
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SELECTING THE BEST SYSTEM: THEORY AND METHODS

Seong-Hee Kim

School of Industrial & Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205, U.S.A.

Barry L. Nelson

Dept. of Industrial Engineering & Management Sciences
Northwestern University

Evanston, IL 60208-3119, U.S.A.

on
s

id
ey

fo
on
d
o
e
ce
es
in
e
e

lli
ed
n
le

re
us
nt
S

es
ed

pu

S
is
in
te

ve
r,

e
)

,
s

-

r

.

n
s

e

st

-

ABSTRACT

This paper provides an advanced tutorial on the constructi
of ranking-and-selection procedures for selecting the be
simulated system. We emphasize procedures that prov
a guaranteed probability of correct selection, and the k
theoretical results that are used to derive them.

1 INTRODUCTION

Over the last twenty years there has been considerable ef
expended to develop statistically valid ranking-and-selecti
(R&S) procedures to compare a finite number of simulate
alternatives. There exist at least four classes of comparis
problems that arise in simulation studies: selecting th
system with the largest or smallest expected performan
measure (selection of the best), comparing all alternativ
against a standard (comparison with a standard), select
the system with the largest probability of actually being th
best performer (multinomial selection), and selecting th
system with the largest probability of success (Bernou
selection). For all of these problems, a constraint is impos
either on the probability of correct selection (PCS) or o
the simulation budget. Some procedures find a desirab
system with a guarantee on the PCS, while other procedu
maximize the PCS under the budget constraint. Our foc
is on selection-of-the-best problems with a PCS constrai
A good procedure is one that delivers the desired PC
efficiently (with minimal simulated data) and is robust to
modest violations of its underlyingassumptions. Other typ
of comparison problems and procedures will be discuss
briefly in Section 7. In this tutorial “best” means maximum
expected value of performance, such as expected through
or profit.

Rather than present a comprehensive survey of R&
procedures, or provide a guide for applying them, our goal
to explain how such procedures are constructed,emphasiz
issues that are central to designing procedures for compu
simulation, and reviewing some key theorems that ha
proven useful in deriving procedures. We do, howeve
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present two specific R&S procedures as illustrations. Se
Goldsman and Nelson (1998) and Law and Kelton (2000
for detailed “how to” guides, and Bechhofer et al. (1995)
for a comprehensive survey of R&S procedures.

The paper is organized as follows: In Section 2 we show
how R&S procedures are derived in an easy, but unrealistic
setting. Section 3 lists the challenges and opportunitie
encountered in simulation problems, along with key theo-
rems and results that have proven useful in extending R&S
procedures to this setting. Two specific procedures are pre
sented in Section 4, followed by a numerical illustration
in Section 5. Section 6 briefly reviews asymptotic analy-
sis regimes for R&S. Finally, Section 7 closes the pape
by describing other formulations of the R&S problem and
giving appropriate references.

2 BASICS OF RANKING AND SELECTION

In this section we employ the simplest possible setting to
illustrate how R&S procedures attack comparison problems
This setting (i.i.d. normal data with known, common vari-
ance) allows us to focus on key techniques before moving o
to the technical difficulties that arise in designing procedure
for realistic simulation problems.

R&S traces its origins to two papers: Bechhofer (1954)
established theindifference-zone formulation, while Gupta
(1956, 1965) is credited with thesubset selection formula-
tion of the problem. Both approaches are reviewed in this
section, and both were developed to compensate for th
limited inference provided by hypothesis tests for the ho-
mogeniety of thek population parameters (usually means).
In many industrial and biostatistics experiments, rejecting
the hypothesis H0 : µ1 = µ2 = · · · = µk, whereµi is the
parameter associated with thekth population, leads naturally
to questions about which one has the largest or smalle
parameter. R&S tries to answer such questions. Multiple
comparison procedures (MCPs) also provide inference be
yond rejection of homogeniety; there is a close connection
between R&S and MCPs, as we demonstrate later.
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Suppose that there arek systems. LetXi j represent
the j th i.i.d. output from systemi and letX i = {Xi j ; j =
1, 2, . . .} denote the output sequence from systemi . In this
section, we assume that theXi j are normally distributed
with meansµi = E[Xi j ] and variancesσ 2

i = Var[Xi j ].
Further, we assume that the processesX1, X2, . . . , Xk are
mutually independent, and the variances are known a
equal; that is,σ 2

1 = σ 2
2 = · · · = σ 2

k = σ 2. These are
unrealistic assumptions that will be relaxed later, but w
adopt them here because we can derive R&S procedu
in a way that illustrates the key issues. Throughout t
paper we assume that a larger mean is better, and we
µk ≥ µk−1 ≥ · · · ≥ µ1, so that (unknown to us) systemk
is the best system.

2.1 Subset-Selection Formulation

Suppose that we haven outputs from each of the sys-
tems. Our goal is to use this data to obtain a subs
I ⊆ {1, 2, . . . , k} such that

Pr{k ∈ I } ≥ 1 − α (1)

where 1/k < 1− α < 1. Ideally |I | is small, the best case
being|I | = 1. Gupta’s solution was to include in the setI
all systems̀ such that

X̄`(n) ≥ max
i 6=`

X̄i (n) − hσ

√
2

n
(2)

whereX̄i (n) is the sample mean of the (first)n outputs from
systemi , andh is a constant whose value will depend o
k and 1−α. The proof that rule (2) provides guarantee (1
is instructive and shows what the value ofh should be:

Pr{k ∈ I }

= Pr

{
X̄k(n) ≥ max

i 6=k
X̄i (n) − hσ

√
2

n

}

= Pr

{
X̄k(n) ≥ X̄i (n) − hσ

√
2

n
,∀i 6= k

}

= Pr

{
X̄i (n) − X̄k(n) − (µi − µk)

σ
√

2/n

≤ h − (µi − µk)

σ
√

2/n
,∀i 6= k

}
≥ Pr{Zi ≤ h, i = 1, 2, . . . , k − 1} = 1 − α

where(Z1, Z2, . . . , Zk−1) have a multivariate normal dis-
tribution with means 0, variances 1, and common pairwi
correlations 1/2. Therefore, to provide the guarantee (1
h needs to be the 1−α quantile of the maximum of such a
multivariate normal random vector, a quantile that turns o
s

t

t

to be relatively easy to approximate numerically. Notice
the inequality in the final step where we make use of the
fact thatµk ≥ µi .

