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ABSTRACT 

Simulation Event Graphs (SEGs) are a graphical represen-
tation one of the three major simulation world views, event 
scheduling.  This paper describes four advanced modeling 
techniques that allow the simulation practitioner to gather a 
great deal of information at relatively little development 
and/or processing effort beyond that of developing the 
simulation model. 

1 INTRODUCTION 

One of the three main approaches to discrete event simula-
tion modeling is the event scheduling world view, see 
(Derrick, et al. 2000).  One key advantage to this world 
view is its speed in executing models of congested systems 
(Schruben and Roeder 2003).  In addition, Simulation 
Event Graphs (SEGs), a type of event scheduling simula-
tion, are able to compactly represent large models, and can 
be analyzed using optimization and graph theory. 

This paper describes advanced modeling techniques that 
are available in the event scheduling world view.  Section 2 
formally defines SEGs to aid the development of future sec-
tions.  Section 3 introduces the ideas of simultaneous repli-
cations and time dilation for simulation optimization; Sec-
tion 4 illustrates infinitesimal perturbation analysis (IPA) of 
SEGs; Section 5 reports recent results in using math pro-
gramming together with SEGs; and Section 6 describes on-
going work in estimating rare event behavior. 
 
2 SIMULATION GRAPHS 

This section will give a formal definition of SEGs.  The 
definition will be illustrated in a simple example. 

2.1 Definition 

Simulation Event Graphs model the dynamics of discrete 
event systems.  We will use notation from (Yücesan and 
Schruben 1992).  Accordingly, for a graph G, define: 

V(G) set of event vertices in G 
Es(G) set of scheduling edges in G 
Ec(G) set of canceling edges in G 
ΨG  incidence function on G, associating an  

ordered pair of vertices with each edge in G 
The pairs of vertices in ΨG need not be distinct.  A simula-
tion graph is defined as the ordered quadruple  
G = (V(G), Es(G), Ec(G), ΨG).  The vertices V(G) represent 
the events that occur, causing a change in the system state.  
The (directed) edges Es(G) and Ec(G) indicate relationships 
between the events, as specified by ΨG. 

Let R+ be the set of non-negative real numbers, and let 

STATES denote the set of possible states for the underlying 
model.  Then we additionally define the following data in-
dexed by sets in G: 

• set of state transition functions associated with  
vertex v: F = {fv: STATES → STATES | v ∈ 
V(G)} 
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set of edge conditions associated with edge e: 
C = {ce: STATES → {0,1} | e ∈ Es(G) ∪ Ec(G)} 

• 

• 

• 

• 

• 

set of edge delay times associated with edge e: 
T = {te: STATES → R+ | e ∈ Es(G) ∪ Ec(G)}  
set of event execution priorities associated with  
edge e: Γ = {γe: STATES → R+ | e ∈ Es(G)} 
set of event parameters associated with vertex v: 
P = {pv: STATES → R+ | v ∈ V(G)} 
set of edge attributes associated with edge e: 
A = {ae: STATES → R+ | e ∈ Es(G) ∪ Ec(G)} 

A simulation graph model is the ordered seven-tuple  
S = (F, C, T, Γ, P, A, G).  The first six sets identify entities 
in the model, while G creates a meaningful model by 
specifying the relationships among indices for elements in 
F, C, T, Γ, P, and A. 

2.2 Example 

Consider a simple G/G/s queueing system.  The state 
of this system is the number of jobs waiting to be served, 
Q, and the number of available servers, R.  The set of all 
possible STATES for this model is {(Q,R): Q = 0, 1, 2,…, 
R = 0, 1,…,s}.  Additional state variables are W[i], the 
time the ith customer spends in the system; ID, the cus-
tomer identification number; IN, the customer ID of the 
customer currently in service (the last to have started or 
completed service); NEXT, the customer ID of the next 
customer to begin service; and CLK, the simulation clock 
time.  The (random) customer interarrival times are ta, and 
service times are ts. 

