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ABSTRACT

This paper presents an overview of techniques for improving
the efficiency of option pricing simulations, including quasi-

2 HOW TO PRICE BY SIMULATION

The theory of financial engineering states that (in a complete
market) pricing an option is evaluating the expectation of its

Monte Carlo methods, variance reduction, and methods for discounted payoff, under a specified measure. The canonical

dealing with discretization error.
1 INTRODUCTION

Simulation is a valuable tool for pricing options, as Boyle
(1977) pointed out. It is easy to price most options by

example is the European call option under the Black-Scholes
model. The European call option’s payoffis fj&x—K, 0},
where Sy is the price of a stock at timd@, andK is a
prespecified amount called the strike price. Under the
Black-Scholes model, the stock price follows the stochastic
differential equation (SDE)

simulation under most models, even those that are compli-

cated or high-dimensional. (American options are a notable
exception.) Simulation tends to perform better than many
other numerical technigues on high-dimensional problems,
for instance, those that involve many underlying securities
or their prices at many times. In particular, the rate of con-

dS =S@rdt+odW)

whereW is a Wiener process (Brownian motion) under the
risk-neutral probability measu@. Applying Itd’s formula
and integrating,

vergence of a Monte Carlo estimate does not depend on the

dimension of the problem. Another attraction of simulation
is the confidence interval that it provides for the Monte
Carlo estimate. A survey of the field is Boyle, Broadie

NS —-INS =0 —c?/Qt +oW.

Here & is the initial stock pricey is the instantaneous

and Glasserman (1997). Recent textbooks are Glassermaninterest rate on a riskless money market account, @and

(2003) and Herzog and Lord (2003).

These textbooks cover the application of simulation to
financial engineering in general, including other problems
such as risk management. The present paper restricts itse
to option pricing, broadly construed in the sense of pric-
ing any derivative security, for instance, mortgage-backed
securities and swaps as well as the many kinds of options
It is a revised version of Staum (2002), which has more
background on option pricing and extra sections on esti-
mating Greeks and on pricing American options, but less
material on variance reduction and quasi-Monte Carlo. In
this paper, the focus is on the efficiency of option pricing
simulations: avoiding (Section 2) or mitigating (Section 3)
bias from discretization, variance reduction (Section 4), and
guasi-Monte Carlo (Section 5). Section 2 begins with a brief
review of how to price options by simulation.

is the volatility. Becausé&\; is normally distributed with
mean 0 and variandg the terminal log stock price I8r is
normal with mean Ir§ + (r —02/2)T and variance 2T.

Pricing the European call option under the Black-
Scholes model therefore requires the generation of one
standard normal random variate per path. The simulated
. value of St on theith path is

If

s = &exp((r - 02/2) T +aﬁz<‘>)
and the estimated option value is
}zn:e*” max[s(r” —K, 0} .
nia

In this model, the situation is not appreciably more
difficult when pricing a path-dependent option whose payoff
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depends on the value of the state vector at many times. For are. An example is the Cox-Ingersoll-Ross model, in which
instance, a discretely monitored Asian call option has the the SDE is

payoff maxSr — K, 0} where St = Y |1, §./m is the

average price. Now the simulation must generate the entire dri = a(f —ry)dt+ o /ri dW.

path§,. S,, ..., §,. Assumety = Tk/m = kh. The way

to simulate the whole path is to generateindependent This model’s principal advantage over Hull-White is that

standard normal random variablég), e zr(ri]) for theith the instantaneous interest rate must remain nonnegative.
path and set However, there is no useful expression for the distribution
of ry givenrg. A simulation of this model must rely on
S((|I<)+1)h _ (R exp((r _ 02/2> h+ o«/ﬁZﬁ”) ) an approximate discretizatighof the stochastic process
Because the laws of these processes are not the same, the

Monte Carlo estimate based dnmay be biased for the
true price based on. This bias is known as discretization
error.

Kloeden and Platen (1992) have written a major ref-
erence on the rather involved topic of discretizing SDEs,
whose surface this paper barely scratches. Faced with an
SDE of the generic form

This provides the correct multivariate distribution for
(§;, ..., &, and hence the correct distribution 6¢ .