A theme that runs throughout much of R&S is first
using appropriate standardization of estimators and then
bounding the resulting probability statements in such a way
that a difficult multivariate probability statement becomes
one that is readily solvable.

2.2 Indifference-Zone Formulation

A disadvantage of the subset-selection procedure in Sec
tion 2.1 is that the retained setI may, and likely will, contain
more than one system. However, there is no procedure tha
can guarantee a subset of size 1 and satisfy (1) for arbitrar
n. Even whenn is under our control, as it is in computer
simulation, the appropriate value will depend on the true
differencesµk −µi ,∀i 6= k. To attack this problem, Bech-
hofer suggested the following compromise: guarantee to
select the single best system,k, wheneverµk − µk−1 ≥ δ,
where δ > 0 is the smallest difference the experimenter
feels is worth detecting. Specifically, the procedure should
guarantee

Pr{selectk|µk − µk−1 ≥ δ} ≥ 1 − α (3)

where 1/k < 1 − α < 1. If there are systems whose
means are withinδ of the best, then the experimenter is
“indifferent” to which of these is selected, leading to the
term indifference-zone (IZ) formulation.

The procedure is as follows: From each system, take

n =
⌈

2h2σ 2

δ2

⌉
(4)

outputs, whereh is an appropriate constant (determined
below) and dxe means to roundx up; then select the
system with the largest sample mean as the best. Assumin
µk − µk−1 ≥ δ,

Pr{selectk}
= Pr

{
X̄k(n) > X̄i (n),∀i 6= k

}
= Pr

{
X̄i (n)−X̄k(n)−(µi −µk)

σ
√

2/n
<− (µi −µk)

σ
√

2/n
,∀i 6=k

}
≥ Pr

{
X̄i (n)−X̄k(n)−(µi −µk)

σ
√

2/n
< δ

σ
√

2/n
,∀i 6=k

}

≥ Pr

{
X̄i (n) − X̄k(n) − (µi − µk)

σ
√

2/n
< h,∀i 6= k

}
= Pr{Zi < h, i = 1, 2, . . . , k − 1} = 1 − α

where again(Z1, Z2, . . . , Zk−1) has a multivariate normal
distribution with means 0, variances 1, and common pairwise



Kim and Nelson

.

e
u

-
s

n
n
u
t

d

e
t

-

is
al
e

f

t

a

),

l-
ng
7)

As
n

h
-

correlations 1/2, implyingh needs to be the 1−α quantile of
the maximum of such a multivariate normal random vector

Notice that the first inequality results from the assump-
tion thatµk − µk−1 ≥ δ, while the second occurs because√

n ≥ √
2hσ/δ. Both of these tricks are standard: the first

frees the probability statement of dependence on the tru
means, while the second frees it of dependence on the val
of the variance.

It is worth noting that, over all configurations of the
true means such thatµk − µk−1 ≥ δ, the configuration
µi = µk − δ,∀i 6= k minimizes the PCS; it is therefore
known as theleast-favorable configuration(LFC). In this
paper we break from the statistics literature in that we will
not be concerned with identifying the LFC; our only interest
is insuring that (3) is met.

Bechhofer’s procedure is essentially a power calcula
tion: how large a sample is required to detect difference
of at leastδ? When true differences are greater thanδ,
Bechhofer’sn may be much larger than needed. By taking
observations and making decisions sequentially, it is ofte
possible to reach an earlier decision. Sequential selectio
procedures can be traced back at least to Wald (1947), b
here we present a procedure due to Paulson (1964) that bet
illustrates the approach that has had the most impact in com
puter simulation. Paulson’s procedure takes observation
fully sequentially—meaning one at a time—andeliminates
systems from continued sampling when it is statistically
clear that they are inferior. Thus, a problem with a single
dominant alternative may terminate very quickly.

Using the same notation as above, letX̄i (r ) be the
sample mean of the firstr outputs of systemi . At each
stager = 1, 2, . . . , n, one output is taken from each system
whose index is inI , where initially I = {1, 2, . . . , k}. At
stager , system` is retained inI only if

X̄`(r ) ≥ max
i∈I

X̄i (r ) − max{0, a/r − λ} (5)

wherea > 0 and 0< λ < δ are constants to be determined,
and n = ba/λc, with b·c meaning round down. The pro-
cedure ends when|I | = 1, which requires no more than
n + 1 stages. Parallels with Gupta’s subset selection an
Bechhofer’s IZ ranking are obvious: At each stage a subse
selection is performed, with the hedging factor(a/r − λ)

decreasing as more data are obtained. In the end, if th
procedure makes it that far, the system with the larges
sample mean is selected.

The following result is used to establish the PCS: Sup
pose Z1, Z2, . . . are i.i.d. N(µ, σ 2) with µ < 0. Then it
can be shown that

Pr
{

Z̄(r ) >
a

r
, for somer < ∞

}
≤ exp

(
2µ

σ 2 a

)
. (6)
e

t
er
-
s

t

Large deviation results, frequently based on the analys
of approximating Brownian motion processes, are centr
to the design of fully sequential procedures that involv
frequent looks at the data.