The set of event vertices V(G) consists of the events 
ENTER, START, and LEAVE.  Ec(G) = ∅; the scheduling 
edges Es(G) are shown in Table 1. 

 
Table 1: Edges for the SEG of G/G/s Queue 

Edge Vertex pair 
1 ENTER – ENTER 
2 ENTER – START 
3 START– LEAVE 
4 LEAVE – START 

 
The state changes F and event parameters P for each 

event are given in Table 2. 
The edge conditions C, time delays T, event priorities 

Γ (associated with the edge that schedules/cancels the 
event), and edge attributes A are given in Table 3. 

Initially, R = s, Q = 0, CLK = 0, and the ENTER event 
starts the simulation run. 

 

Table 2: State Changes and Parameters for Events in 
the SEG of the G/G/s Queue 

Event State changes Event parameters 
ENTER Q=Q+1, 

ID=ID+1, 
W[ID]=CLK 

 

START Q=Q-1, R=R-1, 
NEXT=NEXT+1 

IN 

LEAVE R=R+1, 
W[IN]=W[IN]-
CLK 

IN 

 
Table 3: Data Associated with Edges for the SEG of the 
G/G/s Queue 
Edge Condition Time delay Priority Attributes 

1  ta 2  
2 R > 0  1 ID 
3  ts 2 IN 
4 Q > 0  1 NEXT 
 
Throughout this paper, the term “model” will be used 

to refer to one complete specification from a design region 
or search space.  Thus, a system where s = 3 is a different 
model than one where s = 4. 

3 SIMULTANEOUS REPLICATIONS  
AND TIME DILATION 

The ideas of simultaneous replications and time dilation 
were formally proposed in (Schruben 1997).  Simultaneous 
replications allow multiple (parameterized) runs to be done 
during the same simulation execution.  This is likely to 
cause the future events list (FEL) to become extremely 
large; however, it is actually possible to take advantage of 
the large list using time dilation. 

Fundamentally, time dilation increases the “time scale” 
for scenarios that are performing poorly relative to the oth-
ers.  This is done by penalizing less promising scenarios.  
While the simulation does not completely stop collecting 
data for these scenarios, it does not spend as much time on 
them but tries to improve estimates for more promising con-
figurations.  Experimental results have shown the simultane-
ous replications and time dilation can quickly find correct 
solutions (for problems where the answer is known) with 
relatively little expended computational effort. 

In (Schruben 1997), time dilation does just that, it 
changes the time scale.  Several M/M/1 queues are simul-
taneously simulated with different release rates to deter-
mine the 4X capacity/release rate.  That is, the job arrival 
(release) rate that results in the average cycle time is four 
times the raw job processing time.  If iW  is the average job 
delay for release rate i and P is an exponential scaling fac-
tor, the time scale for the system with release rate i was 
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multiplied by ( )4

P

iW − .  (For example, P=2 if iW <4 and 

P=4 otherwise.)  The releases for less promising rates are 
scheduled for later points in time, and, in effect, less simu-
lation time is spent on them.  The results show impres-
sively that the vast majority of the events executed during 
the run are associated with the “correct” release rate. 

The ideas proposed in (Schruben 1997) are developed 
and refined in (Hyden and Schruben 1999, 2000; Hyden 
2003).  An important difference is a reinterpretation of the 
concept of time.  Rather than changing the time scale of the 
concurrent models, units of time are seen as number of 
events executed.  Scenarios with more promising results are 
given more attention than those with less promising results.  
The scenario to devote the next segment of CPU time can be 
determined probabilistically, where each situation is as-
signed a probability based on its relative performance. 

The example illustrated in (Hyden and Schruben 2000) 
is that of a job shop with five server types.  One additional 
server is available, and can be added to any of the five 
groups.  The five possible scenarios (the additional server 
being assigned to each of the groups) are run simultane-
ously.  The ultimate objective is to find the setup with the 
smallest expected job time in system.  Since it cannot be 
guaranteed that every run will find the optimal setup, the 
“working” objective is to maximize the probability of se-
lecting the correct system. 