Another challenge in path generationis continuous path-
dependence. While the payoff of the European call option
depends only on the terminal value of the state vector, and
the payoff of the discretely monitored Asian call option
depends only on a finite set of observations of the state
vector, some derivatives have payoffs that depend on the
entire continuous-time path. An example is a down-and-in
option that pays off only if a stock price goes below some
barrier, or equivalently, if the minimum stock price is below
the barrier. Suppose the stock price obeys the Black-Scholes
model. Because

dX; = u(Xpdt + o (Xp)dW

one simulates a discretized proces, ..., X,,. Even if
the only quantity of interest is the terminal valXe, it is
necessary to simulate intermediate steps in order to reduce
discretization error. The question is how to choose the
. . scheme for producing the discretized procé(ssand the
min  §, > min

k=1,..,m te[0,T] number of stepsn.

The most obvious method of discretizing is the Euler
almost surely, the former is not an acceptable substitute for scheme
the latter. Itis necessary to introduce a new compokknt

minyefo,q] S into the state vector; this can be simulated since )Z(k+1)h = Xkn + n ()Zkh) h+o (th> vhziiq
the joint distribution ofS and M; is known (Karatzas and
Shreve 1991). whereZy, ..., Zn, are independent standard normal random

A slightly subtler example occurs in the Hull-White  yariates. The idea is simply to pretend that the drifand
model of stochastic interest rates. The SDE governing the volatility o of X remain constant over the perikh, (k +

instantaneous interest rateis 1)h] even thoughX itself changes. Is there a better scheme
B than this, and what would it mean for one discretization
dre =o(f —rdt+odW scheme to be better than another?

. ) i There are two types of criteria for judging discretized
wherer s the long-term mean interest rateis the strength  processes. Strong criteria evaluate the difference between
of mean reversion, and is the interest rate’s volatility.  the paths of the discretized and original processes pro-

Integration of this SDE yields the distribution of, which duced on the same elemenif the probability space. For
is normal. Then the simulated patf), ..., 1, is adequate  example, the strong criterioB[max || Xy, — Xy |1 mea-
for evaluating payoffs that depend only on these interest rates

. . T 'sures the maximum discrepancy between the péth)

but not for evaluating the d'SCn?U”t factdrr = [y rudu; and the pathX(w) over all times, then weights the ele-
the discrete approximation ,_,rkn does not have the  mentse with the probability measur®. On the other
right distribution. Instead one must abgto the state vector hand, weak criteria evaluate the difference between the

and simulate using its joint distribution with, which is laws of the discretized and original processes: an example

easily computable. is sup, [P[XT < x]—P[Xt < X]|, measuring the maximum
discrepancy between the cumulative distribution functions

3 DISCRETIZATION ERROR of the terminal values oK and X. Weak criteria are of
] ) _greater interest in derivative pricing because the bias of the

Some financial models feature SDEs that are not easily \jonte Carlo estimatorf (Xy,. . .., Xy,,) of the true price

integrable, as the Black-Scholes and Hull-White models’
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E[f(Xty, ..., Xt,)], where f is the payoff, depends only
on the distribution of( Xy, ..., Xi,,).

Given a choice of weak criterion, a discretization scheme
has weak order of convergengeif the error is of order
m~" as the number of steps goes to infinity. Under some
technical conditions on the stochastic procéssand the
exact nature of the weak criterion, the weak order of the
Euler scheme is 1, and a scheme with weak order 2 is

Xkh + 0 Zky1h/?
1
+ </L + 500/ (ZﬁJrl - 1)) h

1
(u/o + o’ + 5020”> Zyk41h¥?

X(k+1Dh

1
2

1 l 1 " _2 2
—= —= h
+2(,uy, +2ua

whereu, o, and their derivatives are evaluated<a,. This

which is minimized bym o« CY@+D  With this opti-
mal allocation, the mean squared error is proportional to
C—2r/@r+D which is slower than the rat@~! of decrease

of the variance of a simulation unbiased by discretization
errror. A higher order of convergengeis associated with

a coarser discretizatiom(smaller) and more rapid diminu-
tion of mean squared error with increased computational
budgetC.

