convergen
2.

Turning to the choice of the number of stepsm, one
consideration is allocating computational resources betwee
a finer discretization and a greater number of paths (Duffi
and Glynn 1995). If there is a fixed computational budge
C, and each simulation step costsc, then the number of
paths must ben = C/(mc). For a discretization scheme of
weak orderγ , the bias is approximatelybm−γ for some
constantb. Estimator variance is approximatelyvn−1 for
some constantv. Therefore the mean squared error is
approximately

b2m−2γ + vn−1 = b2m−2γ + vc

C
m

s
s,
r
e

f

n

r

e

n

which is minimized bym ∝ C1/(2γ+1). With this opti-
mal allocation, the mean squared error is proportional t
C−2γ /(2γ+1), which is slower than the rateC−1 of decrease
of the variance of a simulation unbiased by discretizatio
errror. A higher order of convergenceγ is associated with
a coarser discretization (m smaller) and more rapid diminu-
tion of mean squared error with increased computation
budgetC.

4 VARIANCE REDUCTION

The standard error of a Monte Carlo estimate decreas
as 1/

√
C, where C is the computational budget. This

is not an impressive rate of convergence for a numeric
integration method. For simulation to be competitive fo
some problems, it is necessary to design an estimator th
has less variance than the most obvious one. A varian
reduction technique is a strategy for producing from on
Monte Carlo estimator another with lower variance give
the same computational budget.

A fixed computational budget is not the same as a fixe
number of paths. Variance reduction techniques frequent
call for more complicated estimators that involve more wor
per path. WhereW is the expected amount of work per path
the computational budgetC allows approximatelyn = C/W
paths. There is a variance per pathV such that the estimator
variance is approximatelyV/n = V W/C. Thus a technique
achieves efficiency improvement (variance reduction give
a fixed budget) if it reducesV W.

In practice, one may be concerned with human effo
as well as computer time. Computing power has become
cheap that for many individual financial simulations, it is
not worth anybody’s time to implement variance reduction
On the other hand, some financial engineering problems a
so large that variance reduction is important.

For example, it is too time-consuming to compute
firmwide value at risk (VaR) for a large financial insti-
tution by simulating many future scenarios and pricing a
the firm’s derivatives by simulation in each scenario, s
financial institutions rely on methodologies of questionabl
soundness for computing VaR. Lee (1998) investigates o
question of efficiency for such large VaR simulations. Her
variance reduction may make better answers affordable.

Another example is model calibrations that involve sim
ulation of options’ prices to compute the objective of an
optimization. This takes a long time because simulation
must be done at every iteration of the optimization rou
tine. In this case, variance reduction makes possible grea
responsiveness to changing market conditions.

4.1 Antithetic Variates

Because of its simplicity, the method of antithetic variate
is a good introduction to variance reduction technique
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among which it is not one of the most powerful. A quantit
simulated on one path, such as a payoff, always ha
representationf (U) whereU is uniformly distributed on
[0, 1]m. The antithetic variate ofU is 1 − U = (1 −
U1, . . . , 1 − Um). The method uses as an estimate fro
a pair of antithetic variates( f (U) + f (1 − U))/2, which
can be called the symmetric part off . This is unbiased
because 1− U is also uniformly distributed on[0, 1]m.

The antisymmetric part off is ( f (U) − f (1− U))/2.
These two parts are uncorrelated and sum tof (U), so
the variance off (U) is the sum of the variances of the
symmetric and antisymmetric parts. The estimator usi
antithetic variates has only the variance of the symmet
part of f , and requires at most twice as much work as t
old. The variance of the antisymmetric part is eliminate
and if it is more than half the total variance off , efficiency
improves. This is true, for instance, whenf is monotone,
as it is in the case of the European call option in th
Black-Scholes model.

4.2 Stratification and the Latin Hypercube

Stratification makes simulation more like numerical integr
tion by insisting on a certain regularity of the distribution o
simulated paths. This technique divides the sample sp
into strata and makes the fraction of simulated paths in ea
stratum equal to its probability in the model being simu
lated. Working with the representationf (U1, . . . ,Um), one
choice is to divide the sample space ofU1 into N equiproba-
ble strata[0, 1/N], . . . , [(N −1)/N, 1]. Then the stratified
estimator is

1

N

N∑
i=1

f

(
i − 1 + U (i )

1

N
,U (i )

2 , . . . ,U (i )
m

)

where the random variablesU (i )
k are i.i.d. uniform on[0, 1].

This estimator involvesN paths, whose first components ar
chosen randomly within a predetermined stratum. Beca
theseN paths are dependent, to get a confidence inter
requires enough independent replications of this stratifi
estimator sufficient to make their mean approximately no
mally distributed.