In this example, the quality of a setup is based on a 
distance measure Di between model i and its best competi-
tor.  Additionally, the sample variance Vi of the expected 
performance measure is calculated.  Each model i is as-
signed a score of V , and is selected for execution with 
probability V  over the sum of all of the scores.  This 
favors models with smaller distance measures D

2/i D
2
iD

i

/i

i and also 
those with greater variance (to try to reduce the variance). 

The simulation engine executes one event from the se-
lected model, and then reevaluates which model it should 
choose next.  Probabilities pi are recalculated every 100 
events. 

The simultaneous replications were run with and with-
out common random numbers (CRN), and it is shown that 
the CRNs improve the probability of selecting the correct 
solution substantially. 

There are many opportunities for changes and enrich-
ments to the basic structure introduced here.  Certainly esti-
mates of Vi can be improved upon by taking into account se-
rial dependency.  Scores could be modified to weight recent 
data more heavily than past data.  Rather than executing one 
event and reselecting models, the engine could execute a 
certain number of events from the model (perhaps the num-
ber could be score-dependent) before reevaluating. 
4 INFINITESIMAL PERTURBATION  
ANALYSIS 

Infinitesimal perturbation analysis (IPA) is a technique that 
has been studied for many years.  It allows the simulation 
practitioner to estimate response gradients (with respect to 
several parameters) for the system modeled with a single 
run.  In contrast, finite differencing requires two runs to 
find the response derivative for a single parameter.  While 
most IPA results have been developed for Generalized 
Semi-Markov Processes (GSMPs), see for example 
(Glasserman 1991), in this paper, we will focus on a pro-
cedure developed in (Freimer 2001) to easily perform IPA 
estimation using SEGs. 

)

The following discussion will use notation from 
(Freimer and Schruben 2001a, 2001b).  Consider an 
M/M/1 queue with mean service time θ.  Let  be 

a realization of job i’s service time, using random seed ω.  
If θ were increased by ∆θ, this service time would be in-

creased by 

( ,iS ω θ

( ) ( ),iS
o

ω θ
θ θ

θ
∂

∂
∆ + .  Figure 1 shows a sam-

ple path for the number of jobs in the system (waiting and 
in service) for the M/M/1 queue.  The number increases 
when a job arrives and decreases when a job finishes ser-
vice.  The area under the solid line is the total delay ex-
perienced by the jobs in the unperturbed system.  The area 
under the dashed lines is the additional delay experienced 
by jobs because of the increase in θ.  It is important to note 
that the additional delays are cumulative in a busy period: 
The third job in a busy period will have to wait for the ad-
ditional service times jobs 1 and 2 experienced, and will 
also be delayed by its own increase in service time. 

∆

)

1Sθ
θ

∂∆
∂ 2Sθ

θ
∂∆
∂ 3Sθ

θ
∂∆
∂

 # jobs in  
system

Figure 1: Sample Busy Period for M/M/1 Queue 

If the purpose of the study is to find the derivative of 
the average waiting time W  (which is the average 
delay minus the average service time), it can be expressed 
as the sum of the derivatives of the S

( ,ω θ

i.  Let N be the total 
number of jobs served, M the number of busy periods, and 
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km the index of the first job in busy period m.  Then the 
sample path derivative of the waiting time W  is  ( ,ω θ )
 

 ( ) ( ) ( )1 1

1
1

,, 1 1
m

m

kM
j

m
m j k

SdW
k j

d N
ω θω θ

θ
+ −

+
= =

∂
= − −

∂∑ ∑ θ

)

 (1) 

 
This expression does not depend on ∆θ, so we need 

only track the service time derivatives.  In the case of ex-
ponential service times, a service time S  is gener-
ated using a uniform random number U : 

.  Its derivative is 

( ,ω θ

)
( )ω

( ) ( )( ) ( )(1, , ln 1SS F U Uω θ ω θ θ ω−= = − −

( ) ( )( ) ( ), 1ln 1 ,
S

U S
ω θ

ω ω
θ θ

∂
= − − =

∂
θ

)
. 