4  VARIANCE REDUCTION

The standard error of a Monte Carlo estimate decreases
as 1/+/C, whereC is the computational budget. This

is not an impressive rate of convergence for a numerical
integration method. For simulation to be competitive for
some problems, it is necessary to design an estimator that
has less variance than the most obvious one. A variance
reduction technique is a strategy for producing from one
Monte Carlo estimator another with lower variance given

is known as the Milstein scheme, but so are some other the same computational budget.

schemes. This scheme comes from the expansion of the

integral[k(,‘frl)h d X to second order iin using the rules of

stochastic calculus.
The weak order of convergence remains the same if

simple random variables with appropriate moments replace

the standard normal random variabiesNot only can such

a substitution improve speed, but it may be necessary when

the SDE involves multivariate Brownian motion, whose
multiple integrals are too difficult to simulate.

It is also possible to use Richardson extrapolation in
order to improve an estimate’s order of convergence. For
instance, letf (X") denote the payoff simulated under the
Euler scheme with step site The Euler scheme has weak
order of convergence 1, so the leading term in the bias
E[ f (XM)] — E[f(X)] is of orderh. The next term turns
out to be of ordeh?. Because the ordérterms cancel, the
bias of E[ f (XM)] — E[ f (X@)] is of orderh?, and this

extrapolated Euler estimate has weak order of convergence

2.
Turning to the choice of the number of steps one

consideration is allocating computational resources between

a finer discretization and a greater number of paths (Duffie
and Glynn 1995). If there is a fixed computational budget
C, and each simulation step coststhen the number of
paths must be = C/(mc). For a discretization scheme of
weak ordery, the bias is approximatelgm™ for some
constantb. Estimator variance is approximateiyn—1 for
some constanb. Therefore the mean squared error is
approximately

vC
b?2m% +on 1 =b2m % + —m
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A fixed computational budget is not the same as a fixed
number of paths. Variance reduction techniques frequently
call for more complicated estimators that involve more work
per path. Wher&V is the expected amount of work per path,
the computational budg€tallows approximatelp = C/W
paths. There is a variance per patisuch that the estimator
variance is approximately/n = VW/C. Thus atechnique
achieves efficiency improvement (variance reduction given
a fixed budget) if it reduce¥ W.

In practice, one may be concerned with human effort
as well as computer time. Computing power has become so
cheap that for many individual financial simulations, it is
not worth anybody’s time to implement variance reduction.
On the other hand, some financial engineering problems are
so large that variance reduction is important.

For example, it is too time-consuming to compute
firmwide value at risk (VaR) for a large financial insti-
tution by simulating many future scenarios and pricing all
the firm's derivatives by simulation in each scenario, so
financial institutions rely on methodologies of questionable
soundness for computing VaR. Lee (1998) investigates one
question of efficiency for such large VaR simulations. Here
variance reduction may make better answers affordable.

Another example is model calibrations that involve sim-
ulation of options’ prices to compute the objective of an
optimization. This takes a long time because simulations
must be done at every iteration of the optimization rou-
tine. In this case, variance reduction makes possible greater
responsiveness to changing market conditions.

4.1 Antithetic Variates

Because of its simplicity, the method of antithetic variates
is a good introduction to variance reduction techniques,
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among which it is not one of the most powerful. A quantity

A stratified estimate has varian@i’\'=1 pio. The amount

simulated on one path, such as a payoff, always has a of variance reduction is the difference

representationf (U) whereU is uniformly distributed on
[0, 1]M. The antithetic variate ofJ is 1 - U = (1 —
Ui,...,1—Upy). The method uses as an estimate from
a pair of antithetic variateéf (U) + f(1— U))/2, which
can be called the symmetric part éf This is unbiased
because + U is also uniformly distributed ofi0, 1]™M.

The antisymmetric part of is (f(U) — f(1—U))/2.
These two parts are uncorrelated and sumftdJ), so
the variance off (U) is the sum of the variances of the
symmetric and antisymmetric parts. The estimator using
antithetic variates has only the variance of the symmetric
part of f, and requires at most twice as much work as the
old. The variance of the antisymmetric part is eliminated,
and if it is more than half the total variance bf efficiency
improves. This is true, for instance, whdnis monotone,
as it is in the case of the European call option in the
Black-Scholes model.