The approach in this case is to bound the probability o
an incorrect selection(ICS). An ICS event occurs if system
k is eliminated at some point during the procedure. Le
Pr{ICSi } be the probability of an incorrect selection if only
systemsi andk are included in the competition.

The first key inequality is

Pr{ICS} ≤
k−1∑
i=1

Pr{ICSi }. (7)

Decomposition into some form of paired comparisons is
key step in many sequential procedures.

This decomposition allows us to focus only on Pr{ICSi }.
Notice that

Pr{ICSi }
≤ Pr

{
X̄k(r ) < X̄i (r ) + λ − a/r, for somer ≤ n + 1

}
= Pr

{
X̄i (r ) − X̄k(r ) + λ > a/r, for somer ≤ n + 1

}
≤ Pr

{
X̄i (r ) − X̄k(r ) + λ > a/r, for somer < ∞}

≤ exp

(
(µi − µk + λ)

σ 2 a

)
≤ exp

(
(λ − δ)

σ 2 a

)
.

The third inequality comes from the large deviation result (6
while the fourth inequality exploits the indifference-zone
assumption. If we set

a = ln

(
k − 1

α

)
σ 2

δ − λ
(8)

then Pr{ICSi } ≤ α/(k − 1) and

Pr{ICS} ≤ (k − 1)
α

(k − 1)
= α.

2.3 Connection to Multiple Comparisons

MCPs approach the comparison problem by providing simu
taneous confidence intervals on selected differences amo
the systems’ parameters. Hochberg and Tamhane (198
and Hsu (1996) are good comprehensive references.
noted by Hsu (1996, pp. 100-102), the connection betwee
R&S and MCPs comes through multiple comparisons wit
the best (MCB). MCB forms simultaneous confidence in
tervals forµi − max̀ 6=i µ`, i = 1, 2, . . . , k, the difference
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between each system and the best of the rest. Specializ
to the known-variance case, the intervals take the form

µi − max
` 6=i

µ` ∈
[
−
(

X̄i (n) − max
` 6=i

X̄`(n) − hσ

√
2

n

)−
,(

X̄i (n) − max
` 6=i

X̄`(n) + hσ

√
2

n

)+]
(9)

whereh is the same critical value used in Bechhofer’s an
Gupta’s procedures,−x− = min{0, x} andx+ = max{0, x}.
Under our assumptions thesek confidence intervals are
simultaneously correct with probability≥ 1 − α.

Consider the setI containing the indices of all systems
whose MCB upper confidence bound is greater than 0. Thu
for i ∈ I ,

X̄i (n) > max
` 6=i

X̄`(n) − hσ

√
2

n

meaning these are the same systems that would be
tained by Gupta’s subset-selection procedure. Sin
µk − max̀ 6=k µ` > 0, and these intervals are simultane
ously correct with probability≥ 1 − α, systemk will be
in the subset identified by the MCB upper bounds with th
required probability.

Now suppose thatn has been selected such thatn ≥
2h2σ 2/δ2, implying that

hσ

√
2

n
≤ δ

as in Bechhofer’s procedure. LetB be the index of the
system with the largest sample mean. Then the MCB low
bounds guarantee with probability≥ 1 − α that

µB − max
` 6=B

µ` ≥ −
(

X̄B(n) − max
` 6=B

X̄`(n) − hσ

√
2

n

)−

≥ −δ.

The final inequality follows because X̄B(n) −
max̀ 6=B X̄`(n) ≥ 0 by the definition of B, and
hσ

√
2/n ≤ δ because of our choice ofn. As noted by

Nelson and Goldsman (2001), this establishes that t
system selected by Bechhofer’s procedure is guaranteed
be within δ of the true bestunder any configuration of the
means. Further, ifµk −µk−1 > δ, then Pr{B = k} ≥ 1−α

as required.
As a consequence of this analysis both Bechhofer’s a

Gupta’s procedures can be augmented with MCB confiden
intervals “for free,” and Bechhofer’s procedure is guarantee
to select a system withinδ of the best. Nelson and Matejcik
d

,

-

o

(1995) establish very mild conditions under which thes
results hold for far more general R&S procedures.

3 SIMULATION ISSUES AND KEY RESULTS

In the previous section we illustrated different approaches
the R&S problem under assumptions such as independen
normality, and known and equal variances. Unfortunatel
such assumptions rarely hold in simulation experiment
There are also opportunities available in simulation expe
iments that are not present in physical experiments. In th
following subsections we describe these issues and oppor
nities, and present key theorems and results that have be
useful in deriving R&S procedures that overcome or explo
them.

3.1 Unknown and Unequal Variances

Unknown and unequal variances across alternatives is a fa
of life in system simulation problems, and the variances ca
differ dramatically. In the simple inventory model presente
in Section 5 the ratio of the largest to smallest variance
almost 4.