The derivative of W  is a sample path deriva-
tive.  Conditions for unbiasedness of the derivative of the 
expected waiting time are outlined in (Freimer and 
Schruben 2001b). 

( ,ω θ

While the equation in (1) is correct, it requires know-
ing the length of the busy period, information that is not 
known during a simulation run (until the busy period is 
over).  Nonetheless, gathering sample path service deriva-
tives during a run is fairly straightforward with SEGs.   

The average time in system of a job can be calculated 
as the integral over time of the number of jobs in the sys-
tem (divided by N), which is equivalent to the area under 
the curve in Figure 1.  However, we can also note that this 
is the sum of the product of the number of jobs in the sys-
tem and the length of time this state remains unchanged.  If 
we let f(si) be the number of jobs in the system after the ith 
state change has occurred, τi be the time of this ith state 
change, and N(tf) be the number of system changes that 
have occurred by the simulation finish time tf, the average 
time in system can be expressed as 

( ) ( )
( )

(
1

1
0

1,
fN t

i i i
i

W f s
N

ω θ τ τ
−

+
=

=  

( ),ω θ

( )

)− .  Further defining ∆fsi as 

f(si-1)-f(si) if i < N(tf) and f(si-1) if i < N(tf), we can express 
the derivative of W  (after some algebra) as 

( )

1

, 1
f

i

N t
i

s
i

dW d
f

d N d
ω θ τ
θ θ=

= ∆ .  The change in τi can be ex-

pressed as the changes in the edge delay times during the 
busy period that led up to τi, as seen in Figure 1. 

To finally implement the estimator in the SEG, we de-
fine the following two variables: A is the accumulator, 
which stores the total changes in waiting time accrued thus 
far.  G is used to pass the delay time derivatives.  Both A 
and G are initialized to zero at the beginning of the run.  
Each edge e with delay te will have the additional attribute 
of G+dte/dθ.  Each event s will have two additional state 
changes: f=∆fs (as appropriate), and A=A+fG. 

For our M/M/1 queue, ∆fsi is -1 if si is an ENTER 
event, 1 if it is a START event, and 0 otherwise.  (Note that 
here, we are calculating the average waiting time directly, 
since it is the average time in system minus the average 
service time.  The service time can be subtracted from the 
calculation immediately, giving us the average waiting 
time.)  Since we are only varying the service rate parame-
ter, the derivative of the other edge delay (interarrival time) 
with respect to this is zero. 

We need now only add the following state changes 
and edge attributes to the model defined in Section 2.2:  
The START event sets f=1 and A=A+G; and the edge from 
START to FINISH sends G+ts/θ.  All other edges simply 
pass the current value of G. 

5 MATH PROGRAMMING OF  
SYSTEM TRAJECTORIES 

An advantage of simulation event graph models is that any 
information about the system being studied is available.  A 
disadvantage is that the computational effort to obtain the 
information may be prohibitive, and great care must be 
taken to get accurate performance estimates. 

This section describes ongoing research that links 
simulation and math programming models.  It builds on 
work presented in (Schruben 2000).  A big advantage of 
math programming models, specifically linear programs 
(LPs), is that there are large bodies of research on efficient 
solution procedures, and on sensitivity analysis.  (Schruben 
2000) shows that simulation models of simple queueing 
systems (G/G/1 and G/G/2 queues, and multiserver tandem 
queues) can be formulated as linear programs.  The duals 
of the linear programs are network graphs; these graphs 
can be solved very quickly.  Their solutions are the trajec-
tories of the corresponding SEG.  In addition, they give in-
sights into the sensitivity of the solution to model parame-
ters (e.g. interarrival and service times). 