Stratification applies in the quite general situation
sampling from a distribution that has a representation
a mixture: above, the uniform distribution on[0, 1] is an
equiprobable mixture ofN uniform distributions on intervals
of size 1/N. The general case is sampling from a distributio
that is a mixture ofN distributions, thei th of which has
mixing probability pi , meanµi , and varianceσ 2

i . The

mixed distribution has mean
∑N

i=1 pi µi and variance

N∑
i=1

pi

(
µ2

i + σ 2
i

)
−
(

N∑
i=1

pi µi

)2

.

a

e
h

e
l

s

A stratified estimate has variance
∑N

i=1 pi σ
2
i . The amount

of variance reduction is the difference

N∑
i=1

pi µ
2
i −

(
N∑

i=1

pi µi

)2

which is the variance ofµη, whereη is a random variable
taking on the valuei with probability pi . That is, stratifi-
cation removes the variance of the conditional expectat
of the outcome given the information being stratified.

This approach can be very effective when the payo
depends heavily on a single random variable, and it is pos
ble to sample the rest of the path conditional on this rando
variable. For instance, if the payoff depends primarily on
terminal stock priceST whose processS is closely linked
to a Brownian motionW, then a good strategy is to stratify
on WT and simulateWt1, . . . , Wtm−1 conditional on it.

Stratification in many dimensions at once poses a dif
culty. UsingN strata for each ofd random variables results
in a mixture of Nd distributions, each of which must be
sampled many times if there is to be a confidence interv
If d is too large there may be no way to do this with
out exceeding the computational budget. Latin hypercu
sampling offers a way out of this quandary.

Consider the stratification of each dimension of[0, 1]m
into N intervals of equal length. A Latin hypercube samp
includes a point in onlyN of the Nd boxes formed. This
sample has the property that it is stratified in each dimens
separately, that is, for each stratumj and dimensionk, there
is exactly one pointU (i ) such thatU (i )

k is in [( j −1)/N, j/N].
The Latin hypercube sampling algorithm illustrates:

Loop over dimensionk = 1, . . . , m.

• Produce a permutationJ of 1, . . . , N.
• Loop over pointi = 1, . . . , N.

– ChooseU (i )
k uniformly in [(Ji −1)/N, Ji /N].

Because points are uniformly distributed within their boxe
the marginal distributions are correct. Choosing all perm
tations with equal probability makes the joint distributio
correct.

Because it is not full stratification, Latin hypercub
sampling does not remove all the variance of the con
tional expectation given the box. Writing this conditiona
expectation as a functionµ( j1, . . . , jm) where jk is the
stratum in thekth dimension, Latin hypercube sampling
asymptotically removes only the variance of the additiv
part of this function. The additive part is the functio
g( j1, . . . , jm) = ∑m

k=1 gk( jk) that minimizes the expected
squared error of its fit to the original functionµ. Sometimes
the fit is quite good, for instance when pricing a relative
short-term interest-rate swap in the Hull-White model. I
each of a sequence of periods, the swap pays the differe
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between preset interest payments and the then-prevail
interest payments. These terms are linear in the norm
random variatesZ1, . . . , Zm, but for pricing must also be
multiplied by nonlinear discount factors.

4.3 Importance Sampling

The intuitive way to plan a simulation to estimate th
expectation of a payofff that depends on a pathX1, . . . , Xm

is to simulate paths according to the law of the processX,
then compute the payoff on each path. This is a way
estimating the integral∫

f (x)g(x)dx =
∫ (

f g

g̃

)
(x)g̃(x)dx

as long asg̃ is nonzero wheref g is. The second integral
has an interpretation as simulation of paths under a ne
probability measurẽQ. The pathX1, . . . , Xm has likelihood
g under Q and g̃ under Q̃. There is also a new payoff
f̃ = f g/g̃, the product of the original payofff and the
Radon-Nikodym derivative or likelihood ratiog/g̃. One
way in which importance sampling can arise naturally i
the financial context is whenQ andQ̃ are both martingale
measures, in which case the Radon-Nikodym derivative
the ratio of the associated numeraires’ terminal values.

The idea of importance sampling is to chooseg̃ so that
f̃ has less variance underQ̃ than f does underQ. When f
is positive, the extreme choice isg̃ = f g/µ, whereµ is the
constant of integration that makesg̃ a probability density.
Then f̃ = µ and has no variance. However, this consta
µ is precisely

∫
f (x)g(x)dx, the unknown quantity to be

estimated. The goal is to chooseg̃ to be a tractable density
that is close to being proportional tof g. That is, one wishes
to sample statesx according to importance, the product o
likelihood and payoff.