There are many subset-selection procedures that perm
an unknown, common variance (see Goldsman and Nels
1998 for one). When variances are unknown and unequ
however, the subset-selection problem is essentially equ
alent to the famous Behrens-Fisher problem. One approa
is to work with the standardized random variables

X̄i (n) − X̄k(n) − (µi − µk)(
S2

i
n + S2

k
n

)1/2 , i = 1, 2, . . . , k − 1. (10)

Neither the joint nor marginal distributions of these quanti
ties are conveniently characterized. If you break the require
joint probability statement up into statements about the in
dividual terms, using techniques described below, then the
are at least two solutions available. Welch (1938) suggest
approximating each term in (10) as having atν̂ distribution,
where the degrees of freedom̂ν is an approximation based
on the values ofS2

i and S2
k . Banerjee (1961) proposed a

probability bound that we specialize to our case:
Theorem 1 (Banerjee 1961) SupposeZ is N(0, 1)

and independent ofYi and Yk, which are themselves inde-
pendentχ2

ν random variables. Then for arbitrary but fixed
0 ≤ γ ≤ 1,

Pr

{
Z2

γ
Yi
ν

+ (1 − γ )
Yk
ν

≤ t2
1−α/2,ν

}
≥ 1 − α. (11)
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To employ Banerjee’s inequality in our context, identif

Z = X̄i (n) − X̄k(n) − (µi − µk)(
σ2

i
n + σ2

k
n

)1/2

and

γ
Yi

ν
+ (1 − γ )

Yk

ν
=

S2
i

n + S2
k

n
σ2

i
n + σ2

k
n

=
(

σ 2
i

σ 2
i + σ 2

k

)
S2

i

σ 2
i

+
(

σ 2
k

σ 2
i + σ 2

k

)
S2

k

σ 2
k

.

This inequality is used in Procedure NSGS presented
Section 4.

For some time it has been known that it is not po
sible to provide a guaranteed PCS, in the IZ sense, w
a single stage of sampling when variances are unkno
(see Dudewizc 1995 for a comprehensive discussion
this result). Thus, practically useful IZ procedures wo
sequentially—meaning two or more stages of sampling
with the first stage providing variance estimates that h
determine how much, if any, additional sampling is need
in the succeeding stages. However, one cannot simply s
stitute variance estimators into Bechhofer’s or Paulso
procedures and hope to achieve a guaranteed PCS. Ins
the uncertainty in the variance estimators enters into
determination of the sample sizes, invariably leading
more sampling than would take place if the variances w
known.

A fundamental result in parametric statistics is th
following: If X1, X2, . . . , Xn are i.i.d. N(µ, σ 2), then X̄
andS2 are independent random variables. The result exte
in the natural way to random vectorsX j that are multivariate
normal. An extension of a different sort, due to Stein (194
is fundamental to R&S procedures with unknown varianc

Theorem 2 (Stein 1945) SupposeX1, X2, . . . , Xn

are i.i.d. N(µ, σ 2), and S2 is σ 2χ2
ν /ν and independent of∑n

i=1 X j and of Xn+1, Xn+2, . . . .

1. If N ≥ n is a function only ofS2 then

X̄(N) − µ

S/
√

N
∼ tν . (12)

2. If ξ > 0 and

N = max

{⌈
S2

ξ2

⌉
, n + 1

}

-

n

-
h
n
f

p
d
b-
s
ad,
e

e

s

,
:

then for any weightsw1, w2, . . . , wN satisfying∑N
j =1 w j = 1, w1 = w2 = · · · = wn, and

S2∑N
j =1 w2

j = ξ2 we have

∑N
j =1 w j X j − µ

ξ
∼ tν . (13)

In the usual case whereS2 is the sample variance of the first
n observations,ν = n− 1. The importance of this result in
R&S is that it allows determination of a sample size larg
enough to attain the desired power against differences o
leastδ without requiring knowledge of the process varianc

If comparisons of onlyk = 2 systems were necessary
then Stein’s result would be enough (at least in the i.i.
normal case). But our problem is multivariate, making join
probability statements about

X̄i (Ni ) − X̄k(Nk) − (µi − µk)

S ik
, i = 1, 2, . . . , k − 1 (14)

whereS2
ik is a variance estimate based on an initial samp

of size (say)n, and Ni and Nk are the final sample sizes
from systemsi and k. The joint distribution of these
random variables is quite messy in general, even if a
systems are simulated independently (as we assume in
section). One approach is to condition onSik and X̄k(Nk)

and apply inequalities such as the following to bound th
joint probability:

Theorem 3 (Kimball 1951) Let V1, V2, . . . , Vk

be independent random variables, and le
gj (v1, v2, . . . , vk), j = 1, 2, . . . , p, be nonnegative,
real-valued functions, each one nondecreasing in each
its arguments. Then

E

 p∏
j =1

gj (V1, V2, . . . , Vk)

 ≥
p∏

j =1

E
[
gj (V1, V2, . . . , Vk)

]
.

Kimball’s theorem is actually only the casek = 1; see
Hochberg and Tamhane (1987) for the extension.

Theorem 4 (Slepian 1962) Let (Z1, Z2, . . . , Zk)

have ak-variate normal distribution with zero mean vec
tor, unit variances, and correlation matrixR = {ρi j }. Let
ξ1, ξ2, . . . , ξk be some constants. If all theρi j ≥ 0, then

Pr

{
k⋂

i=1

(Zi ≤ ξi )

}
≥

k∏
i=1

Pr{Zi ≤ ξi }.

Notice that, conditional on theS2
ik , the terms in (14) are

positively correlated (due to the commonX̄k(Nk) term), pro-
viding the opening to apply Slepian’s inequality. Kimball’s
inequality then can be applied to simplify the uncondition
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ing onS2
ik . Both of these ideas are employed in the desi

of Procedure NSGS below.

3.2 Non-Normality of Output Data

Raw output data from industrial and service simulations a
rarely normally distributed. Surprisingly, non-normality
usually not a concern in simulation experiments that
are designed to make multiple independent replicatio
and (b) use a within-replication average of a large num
of raw simulation outputs as the basic summary measu
This is frequently the situation for so-called “terminatin
simulations” in which the initial conditions and stoppin
time for each replication are an inherent part of the definiti
of the system. A standard example is a store that op
empty at 6 AM, then closes when the last customer to arr
before 9 PM leaves the store. If the output of interest
the average customer delay in the checkout line over
course of the day, and comparisons will be based on
expected value of this average, and the average is over m
individual customer delays, then the Central Limit Theore
suggests that the replication averages will be approxima
normally distributed.