Consider the example from Section 2.2 where s = 1.  
For the time being, we will ignore the job waiting times 
(variables W, ID, IN, and NEXT).  The linear program is 
given below in (2).  The objective function is to minimize 
the sum of the finish times.  Ai is the arrival time of the ith 
job, and Fi is its finish time.  The service duration of the ith 
job is tsi.  The total number of jobs processed is N.  The as-
sociated dual variable names are given in parentheses next 
to the constraints. 

 

 ( )
( )

1

1

min

. .

N

i
i

i i i i

i i i i

 F

s t   F             A ts    U    i=1,...,N

     F F ts           V     i=2,...,N

=

−

≥ +

− + ≥

∑
 (2) 
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The dual LP is given in (3).  Constraint i is associated 
with the ith finish time.  The constraints are totally uni-
modular, and the solution can be found extremely quickly.  
In addition, the solution values will be integer.  The prob-
lem data (interarrival and service times) only appear in the 
objective function.  The surprising (and pleasing) result is 
that the dual variables tell the number of jobs in the busy 
period (Ui) and the remaining number of jobs in the busy 
period (Vi).  Thus, given the input data, we can solve a LP 
(which has taken as few as zero basis pivots) and find the 
busy periods, the lengths of the busy periods, and the job 
finish times.  In addition, we can use sensitivity analysis 
information to determine what effect changes in the data 
(interarrival and service times) will have on the system be-
havior. 

 

  (3) 

( )
1 2

1 2

1

max

. . 1
1

1

N N

i i i i i
i i

i i i

N N

 A ts U tsV

s t   U V
      U V V    i=2,...,N-1
      U V

= =

+

+ +

− ≤
+ − ≤
+ ≤

∑ ∑

 
Figure 2 shows the dual graph for N=3.  The dual vari-

ables can be interpreted as the amount of flow across their 
arcs, and the shaded values are the revenues earned by a 
unit flow across the arc.  Each of the Fi nodes has a “de-
mand” of one unit, and we are trying to create a “max 
flow” from A0 to Fi, i = 1, 2, 3.  For G/G/1 queues, this is 
known as the lot-sizing problem.  See (Chan and Schruben 
2003) for more details on dual formulations and their in-
terpretations. 

In (Chan and Schruben 2003) show further results for 
tandem queues.  They use the LP formulations to show re-
versibility of queueing systems with blocking.  Although 

A1 A3 A2 

ts3ts2ts1

U1 U2 U3 

F2 
ts3

V3 F3 F1 
ts2

V2 

A3 A2 A1 

A0 

Figure 2: Dual Graph for G/G/1 Queue with 
Three Jobs 
 

(Schruben 2000) uses integer (assignment) variables for the 
formulations of G/G/s queues, we have been able to formu-
late them as LPs, albeit with a large number of constraints. 

6 RARE EVENT ESTIMATION 

The G/G/s model described in Section 2.2 tracks the wait-
ing times for individual customers.  When systems get 
large, this can become cumbersome because of the amount 
of memory and processing time required.  In (Schruben 
and Roeder 2003), the authors describe the drawbacks of 
job-driven simulations, where each job is tracked.  They 
suggest that resource-driven simulations may be more ap-
propriate for most purposes; here, only counts of jobs and 
available resources are kept.  This makes modeling aspects 
of systems and obtaining certain output statistics such as 
waiting time distributions more difficult. 

This section describes ongoing research in estimating 
waiting time distributions without tracking individual jobs.  
We will restrict ourselves to FIFO G/G/1 systems here.  
Before explaining how to estimate delay times without 
maintaining records of each job, we will describe an “in-
termediate” step for estimating the probability a job has to 
wait less than some set time delay L. 