It is possible for importance sampling to go awry, a
the following example demonstrates. Supposef (x) = x
and

g(x) =
{

e−x if x ∈ [0, K ]
αx−4 if x > K

whereK is very large. The simulation estimates the mean
a random variable whose distribution is almost exponenti
but has a power tail. The mean and variance are bo
finite. Supposẽg(x) is simply e−x for all x ≥ 0. As x
goes to infinity, so does the likelihood ratiog/g̃. The new
simulation variance is infinite: the new second moment

∫ ∞

0

(
xg(x)

g̃(x)

)2

g̃(x) dx > α2
∫ ∞

K
x−6ex dx = ∞.

Moreover, we are likely not to simulate anyx � K , which
has a large likelihood ratio, in which case the sample stand
deviation will not alert us to the failure of the scheme.
g
l

f

,
h

d

The potential for mistakes aside, importance samplin
has proven extremely powerful in other applications, esp
cially in simulation of rare events, which are more commo
under an appropriate importance sampling measure. Th
have been some effective financial engineering applicatio
in this spirit, involving the pricing of derivatives that are
likely to have zero payoff. An example is an option tha
is deep out of the money, meaning that the underlying
currently distant from a threshold that it must cross in ord
to produce a positive payoff.

Importance sampling may become even more valuab
in financial engineering with the advent of more sophisticat
approaches to risk management. There is an increas
appreciation of the significance for risk management
extreme value theory and the heavy-tailed distributions
many financial variables. In models and applications whe
behavior in the tails of distributions has greater impac
importance sampling has greater potential. An example
such developments is the work of Glasserman, Heidelberg
and Shahabuddin (2002).

4.4 Control Variates

Unlike other methods that adjust the inputs to simulatio
the method of control variates adjusts the outputs direct
A simulation intended to estimate an unknown integr
can also produce estimates of quantities for which the
are known formulas. The known errors of these estimat
contain information about the unknown error of the estima
of the quantity of interest, and thus are of use in correctin
it. For instance, using the risk-neutral measure, the initi
stock price S0 = EQ[e−rT ST ], but the sample average
e−rT ∑n

i=1 S(i )
T /n will differ from S0. If it is too large, and

the payoff f (ST ) has a positive correlation withST , then
the estimate of the security price is probably also too larg

Generally, in a simulation to estimate the scalarE[X]
which also generates a vectorY such thatE[Y] is known,
an improved estimator isX − β(Y − E[Y]) whereβ is the
multiple regression coefficient ofX on Y. The variance of
this estimator is the residual variance ofX after regression
onY; the better the linear fit ofX on the predictorsY, the less
variance remains after the application of control variate
The regression coefficientβ is presumably unknown ifE[X]
is unknown, but the usual least squares estimate will suffic
However, using the same paths to estimateβ and evaluate
the control variates estimator creates a slight bias. A
alternative is to estimateβ from some paths reserved for
that purpose alone.

A favorite example of the great potential of contro
variates is the discretely monitored Asian call option in th
Black-Scholes model, which appeared in Section 2. Ave
aging, as in the average stock priceS̄T , is the distinguishing
feature of Asian options. For economic reasons, the co
vention is that the averaging is arithmetic, not geometri
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For instance, an Asian option on oil futures could help
power company hedge the average cost of its planned futu
purchases of oil, while an option on a geometric averag
of prices does not have such an obvious purpose. On t
other hand, the distribution of the arithmetic average o
jointly lognormal random variables (such asSt1, . . . , Stm)
is inconvenient, while the distribution of their geometric
average is again lognormal, so a geometric Asian optio
has a closed-form price in the Black-Scholes model. Th
payoffs of arithmetic and geometric Asian call options ar
extremely highly correlated, and therefore the geometr
Asian call option makes a very effective control variate fo
simulation of the arithmetic Asian call option: it can reduce
variance by a factor of as much as one hundred. Using th
control variate, the simulation is effectively estimating only
the slight difference between the arithmetic and geometr
Asian options.

4.5 Repricing, Matching, and Weights

As an example of a control variate, we used a stock pric
which is a known expectation differing from the corre-
sponding simulated average. Some practitioners react
such differences with dismay: when the simulation reprice
market securities such as a stock incorrectly, the policy o
trading at simulated prices results in arbitrage! Of course
one does not trade market securities on the basis of sim
lated prices, nor does one trade over-the-counter derivativ
at exactly the simulated price. Rather, one establishes
bid-ask spread, accounting for model risk and profit margin
Nonetheless, the fear that errors in repricing market sec
rities indicate arbitrage in the simulated derivative securit
prices may remain, leading to corrective techniques that a
closely related to control variates.