Difficulties arise in so-called “steady-state simulation
where the parameter of interest is defined by a limit
the time index of a stochastic process approaches infi
(and therefore forgets its initial conditions). Some stead
state simulations are amenable to multiple replications
each alternative and within-replication averages as summ
statistics, in which case the preceding discussion app
Unfortunately, severe estimator bias due to residual effect
the initial conditions sometimes force an experiment des
consisting of a single, long replication from each alternati
The raw outputs within each replication are typically neith
normally distributed nor independent. For example, waiti
times of individual customers in a queueing system a
usually dependent because a long delay for one custo
tends to increase the delays of the customers who foll
The best we can hope for is an approximately station
output process from each system, but not normality
independence.

The most common approach for dealing with this pro
lem is to transform the raw data intobatch means, which are
averages of large number of raw outputs. The batch me
are often far less dependent and non-normal than the
output data. There are problems with the batching appro
for R&S, however. If a “stage” is defined by batch mea
rather than raw output, then the simulation effort consum
by a stage is a multiple of the batch size. When a large ba
size is required to achieve approximate independence—
batch sizes of several thousand are common—then the se
tion procedure is forced to make decisions at long interva
wasting outputs and time. This inefficiency becomes serio
when fully sequential procedures are employed because
,
r
.

s

y

y

y
.
f

r
.

s

h

h
d
c-
,

e

elimination decisions for clearly inferior systems must wait
for an entire batch to be formed. Therefore, for steady-stat
simulations, selection procedures that use individual raw
outputs as basic observations are desirable.

Although no known procedures provide a guaranteed
PCS for single-replication designs, some procedures hav
shown good empirical performance (e.g., Sullivan and Wil-
son 1989), while others have been shown to be asymp
totically valid. See Law and Kelton (2000) for a general
discussion of replications versus batching, Glynn and Igle
hart (1990) for conditions under which the batch means
method is asymptotically valid for confidence intervals, and
Section 6 for a review of asymptotic analysis of R&S pro-
cedures.

3.3 Common Random Numbers

The procedures described in Section 2 assumed that da
across thek alternative systems are independent. In sim-
ulation experiments this assumption can be made valid b
using different sequences of random numbers to drive th
simulation of each system. However, since we are makin
comparisons, there is a potential advantage to using com
mon random numbers (CRN) to drive the simulation of each
system because

Var[Xi j − X` j ] = Var[Xi j ] + Var[X` j ] − 2Cov[Xi j , X` j ].
If implemented correctly (see, for instance, Banks, et al
2001), CRN tends to make Cov[Xi j , X` j ] > 0 thereby
reducing the variance of the difference.

R&S procedures often need to make probability state
ments about the collection of random variables

X̄i (n) − X̄k(n) − (µi − µk), i = 1, 2, . . . , k − 1. (15)

The appearance of the common term̄Xk(n) causes depen-
dence among these random variables, but it is often easy
model or tightly bound. The introduction of CRN induces
dependence between̄Xi (n) andX̄k(n) as well. Even though
the sign of the induced covariance is believed known, its
value is not, making it difficult to say anything about the
dependence among the differences (15).

Two approaches are frequently used. The first is
to replace the basic data{Xi j ; i = 1, 2, . . . , k; j =
1, 2, . . . , n} with pairwise differences{Xi j −X` j ; i 6= `; j =
1, 2, . . . , n} because the variance of the sample mean of th
difference includes the effect of the CRN-induced covari-
ance. The second is to apply the Bonferroni inequality to
break up joint statements about (15) into statements abo
the individual terms. Recall that for eventsE1, E2, . . . , Ek−1,
the Bonferroni inequality states that

Pr

{
k−1⋂
i=1

Ei

}
≥ 1 −

k−1∑
i=1

Pr
{Ec

i

}
. (16)
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In the R&S contextEi might correspond to an event like
{X̄i (n) − X̄k(n) − (µi − µk) ≤ h}.

Approaches based on the Bonferroni inequality make n
assumption about the induced dependence, and therefore
very conservative. A more aggressive approach is to assu
some structure for the dependence induced by CRN. O
standard assumption is that all pairwise correlationsρ =
Corr[Xi j , X` j ] are positive, but identical, and all variances
are equal; this is known ascompound symmetry. Nelson
and Matejcik (1995) extended Rinott’s procedure (1978)—
one of the simplest and most popular IZ procedures—
conjunction with CRN under a more general structure calle
sphericity. The specific assumption is

Cov[Xi j , X` j ] =
{

2βi + τ2, i = `

βi + β`, i 6= `
(17)

with τ2 > 0, which is equivalent to assuming that Var[Xi j −
X` j ] = 2τ2 for all i 6= `, a type of variance balance.
This particular structure is useful because there exists
estimator̂τ2 of τ2 that is independent of the sample mean
and has aχ2 distribution (allowing a pivotal quantity to
be formed and Stein’s theorem to be applied). Nelso
and Matejcik (1995) showed that procedures based on th
assumption are robust to departures from sphericity, at lea
in part because assuming sphericity is like assuming that
pairwise correlations equal the average pairwise correlatio

3.4 The Sequential Nature of Simulation

Suppose an IZ ranking procedure is applied in the stud
of k new blood pressure medications. Then “replications
correspond to patients, and the idea of using a fully seque
tial procedure (assign one patient at a time to each dru
then wait for the results before recruiting the next patien
seems absurd. In simulation experiments, however, da
are naturally generated sequentially, at least within ea
simulated alternative, making multi-stage procedures mu
more attractive. However, there are some issues:

• In multiple-replication designs, sequential sam
pling is particularly attractive. All that needs to
be retained to start the next stage of sampling
the ending random number seeds from the prev
ous stage. In single-replication designs it can b
more difficult to resume sampling from a previous
stages, since the entire state of the system must
retained and restored.