To do so, we will supplement the model described in 
Section 2.2 by an additional event DELAY.  It will be 
scheduled unconditionally by the ENTER event, and will 
occur L time units after a job arrives.  Its state changes will 
consist of incrementing a delay counter D by one.  If, when 
this DELAY event occurs, there have been more START 
events than DELAY events, we know that the job began 
service before it was delayed L time units.  To capture this, 
we increment a service counter ST by one every time a 
START event occurs.  The DELAY event will have addi-
tional state changes counting the number of jobs that have 
begun service before their “time was up,” and updating the 
estimate of the probability of waiting less than L:  The 
counter W is incremented by one if (D≤ST) is true, and the 
probability PROB is updated to W/ST.  The value of PROB 
at the end of the simulation run will be our estimate of the 
probability that W<L. 

This approach will give an accurate estimate of the 
probability, and works for FIFO G/G/s queues with s>1 as 
well.  Its disadvantage is that, though we are not directly 
tracking each job, we are maintaining an event (DELAY) 
for each job on the FEL.  Since the DELAY event does not 
schedule other events, we can dispense with it and instead 
just use an array to track the times the job would have been 
delayed L time units.  This saves storage space on the order 
of magnitude of the number of jobs in the system, O(N).  
The order of the approach we will describe next is inde-
pendent of the number of jobs. 

The “bin” approach divides the simulation time line 
into equally-sized bins.  When a job arrives at time t, we 
update the number of jobs that will have been delayed L 
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time units for the bin that contains time t+L, and all subse-
quent bins.  Figure 3 shows the step functions for the 
DELAY and START events (dashed and normal lines, re-
spectively), and also shows the resulting “bin” step func-
tion for bin size b (bold line).  The ENTER step function is 
not shown.  It is the same as the DELAY function, shifted 
to the left L units. 

The original approach compares the height of the 
DELAY and START curves at time t.  If the DELAY curve is 
above the START curve, the job has waited too long.  The 
“bin” approach compares the height of the START curve to 
the height of the BIN curve.  If the BIN curve is above the 
START curve, we will classify the job as having waited 
longer than L.  We should note that this will lead to the 
misclassification of some jobs.  In Figure 3, specifically, 
jobs 1 and 4 will be misclassified, as indicated by the 
shaded areas.  To count the number of jobs misclassified, 
we can count the shaded rectangles in the graph.  These are 
the areas where the BIN curve occurs before the START 
curve, though the DELAY curve itself happens after the 
START curve.  The size of the rectangle does not give any 
indication about the magnitude of the error in the misclas-
sification.  It does show how big a tolerance there is for the 
actual START time – if the START occurs anywhere in that 
region, the job will be misclassified.  Overall, our estimate 
of the probability of waiting less than L will be underesti-
mated.  That is, we will think our system is performing 
more poorly than it actually is. 

The magnitude of the error clearly depends on the bin 
size.  As the bin size approaches 0, we will move closer 
and closer to the complete job-driven case.  The error will 
also depend on the parameters of the model.  If the system 
is very lightly loaded, we will be less prone to error since 
the START event will happen much sooner than the DELAY 
event will, assuming L is not close to zero. 

Figure 4 shows results for an M/M/1 queue with interar-
rival rate 2/3 and service rate 1.  It shows that, as expected, 
the estimates of the probability get worse as the bin size in-

time

count 
DELAY START

3b 2b b 

approximated 
DELAY

t2 t1 

44 

5 

6 

1

3 

2 

Figure 3: Step Functions for G/G/1 Queue 
creases.  This is especially true for smaller delays.  As the 
delays get larger, all estimates become more accurate. 
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Figure 4: P{wait < delay} for M/M/1 Queue and 
Different Bin Sizes 

For the simple M/M/1 system, the run times for the 
“bin” model do not result in a great speed-up compared to 
models that track individual jobs and return the exact wait-
ing times.  However, we are exploring the possibilities of 
incorporating bin approximations into large models, where 
the additional processing required to increment all bin 
counters may still be less than that of tracking individual 
jobs.  We are also investigating the possibility of improv-
ing the approximation in the bins themselves by adding a 
probability that a job may actually not be delayed even 
though the bin counter indicates it is. 
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