4.2 Stratification and the Latin Hypercube

Stratification makes simulation more like numerical integra-
tion by insisting on a certain regularity of the distribution of

simulated paths. This technique divides the sample space
into strata and makes the fraction of simulated paths in each

stratum equal to its probability in the model being simu-
lated. Working with the representatidriiUs, ..., Un), one
choice is to divide the sample spacd.lyfinto N equiproba-
ble stratg0, 1/N], ..., [(N —1)/N, 1]. Then the stratified

estimator is
1y — 14U .
NZf( 1 u2<'>,...,u,<n'>)

i=1

2

gpiu?— (.X: piui)

which is the variance oft,,;, wheren is a random variable
taking on the valué with probability p;. That is, stratifi-
cation removes the variance of the conditional expectation
of the outcome given the information being stratified.

This approach can be very effective when the payoff
depends heavily on a single random variable, and it is possi-
ble to sample the rest of the path conditional on this random
variable. For instance, if the payoff depends primarily on a
terminal stock priceSr whose procesS$ is closely linked
to a Brownian motiorW, then a good strategy is to stratify
on Wr and simulatéi,, ..., W, , conditional on it.

Stratification in many dimensions at once poses a diffi-
culty. UsingN strata for each ofl random variables results
in a mixture of N9 distributions, each of which must be
sampled many times if there is to be a confidence interval.
If d is too large there may be no way to do this with-
out exceeding the computational budget. Latin hypercube
sampling offers a way out of this quandary.

Consider the stratification of each dimensioi@f1]™
into N intervals of equal length. A Latin hypercube sample
includes a point in onlyN of the N9 boxes formed. This
sample has the property that it is stratified in each dimension
separately, that s, for each stratyrand dimensiok, there
is exactly one point) ) such that),” isin[(j —1)/N, j/N].

The Latin hypercube sampling algorithm illustrates:

Loop over dimensiok =1, ..., m.

. ¢ Produce a permutatiod of 1, ..., N.
where the random variable are i.i.d. uniform or0, 1]. ¢ Loop over point =1,..., N.
This estimator involvedl paths, whose first components are — Chooseuli') uniformly in [(J —1)/N, Ji /N].

chosen randomly within a predetermined stratum. Because

theseN paths are dependent, to get a confidence interval Because points are uniformly distributed within their boxes,
requires enough independent replications of this stratified the marginal distributions are correct. Choosing all permu-
estimator sufficient to make their mean approximately nor- tations with equal probability makes the joint distribution
mally distributed. correct.

Stratification applies in the quite general situation of Because it is not full stratification, Latin hypercube
sampling from a distribution that has a representation as sampling does not remove all the variance of the condi-
a mixture: above, the uniform distribution @f, 1] is an tional expectation given the box. Writing this conditional
equiprobable mixture dfl uniform distributions on intervals expectation as a functiop(js,..., jm) where jk is the
of size Y N. The general case is sampling from a distribution stratum in thekth dimension, Latin hypercube sampling
that is a mixture ofN distributions, theith of which has asymptotically removes only the variance of the additive
mixing probability pj, meanyu;, and varianceo?. The part of this function. The additive part is the function
mixed distribution has mealr.\_; pixi and variance g(j1, ... jm) = Y_ptq Gk(ji) that minimizes the expected

squared error of its fit to the original functipgn Sometimes
N N 2 the fit is quite good, for instance when pricing a relatively
Z pi (M.Z + Uiz) _ (Z Di M) _ short-term interest-rate swap in the Hull-White mogiel. In
i—1 i1 each of a sequence of periods, the swap pays the difference
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between preset interest payments and the then-prevailing
interest payments. These terms are linear in the normal
random variate<s, ..., Zm, but for pricing must also be
multiplied by nonlinear discount factors.