• A hidden cost of using multi-stage procedures i
the computational overhead in switching amon
the simulations of thek alternatives. On a single-
processor computer, switching can involve savin
output, state and seed information from the cur
rent system; swapping the program for the curren
system out of, and for the next system into, ac
re
e

t
l
.

-
,

e

tive memory; and restoring previous state and see
information for the next system. Thus, the over
all computation effort includes both the cost o
generating simulated data and the cost of switch
ing. Hong and Nelson (2003) look at sequentia
IZ procedures that attempt to minimize the tota
computational cost.

• If k processors are available, then an attractiv
option is to assign each system to a process
and simulate in parallel. This is highly effective
in conjunction with R&S procedures that require
little or no coordination between the simulations
of each system, such as subset-selection proc
dures or IZ-ranking procedures that use only var
ance information (and not differences among th
sample means). Unfortunately, a fully sequentia
procedure with elimination would defeat much o
the benefit of parallel processing because com
munication among the processors is required aft
generating each output.

Many sequential procedures are based on results
Brownian motion processes. LetB(t; 1) be a standard
Brownian motion process with drift1. Consider the partial
sum of the pairwise differenceDi (r ) = ∑r

j =1(Xkj − Xi j ),
r = 1, 2, . . . . If the Xi j are i.i.d. normal, andµk −µi = δ,

then {Di (r ), r = 1, 2, . . .} D= {σB(t; δ/σ), t = 1, 2, . . .},
where σ 2 = Var[Xkj − Xi j ] (with or without CRN). In
other words,Di (r ) is a Brownian motion process with drift
observed only at discrete (integer) points in time. A grea
deal is known about the probability of Brownian motion
processes crossing boundaries in various ways (see,
instance, Siegmund 1985 or Jennison and Turnbull 2000
we display one specific result below. Thus, it seems natu
to design R&S procedures forσB(t; δ/σ) and apply them
to Di (r ).

Let c(t) be a symmetric (about 0) continuation region
for σB(t; δ/σ), and let an incorrect selection correspon
to the process exiting the region in the wrong directio
(down, when the drift is positive). IfT = inf {t ≥ 0 :
|σB(t; δ/σ)| > c(t)}, then

Pr{ICSi } = Pr{σB(T; δ/σ) < 0}.

Of courseσB(t; δ/σ) is only an approximation forDi (r ).
However, Jennison, et al. (1980) show that under ve
general conditions, Pr{ICSi } is no greater if the Brownian
motion process is observed at discrete times; thus, proc
dures designed forσB(t; δ/σ) provide an upper bound on
the probability of incorrect selection forDi (r ). In con-
junction with a decomposition into pairwise comparisons
as in (7), this result can be used to derive R&S procedur
for k ≥ 2.

Fabian (1974) tightened the triangular continuation re
gion used by Paulson, and this was exploited by Hartma
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(1988, 1991), Kim and Nelson (2001, 2003) and Hong a
Nelson (2003).

Theorem 5 (Fabian 1974) Let {B(t,1), t ≥ 0} be
a standard Brownian motion with drift1 > 0. Let

l (t) = −a + λt

u(t) = a − λt

for somea > 0 and λ = 1/(2b) for some positive integer
b. Let c(t) denote the continuation region(l (t), u(t)) and
let T be the first time thatB(t,1) /∈ c(t). Then

Pr{B(T,1) < 0} ≤
b∑

j =1

(−1) j +1
(

1 − 1

2
I( j = b)

)
× exp{−2aλ(2b − j ) j }.

Fabian’s bound on Pr{ICS} is particularly useful be-
causea is the term that depends on the sample varian
(see Paulson’sa in Equation (8) for intuition). Thus, ap-
propriately standardized, exp(−a) is related to the moment
generating function of a chi-squared random variable, whi
simplifies unconditioning on the sample variance.

3.5 Large Number of Alternatives

The number of alternatives of interest in simulation problem
can be quite large, with up to 100 being relatively commo
However, Bechhofer-like IZ procedures were developed f
relatively small numbers of alternatives, say no more th
20. They can be inefficient when the number of alternativ
is large because they were developed to protect against
LFC—the configuration of system means under which
is most difficult to correctly select the best—to free th
procedure from dependence on the true differences amo
the means. The Slippage Configuration (SC),µi = µk − δ

for i = 1, 2, . . . , k − 1, is known to be the LFC for many
procedures.

When the number of systems is large we rarely encoun
anything remotely like the SC configuration, because lar
numbers of alternatives typically result from taking all fea
sible combinations of some controllable decision variable
Thus, the performance measures of the systems are lik
to be spread out, rather than all clustered near the be
Paulson-like procedures with elimination might seem to b
a cure for this ill, but the inequalities used to decompose t
problem ofk systems into paired comparisons with syste
k are typically quite conservative and become much more
with increasingk (although Kim and Nelson’s (2001) fully
sequential procedureKN , described in the next section, ha
been shown to work well for up tok = 500 systems).