Continuing with the example of a single stock, one
approach is simply to change the simulated values ofST until
their sample average is indeederT S0, then computing the
simulated derivative payoffs from these adjusted simulate
terminal stock prices. One way to do this is to multiply
ST by erT S0n/

∑n
i=1 S(i )

T . This is essentially taking the
control variates concept and using it to adjust values insid
the simulation, rather than to adjust the output directly
A related idea is to adjust the inputs to the simulation
the random variates. For instance, one might insist that th
standard normal random variates used in the simulation ha
sample mean 0 and sample standard deviation 1. Affin
transformation of the random variates can accomplish thi

Although such affine transformation is reminiscent o
control variates, these techniques are not necessarily equ
alent, because the transformation takes place at differe
stages in the simulation. However, like control variates
these techniques create bias. Their relative advantages v
from problem to problem.
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Yet another alternative is to make the simulation estima
tor an unequally weighted average of the sample paths. Th
weights are typically chosen to minimize some measure o
nonuniformity while satisfying a constraint. For example,
the usual control variates estimator turns out to be of thi
form, where the constraint is that the control variate’s sam
ple average must equal the known mean, and the objectiv
is the sum of squared weights. Another example is Avel
laneda’s (1998) use of a relative entropy criterion with the
constraint that market securities’ average discounted payo
must equal their market prices. This is often viewed no
so much as an efficiency technique, but a corrective to th
part of model risk that arises when a calibrated model doe
not reprice market securities exactly. For more on weighte
Monte Carlo, see Glasserman and Yu (2003).

4.6 Conditional Monte Carlo

Another variance reduction technique is conditional Monte
Carlo. By substituting conditional expectations when they
are known, it often reduces both the work and varianc
per path. In derivative security pricing, this can be the
simulation of the future value of the security, rather than
of its payoff.

For example, the down-and-in option mentioned in
Section 2 pays the same as a standard option if the underlyin
goes below a specified barrier, and if not, it pays nothing
Suppose there is a formulaf for the standard option price.
Then one may simulate the underlying path until maturityT
or until the first timeτ that the barrier is crossed, whichever
comes first. Then the estimated option value is

1

n

n∑
i=1

1{τ (i ) ≤ T}D(i )
τ (i ) f

(
S(i )
τ (i )

)

where 1 is the indicator function. This eliminates the
conditional variance of the standard option’s payoff and
reduces the expected number of steps per path fromT to
E[τ ].

This approach also handles knock-out options throug
in-out parity, and applies fairly directly to other deriva-
tives such as forward-starting options. In a different way
conditional Monte Carlo has also been applied to stochas
tic volatility models in which the option price is known
conditional on the volatility path.

4.7 Work Reduction

While conditional Monte Carlo should reduce not only work
but also variance, as the name “variance reduction” sugges
there are methods that reduce work but not variance, or eve
increase variance. These might be called “work reduction
techniques. Just as a variance reduction technique th
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reducesV (variance per path) while increasingW (work
per path) enhances efficiency if it reduces the productV W,
so an unbiased work reduction technique enhances efficien
if it reducesV W by decreasingW more than it increases
V . This is reducing the simulation variance given a fixe
computational budget. A work reduction technique tha
introduces bias can still enhance efficiency in the sense
reducing mean squared error.

One example is early stopping of some simulated path
which can enhance efficiency if the beginning of a pat
contains more useful information than the end of a path.
can make sense to allocate more of the simulation resour
to the steps of the path that explain more of the variance
the simulation estimator. This can be done without bias ev
when the decision to stop is dependent on the simulat
state. See Glasserman and Staum (2002) and referen
therein.

A more prosaic way to reduce work, important in
practice, is to code simulation programs efficiently. In par
this means simply refraining from unnecessary computati
and memory access, which can be surprisingly easy to f
into. In part, this can involve more interesting technique
such as fast algorithms for numerical function evaluatio
and financial approximations that impart slight bias. Se
Staum, Ehrlichman, and Lesnevski (2003) for examples.

4.8 Summary

The methods discussed above illustrate two major types
variance reduction. Importance sampling and control va
ates rely on knowledge about the structure of the problem
change the payoff or sampling distribution. Stratified an
Latin hypercube sampling also benefit from a good choic
of the variables to stratify. However, these methods an
antithetic variates work by making Monte Carlo simulatio
less purely random and more like other numerical integr
tion techniques that use regular, not random, distributio
of points. Similarly, quasi-Monte Carlo simulation is a
numerical integration technique that bears a resemblance
Monte Carlo, although its foundations are deterministic.