4.3 Importance Sampling

The intuitive way to plan a simulation to estimate the
expectation of a payoff that depends ona paXuy, ..., Xmy

is to simulate paths according to the law of the process
then compute the payoff on each path. This is a way of
estimating the integral

f
/f(X)g(X)dX=/(Eg> (x)§(x)dx

as long agj is nonzero wherefg is. The second integral
has an interpretation as simulation of paths under a new
probability measur®. The pathX, ..., Xy has likelihood
g underQ and § underQ. There is also a new payoff
f = fg/g, the product of the original payoff and the
Radon-Nikodym derivative or likelihood ratig/§. One
way in which importance sampling can arise naturally in
the financial context is whe® andQ are both martingale
measures, in which case the Radon-Nikodym derivative is
the ratio of the associated numeraires’ terminal values.
The idea of importance sampling is to chog@sso that
f has less variance undérthan f does undef). When f
is positive, the extreme choiceds= fg/u, whereu is the
constant of integration that mak@sa probability density.
Then f = 1 and has no variance. However, this constant
w is precisely [ f (x)g(x)dx, the unknown quantity to be
estimated. The goal is to choo§édo be a tractable density
that is close to being proportional f@g. Thatis, one wishes
to sample statex according to importance, the product of
likelihood and payoff.
It is possible for importance sampling to go awry, as
the following example demonstrates. Suppda&) = X
and
e—X
ax™4

if x e [0, K]

g(x)z{ if x > K

whereK is very large. The simulation estimates the mean of
a random variable whose distribution is almost exponential,
but has a power tail. The mean and variance are both
finite. Suppose&j(x) is simply e™* for all x > 0. As x
goes to infinity, so does the likelihood ratiyd. The new
simulation variance is infinite: the new second moment is

o
o
Moreover, we are likely not to simulate amy>> K, which

has alarge likelihood ratio, in which case the sample standard
deviation will not alert us to the failure of the scheme.
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Xg(X)
gx)

2 [ee)
) g(x)dx>a2/ X %X dx = co.
K

The potential for mistakes aside, importance sampling
has proven extremely powerful in other applications, espe-
cially in simulation of rare events, which are more common
under an appropriate importance sampling measure. There
have been some effective financial engineering applications
in this spirit, involving the pricing of derivatives that are
likely to have zero payoff. An example is an option that
is deep out of the money, meaning that the underlying is
currently distant from a threshold that it must cross in order
to produce a positive payoff.

Importance sampling may become even more valuable
in financial engineering with the advent of more sophisticated
approaches to risk management. There is an increasing
appreciation of the significance for risk management of
extreme value theory and the heavy-tailed distributions of
many financial variables. In models and applications where
behavior in the tails of distributions has greater impact,
importance sampling has greater potential. An example of
such developments s the work of Glasserman, Heidelberger,
and Shahabuddin (2002).

4.4 Control Variates

Unlike other methods that adjust the inputs to simulation,
the method of control variates adjusts the outputs directly.
A simulation intended to estimate an unknown integral
can also produce estimates of quantities for which there
are known formulas. The known errors of these estimates
contain information about the unknown error of the estimate
of the quantity of interest, and thus are of use in correcting
it. For instance, using the risk-neutral measure, the initial
stock price S = ER[e™"T Sr], but the sample average
e T YN, sV /n will differ from . Ifitis too large, and
the payoff f (Sr) has a positive correlation witBr, then

the estimate of the security price is probably also too large.

Generally, in a simulation to estimate the scatik]
which also generates a vectérsuch thatE[Y] is known,
an improved estimator iX — (Y — E[Y]) whereg is the
multiple regression coefficient of on Y. The variance of
this estimator is the residual variance Xfafter regression
onY; the better the linear fit ok on the predictor¥, the less
variance remains after the application of control variates.
The regression coefficiegitis presumably unknown E[X]
is unknown, but the usual least squares estimate will suffice.
However, using the same paths to estimétand evaluate
the control variates estimator creates a slight bias. An
alternative is to estimatg from some paths reserved for
that purpose alone.