To overcome the inefficiency of IZ approaches for larg
numbers of alternatives, one idea is to try to gain the bene
of screening, as in Paulson-like procedures, but avoid t
conservatism required to compensate for so many looks at
.

data. Nelson, et al. (2001) proposed spending some of t
α for incorrect selection on an initial screening stage (usin
a Gupta-like subset-selection procedure), and spending
remainder on a second ranking stage (using a Bechhof
like IZ procedure). Additive and multiplicativeα spending
is possible, depending on the situation (see Nelson, et
2001 and Wilson 2001). The resulting procedure, name
NSGS, is presented in the next section.

This so-called “α-spending” approach—spreading the
probability of incorrect selection across multiple stages—
a general-purpose tool, and there is no inherent reason
use only a single split. See Jennison and Turnbull (200
for a thorough discussion.

4 EXAMPLE PROCEDURES

In this section we present two specific procedures to illu
trate the concepts described in earlier sections. The NSG
procedure, due to Nelson, et al. (2001), and theKN pro-
cedure, due to Kim and Nelson (2001), are appropriate f
terminating simulations or for steady-state simulations whe
multiple replications are employed.

The NSGS procedure requires that the output data fro
each system are i.i.d. normal, and that outputs across s
tems are independent, which leaves out CRN. NSGS is t
combination of a Gupta-like subset-selection procedure,
reduce the number of alternatives still in play after the firs
stage of sampling, and a Bechhofer-like ranking procedu
applied to the systems in the subset. The procedure u
α-spending between the subset selection and ranking
control the overall PCS. Banerjee’s inequality allows th
subset selection procedure to handle unequal variances

4.1 Procedure NSGS

1. Specify the overall desired probability of correc
selection 1− α, the IZ parameterδ, a common
initial sample size from each systemn0 ≥ 2, and
the initial number of competing systemsk. Further,
set

t = t
n0−1,1−(1−α/2)

1
k−1

and obtain Rinott’s constanth = h(n0, k, 1−α/2)

from the tables in Wilcox (1984) or Bechoffer et
al. (1995). See also Table 8.3 in Goldsman an
Nelson (1998).

2. Taken0 outputs from each system. Calculate th
first-stage sample meansX̄i (n0) and marginal sam-
ple variances

S2
i = 1

n0 − 1

n0∑
j =1

(
Xi j − X̄i (n0)

)2
,

for i = 1, 2, . . . , k.
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3. Subset Selection.Calculate the quantity

Wi` = t

(
S2

i + S2
`

n0

)1/2

for all i 6= `. Form the screening subsetI , con-
taining every alternativei such that 1≤ i ≤ k
and

X̄i (n0) ≥ X̄`(n0) − (Wi` − δ)+ for all ` 6= i .

4. If |I | = 1, then stop and return the system inI
as the best. Otherwise, for alli ∈ I , compute the
second-stage sample sizes

Ni = max
{
n0, d(hSi /δ)

2e
}

,

whered·e is the ceiling function.
5. TakeNi − n0 additional outputs from all systems

i ∈ I .
6. Compute the overall sample meansX̄i (Ni ) for all

i ∈ I . Select the system with the largestX̄i (Ni )

as best.

Nelson et al. (2001) showed that any subset-select
procedure and any two-stage IZ ranking procedure th
satisfy certain mild conditions can be combined in th
way while guaranteeing the overall probability of correc
selection. The NGSG procedurecan handle a relatively la
number of systems because the first-stage screening is pr
tight. Nelson et al. (2001) provide a revised version of th
NGSG procedure, the Group-Screening procedure, in wh
one can avoid simulating all the systems simultaneous
Boesel et al. (2003) extended the Group-Screening proced
for “clean up” after optimization via simulation.

TheKN procedure isfully sequentialbecause it takes
only a single basic output from each alternative still i
contention at each stage. Also, if there exists clear eviden
that a system is inferior, then it will be eliminated from
consideration immediately—unlike the NSGS procedur
where elimination occurs only after the first stage.KN
also requires i.i.d. normal data, but does allow CRN.KN
exploits the ideas of using paired differences, and controlli
the Pr{ICS} on pairs to control it overall. Fabian’s resul
is used to bound the error of a Brownian motion proce
that approximates each pair.

4.2 ProcedureKN

1. Setup.Select confidence level 1−α, IZ parameter
δ and first stage sample sizen0 ≥ 2. Set

η = 1

2

[(
2α

k − 1

)−2/(n0−1)

− 1

]
.

t

e
ty

.
re

e

2. Initialization. Let I = {1, 2, . . . , k} be the set of
systems still in contention, and leth2 = 2η(n0−1).
Obtain n0 outputs Xi j ( j = 1, 2, . . . , n0) from
each systemi (i = 1, 2, . . . , k) and let X̄i (n0) =
n−1

0

∑n0
j =1 Xi j denote the sample mean of the first

n0 outputs from systemi .
For all i 6= ` compute

S2
i` = 1

n0 − 1

n0∑
j =1

(
Xi j − X` j − [

X̄i (n0) − X̄`(n0)
])2

,

the sample variance of the difference between sys-
temsi and`. Setr = n0.

3. Screening.Set I old = I . Let

I =
{
i : i ∈ I old and

X̄i (r ) ≥ X̄`(r ) − Wi`(r ),∀` ∈ I old, ` 6= i
}

,

where

Wi`(r ) = max

{
0,

δ

2r

(
h2S2

i`

δ2 − r

)}
.

4. Stopping Rule.If |I | = 1, then stop and select the
system whose index is inI as the best.
Otherwise, take one additional outputXi,r+1 from
each systemi ∈ I , set r = r + 1 and go to
Screening.

TheKN procedure requires simulation of all systems
simultaneously and a lot of switching among them. As
discussed in Section 3, the switching cost can overwhelm
the sampling cost, but this has become less of an issue in
modern computing environments.