5 QUASI-MONTE CARLO

A sample from the multidimensional uniform distribution
usually covers the unit hypercube inefficiently: to the ey
it seems that there are clusters of sample points and vo
bare of sample points. A rectangular grid of points look
more attractive, but the bound on the error of this numeric
integration technique converges asn−2/d where n is the
number of points used andd is the dimension of the hyper-
cube. For dimension four or higher, there is no advanta
compared to the ordern−1/2 convergence of the standard
error of a Monte Carlo (MC) simulation. The quasi-Monte
Carlo (QMC) approach, often used in financial engineerin
y

f

,

s

es

l

f
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s

is to generate a deterministic set of points that fills spac
efficiently without being unmanageably numerous in high
dimension. Several authors have proposed rules for gene
ating such sets, known as low-discrepancy sequences: s
Niederreiter (1992). The name “quasi-Monte Carlo” does
not indicate that these sequences are somewhat rando
but rather that they look random; indeed they look more
random than actual random sequences, because the hum
mind is predisposed to see patterns that are statisticall
insignificant.

The great attraction of low-discrepancysequences is tha
they produce an error of integration whose bound converge
as(logn)d/n, a better asymptotic rate thann−1/2. As this
result suggests, QMC is often much more efficient than
MC, at least ifd is not too large. If dimensiond is too
large relative to sample sizen, two things can go wrong.
First, the regularity of popular low-discrepancy sequence
is such that, while coordinates 1 and 2 of points 1, . . . , n
in a low-discrepancy sequence may cover the unit squar
evenly, coordinatesd − 1 and d of thesen points may
cover it very badly, causing potentially large error. See,
for instance, Figure 2 of Imai and Tan (2002). Second
if (logn)d/n > n−1/2, it suggests that MC may be more
accurate than QMC.

However, QMC is often more accurate than MC even
when the dimensiond is large and the sample sizen is
not. An explanation for this surprise is the low effective
dimension of many high-dimensional financial simulation
problems. Roughly, effective dimension means the numbe
of dimensions required to explain, in the sense of analysis o
variance, a large proportion of the entire variance of the inte
grand. For precise definitions and distinctions, see Caflisch
Morokoff, and Owen (1997). Owen (2002) demonstrates
that low effective dimension is necessary for scrambled
(0, m, d)-nets, a type of low-discrepancy sequence, to bea
MC; it is an open question whether it is necessary for all
QMC methods.

Such observations lead to contemplation of effective
dimension reduction. If one can change the simulation
scheme so that the integrand has the same integral on the u
hypercube but a lower effective dimension, then QMC may
be more effective. For example, some such transformation
use Brownian bridge or principal components as the basis fo
producing a sample path, which would ordinarily proceed
by using one random variate at each time step in turn. Ima
and Tan (2002) review and extend efforts in this area.

Another promising development is randomized quasi-
Monte Carlo (RQMC), which randomizes a low-discrepancy
sequence so that it gains desirable statistical properties whi
retaining its regularity properties. An RQMC algorithm
produces dependent random vectorsU (1), . . . ,U (n) each
uniformly distributed on[0, 1]m. This makes RQMC much
like MC with a variance reduction technique: the uniformity
of eachU (i ) means that the estimator is unbiased, while
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dependence suitable for the problem provides reduced var
ance. An example is the random shift. TakingŨ (i ) from a
low-discrepancy sequence and1 uniformly distributed on
[0, 1]m, U (i ) = (Ũ (i ) + 1) mod 1 is also uniformly dis-
tributed on[0, 1]m, but retains the original spacing. From
repeated random draws of the shift1, a confidence interval
is available. As with importance sampling, there is the
potential for great improvement in efficiency, but a mistake
can lead to increased variance. For further information, se
the survey of L’Ecuyer and Lemieux (2002).

Financial engineering has proved to be a domain tha
is quite favorable for QMC. The combination of QMC with
variance reduction techniques can be particularly powerfu
For an overview of QMC methods for financial computations
and further references, see Lemieux and L’Ecuyer (2001)

6 CONCLUSIONS

Many general simulation efficiency techniques apply to
option pricing. However, because many of these genera
techniques require problem-specific knowledge to be ap
plied to best advantage, much research has gone into the
application in the financial context. The knowledgeable
practitioner can use these ideas to achieve high-quality e
timates despite constraints on time and computing powe
This process is freeing financial engineers from a depen
dence on closed-form solutions and tractable but unrealist
models to simulate more realistic models, leading to bette
answers.
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