A favorite example of the great potential of control
variates is the discretely monitored Asian call option in the
Black-Scholes model, which appeared in Section 2. Aver-
aging, as in the average stock pri8g, is the distinguishing
feature of Asian options. For economic reasons, the con-
vention is that the averaging is arithmetic, not geometric.
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For instance, an Asian option on oil futures could help a

Yet another alternative is to make the simulation estima-

power company hedge the average cost of its planned future tor an unequally weighted average of the sample paths. The

purchases of oil, while an option on a geometric average

weights are typically chosen to minimize some measure of

of prices does not have such an obvious purpose. On the nonuniformity while satisfying a constraint. For example,

other hand, the distribution of the arithmetic average of
jointly lognormal random variables (such &g, ..., S,,)

is inconvenient, while the distribution of their geometric
average is again lognormal, so a geometric Asian option
has a closed-form price in the Black-Scholes model. The
payoffs of arithmetic and geometric Asian call options are
extremely highly correlated, and therefore the geometric
Asian call option makes a very effective control variate for
simulation of the arithmetic Asian call option: it can reduce
variance by a factor of as much as one hundred. Using this
control variate, the simulation is effectively estimating only
the slight difference between the arithmetic and geometric
Asian options.

4.5 Repricing, Matching, and Weights

As an example of a control variate, we used a stock price,
which is a known expectation differing from the corre-

sponding simulated average. Some practitioners react to
such differences with dismay: when the simulation reprices
market securities such as a stock incorrectly, the policy of
trading at simulated prices results in arbitrage! Of course,

one does not trade market securities on the basis of simu-

the usual control variates estimator turns out to be of this
form, where the constraint is that the control variate's sam-
ple average must equal the known mean, and the objective
is the sum of squared weights. Another example is Avel-
laneda’s (1998) use of a relative entropy criterion with the
constraint that market securities’ average discounted payoff
must equal their market prices. This is often viewed not
so much as an efficiency technique, but a corrective to the
part of model risk that arises when a calibrated model does
not reprice market securities exactly. For more on weighted
Monte Carlo, see Glasserman and Yu (2003).

4.6 Conditional Monte Carlo

Another variance reduction technique is conditional Monte
Carlo. By substituting conditional expectations when they
are known, it often reduces both the work and variance
per path. In derivative security pricing, this can be the
simulation of the future value of the security, rather than
of its payoff.

For example, the down-and-in option mentioned in
Section 2 pays the same as a standard option if the underlying
goes below a specified barrier, and if not, it pays nothing.

lated prices, nor does one trade over-the-counter derivatives Suppose there is a formulafor the standard option price.
at exactly the simulated price. Rather, one establishes a Then one may simulate the underlying path until matuFity

bid-ask spread, accounting for model risk and profit margin.
Nonetheless, the fear that errors in repricing market secu-
rities indicate arbitrage in the simulated derivative security
prices may remain, leading to corrective techniques that are
closely related to control variates.

Continuing with the example of a single stock, one
approachis simply to change the simulated value& afntil
their sample average is indeetf S, then computing the
simulated derivative payoffs from these adjusted simulated
terminal stock prices. One way to do this is to multiply
Sr by €T Sn/ Zi”:ls(r'). This is essentially taking the
control variates concept and using it to adjust values inside
the simulation, rather than to adjust the output directly.
A related idea is to adjust the inputs to the simulation,
the random variates. For instance, one might insist that the

standard normal random variates used in the simulation have

sample mean 0 and sample standard deviation 1. Affine
transformation of the random variates can accomplish this.
Although such affine transformation is reminiscent of

or until the first timer that the barrier is crossed, whichever
comes first. Then the estimated option value is

)

where 1 is the indicator function. This eliminates the
conditional variance of the standard option’s payoff and
reduces the expected number of steps per path ffoto

E[r]

1, i i
M ¢ (0
=y 1 =0l f (st'(i)
i=1

This approach also handles knock-out options through
in-out parity, and applies fairly directly to other deriva-
tives such as forward-starting options. In a different way,
conditional Monte Carlo has also been applied to stochas-
tic volatility models in which the option price is known
conditional on the volatility path.

4.7 Work Reduction

control variates, these techniques are not necessarily equiv-\yhije conditional Monte Carlo should reduce not only work

alent, because the transformation takes place at different but also variance. as the name “

stages in the simulation. However, like control variates,

variance reduction” suggests,
there are methods that reduce work but not variance, or even

these techniques create bias. Their relative advantages Varyincrease variance. These might be called “work reduction”