5 APPLICATION

This section illustrates NSGS andKN using an (s, S)

inventorysystem with the five inventorypolicies as described
in Koenig and Law (1985). The goal of this study is to
compare the five polices given in Table 1 and find the
one with the smallest expected average cost per month for
the first 30 months of operation. Table 1 also contains the
expected cost (in thousands of dollars) of each policy, which
can be analytically computed in this case. We setδ = $1
thousand,n0 = 10 initial replications, and 1− α = 0.95.

Table 2 shows the results of the simulation study for
each procedure, including the total number of outputs taken
and the sample average cost per month for each policy.
In NSGS, policies 3, 4, and 5 were eliminated after the
first stage of sampling, so only policies 1 and 2 received
second-stage samples. InKN , only policies 4 and 5 were
eliminated after the first stage, but the elimination of policies
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Table 1: The Five Alternative Inventory
Policies

Policy i s S Expected Cost
1 20 40 114.176
2 20 80 112.742
3 40 60 130.550
4 40 100 130.699
5 60 100 147.382

Table 2: Simulation Results of the(s, S) Inventory
Policy Example

NSGS KN
Policy i # Obs. Average # Obs. Average

1 209 114.243 98 114.274
2 349 112.761 98 113.612
3 10 130.257 16 130.331
4 10 128.990 10 128.990
5 10 147.133 10 147.133

Total 588 232

3 and 1 occurred after they received 16 and 98 observatio
respectively. This illustrates the value of the tighter initia
screen in NSGS, which takes only one look at the data, a
the potential savings from taking many looks, asKN does.
Both procedures chose policy 2 as the best (which is in fa
correct). Sinceδ is smaller than the true difference, NSGS
andKN will choose the true best with 95% confidence
However, in general we do not have any information abo
the true differences; therefore, the best we can conclu
without prior knowledge is that policy 2 is either the true
best, or has expected cost per month within $1 thousand
the true best policy, with 95% confidence.

6 ASYMPTOTIC VALIDITY

When normality and independence of the output from with
each system are untenable assumptions, proving that R
procedures provide a correct-selection guarantee for a fin
sample is largely hopeless. Nevertheless, well designed p
cedures have shown good empirical performance.Asymp-
totic analysiscan provide theoretical support for this ob
servation. Asymptotic analysis typically means analysis
the simulation effort (run length, number of replications, o
perhaps both) increases (conceptually) without bound. T
power of asymptotic analysis is that many of the problem
specific details that thwart mathematical analysis in th
finite-sample case wash out in the limit. Asymptotic analy
sis, done appropriately, can establish conditions under wh
we can expect procedures to work, rather than just re
ing on limited empirical evidence that they do; it can als
s,
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establish the asymptotic superiority of one procedure ove
another.

We mention two useful regimes for asymptotic analysis
of R&S procedures:

• Dealing with non-normal or dependent data: In
this regime, the goal is to show that a selection
procedure does guarantee the PCS requirement
enough simulation effort is expended. One example
is Kim and Nelson (2003), who drive the run length
to infinity by letting both the indifference zoneδ
and the true differences among the systems’ mean
go to 0, so that the PCS approaches a meaningfu
limit, rather than 1. We can interpret their result
as telling us what will happen as the problem
becomes more and more difficult, which is what
we would like to know since few errors occur in
easy problems where the means are dramaticall
different.

• Comparing procedures: The variance of any sen
sible point estimator will go to zero as the sample
size goes to infinity, but that does not mean tha
all point estimators are equally good. Scaling up
the variance at the same rate at which it is going
to zero can sometimes reveal important difference
among estimators. Similarly, we can look at the
rate at which the simulation effort of an IZ proce-
dure increases asP∗ → 1 and compare the rates
of competing procedures to establish asymptotic
superiority of one over another. See, for instance
Jennison, Johnstone and Turnbull (1982).

7 OTHER FORMULATIONS

Throughout this paper we have focused on the problem o
finding the best when the best is defined as the system wi
the largest or smallest expected performance measure. A
discussed in Section 1, there exist other types of compariso
problems. Here we briefly visit each type of comparison
problem and provide useful references.

1. Comparisons with a standard: The goal of com-
parison with a standard is to find systems whose
expected performancemeasures are larger (smalle
than a standard and, if there are any, to find the on
with the largest (smallest) expected performance
For this type of problem, each alternative needs
to be compared to the standard as well as othe
alternative systems. Nelson and Goldsman (2001
proposed two-stage procedures and Kim (2002
proposed fully sequential procedures.

2. Multinomial selection: In multinomial selection
problem, the definition of the best is the system
that is mostly likely to be the best. In the sim-
ulation context this typically means identifying
the systemi with the largest value ofpi , where
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pi = Pr{Xi j > X` j ,∀` 6= i } for a maximiza-
tion problem. Bechhofer, Elmaghraby, and Morse
(BEM) (1959) proposed a single-stage procedure
that finds the most likely system while meeting
a certain IZ criterion. With simulation in mind,
Miller et al. (1998) devised another single-stage
procedure that achieves a higher probability of
correct selection than does BEM.

3. Bernoulli selection: In Bernoulli selection prob-
lems, the basic output from each system on each
replication is either one (“success”) or zero (“fail”)
and the best is defined as the system with the larges
probability of success. See Chapter 7 of Bechhofer
et al. (1995) for a comprehensive reference.

4. Bayesian approach:Instead of providing a PCS
guarantee, Bayesian approaches attempt to alloca
a finite data budget to maximize the posterior PCS
of the selected system. Chen, et al. (2000) and
Chick and Inoue (2001) are two recent references
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