from problem to problem.
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techniques. Just as a variance reduction technique that
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reducesV (variance per path) while increasing (work is to generate a deterministic set of points that fills space
per path) enhances efficiency if it reduces the prodiidt, efficiently without being unmanageably numerous in high
so an unbiased work reduction technique enhances efficiency dimension. Several authors have proposed rules for gener-
if it reducesV W by decreasingV more than it increases  ating such sets, known as low-discrepancy sequences: see
V. This is reducing the simulation variance given a fixed Niederreiter (1992). The name “quasi-Monte Carlo” does
computational budget. A work reduction technique that not indicate that these sequences are somewhat random,
introduces bias can still enhance efficiency in the sense of but rather that they look random; indeed they look more
reducing mean squared error. random than actual random sequences, because the human
One example is early stopping of some simulated paths, mind is predisposed to see patterns that are statistically
which can enhance efficiency if the beginning of a path insignificant.
contains more useful information than the end of a path. It The great attraction of low-discrepancy sequencesis that
can make sense to allocate more of the simulation resourcesthey produce an error of integration whose bound converges
to the steps of the path that explain more of the variance in as(logn)?/n, a better asymptotic rate tharr/2. As this
the simulation estimator. This can be done without bias even result suggests, QMC is often much more efficient than
when the decision to stop is dependent on the simulated MC, at least ifd is not too large. If dimensionl is too
state. See Glasserman and Staum (2002) and referencedarge relative to sample sizg two things can go wrong.
therein. First, the regularity of popular low-discrepancy sequences
A more prosaic way to reduce work, important in is such that, while coordinates 1 and 2 of points.1, n

practice, is to code simulation programs efficiently. In part,
this means simply refraining from unnecessary computation
and memory access, which can be surprisingly easy to fall
into. In part, this can involve more interesting techniques
such as fast algorithms for numerical function evaluation
and financial approximations that impart slight bias. See
Staum, Ehrlichman, and Lesnevski (2003) for examples.

4.8 Summary

in a low-discrepancy sequence may cover the unit square
evenly, coordinatesl — 1 andd of thesen points may
cover it very badly, causing potentially large error. See,
for instance, Figure 2 of Imai and Tan (2002). Second,
if Jlogn)4/n > n~%/2, it suggests that MC may be more
accurate than QMC.

However, QMC is often more accurate than MC even
when the dimensiom is large and the sample sizeis
not. An explanation for this surprise is the low effective
dimension of many high-dimensional financial simulation

The methods discussed above illustrate two major types of problems. Roughly, effective dimension means the number
variance reduction. Importance sampling and control vari- of dimensions required to explain, in the sense of analysis of
ates rely on knowledge about the structure of the problemto variance, a large proportion of the entire variance of the inte-
change the payoff or sampling distribution. Stratified and grand. For precise definitions and distinctions, see Caflisch,
Latin hypercube sampling also benefit from a good choice Morokoff, and Owen (1997). Owen (2002) demonstrates
of the variables to stratify. However, these methods and that low effective dimension is necessary for scrambled
antithetic variates work by making Monte Carlo simulation (0, m, d)-nets, a type of low-discrepancy sequence, to beat
less purely random and more like other numerical integra- MC; it is an open question whether it is necessary for all
tion techniques that use regular, not random, distributions QMC methods.

of points. Similarly, quasi-Monte Carlo simulation is a Such observations lead to contemplation of effective
numerical integration technique that bears a resemblance to dimension reduction. If one can change the simulation
Monte Carlo, although its foundations are deterministic. scheme so that the integrand has the same integral on the unit
hypercube but a lower effective dimension, then QMC may
be more effective. For example, some such transformations
use Brownian bridge or principal components as the basis for
A sample from the multidimensional uniform distribution  producing a sample path, which would ordinarily proceed
usually covers the unit hypercube inefficiently: to the eye by using one random variate at each time step in turn. Imai
it seems that there are clusters of sample points and voids and Tan (2002) review and extend efforts in this area.

5 QUASI-MONTE CARLO

bare of sample points. A rectangular grid of points looks
more attractive, but the bound on the error of this numerical
integration technique converges as%9 wheren is the
number of points used ardis the dimension of the hyper-

Another promising development is randomized quasi-
Monte Carlo (RQMC), which randomizes a low-discrepancy
sequence so that it gains desirable statistical properties while
retaining its regularity properties. An RQMC algorithm

cube. For dimension four or higher, there is no advantage produces dependent random vectttsh, ..., U™ each

compared to the ordar—1/2 convergence of the standard
error of a Monte Carlo (MC) simulation. The quasi-Monte
Carlo (QMC) approach, often used in financial engineering,
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uniformly distributed or{0, 1]™. This makes RQMC much
like MC with a variance reduction technique: the uniformity
of eachU" means that the estimator is unbiased, while
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dependence suitable for the problem provides reduced vari- Duffie, D., and P. Glynn. 1995. Efficient Monte Carlo
ance. An example is the random shift. Takid§’ from a Simulation of Security PricesAnnals of Applied Prob-
low-discrepancy sequence amduniformly distributed on ability 5: 897-905.
0,2, UD = WD 4+ A) mod 1 is also uniformly dis- Glasserman, P. 2003Monte Carlo Methods in Financial
tributed on[0, 1]™, but retains the original spacing. From Engineering New York: Springer-Verlag.
repeated random draws of the shiff a confidence interval Glasserman, P., P. Heidelberger, and P. Shahabuddin. 2002.
is available. As with importance sampling, there is the Portfolio Value-at-Risk with Heavy-Tailed Risk Factors.
potential for great improvement in efficiency, but a mistake Mathematical Financd.2: 239-270.
can lead to increased variance. For further information, see Glasserman, P., and J. Staum. 2001. Stopping Simulated
the survey of LEcuyer and Lemieux (2002). Paths Early. InProceedings of the 2001 Winter Sim-
Financial engineering has proved to be a domain that ulation Conferenceed. B. A. Peters, J. S. Smith, D.
is quite favorable for QMC. The combination of QMC with J. Medeiros, and M. W. Rohrer, 318-324. Piscat-
variance reduction techniques can be particularly powerful. away, New Jersey: Institute of Electrical and Electron-
For an overview of QMC methods for financial computations ics Engineers. Available online viahttp://www.
and further references, see Lemieux and L'Ecuyer (2001). informs-cs.org/wsc01papers/040.PDF> .
Glasserman, P., and B. Yu. 2003. Large Sample Prop-
erties of Weighted Monte Carlo Estimators. Working
paper, Columbia Business School. Available online via
Many general simulation efficiency techniques apply to <http://www.paulglasserman.com>
option pricing. However, because many of these general Herzog, T. N., and G. Lord. 2002Applications of Monte
techniques require problem-specific knowledge to be ap- Carlo Methods to Finance and Insuranc#Vinstead,
plied to best advantage, much research has gone into their Conn.: ACTEX Publications.
application in the financial context. The knowledgeable Imai, J., and K. S. Tan. 2002. Enhanced Quasi-Monte
practitioner can use these ideas to achieve high-quality es- Carlo Methods with Dimension Reduction. ro-
timates despite constraints on time and computing power. ceedings of the 2002 Winter Simulation Conference
This process is freeing financial engineers from a depen- ed. E. Yucesan, C.-H. Chen, J. L. Snowdon, and
dence on closed-form solutions and tractable but unrealistic J. M. Charnes, 1502-1510. Piscataway, New Jer-
models to simulate more realistic models, leading to better sey: Institute of Electrical and Electronics Engineers.
answers. Available online via<http://www.informs-cs.
org/wsc02papers/205.PDF>
Karatzas, I., and S. E. Shreve. 19®rownian Motion and
Stochastic Calculus.2nd ed. New York: Springer-
This paper owes much to cited sources, especially Boyle, Verlag.
Broadie, and Glasserman (1997) and Glasserman (2003).Kloeden, P. E., and E. Platen. 1992umerical Solution of
The author thanks Paul Glasserman, Shane Henderson, and  Stochastic Differential Equation®New York: Springer-
Pierre L'Ecuyer for comments and discussions. The views Verlag.
expressed are those of the author, who is solely responsible UEcuyer, P., and C. Lemieux. 2002. Recent Ad-
for any errors. vances in Randomized Quasi-Monte Carlo Meth-
ods. In Modeling Uncertainty: An Examination of
Stochastic Theory, Methods, and Applicatiored.
M. Dror, P. L'Ecuyer, and F. Szidarovszki, 419-474.
New York: Kluwer Academic Publishers. Available
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