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ABSTRACT

An input model is a collection of distributions together
with any associated parameters that are used as primit
inputs in a simulation model. Input model uncertainty arise
when one is not completely certain what distributions and/o
parameters to use. This tutorial attempts to provide a sen
of why one should consider input uncertainty and wha
methods can be used to deal with it.

1 INTRODUCTION

Consider the following artificial examples of decision prob
lems where simulation can play a role. (Any resemblanc
to real people is entirely coincidental.)

Example 1: Bruce Lee runs a bakery that is open from
6am till 3pm every day. During that time customers arriv
according to a Poisson process at rate3. The rate3 varies
from day to day in an i.i.d. fashion, and on any given da
is gamma distributed with parametersα > 0 andβ > 0, so
that the density of3 at x > 0 is proportional toxα−1e−x/β .
A single staff member can serve a customer in an amou
of time that is exponentially distributed with meanµ−1.
Service times are independent of one another and of t
arrival process, and successive days are independent of
another. Bruce wants to decide how many staff are need
to serve customers so that over the long run at least 90%
customers wait 1 minute or less in line before being serve

Example 2: Steve Russell runs a wine store that is
open from 11am till 8pm every day. During that time cus
tomers arrive according to a Poisson process at rateλ. The
rateλ is fixed, but not known with certainty. However, the
uncertainty is well modelled by assuming thatλ is gamma
distributed with parametersα andβ (the same values as at
Bruce Lee’s bakery). A single staff member can serve a cu
tomer in an amount of time that is exponentially distribute
with meanµ−1(again the same value as at Bruce Lee’
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bakery). Service times are independent of one another a
of the arrival process, and successive days are independ
of one another. Steve wants to decide how many staff a
needed to serve customers so that over the long run at le
90% of customers wait 1 minute or less in line before bein
served.

The structure of these two systems, being multiserv
queues, is the same. Furthermore, customers arrive acco
ing to a Poisson process on any given day, and have
same service time distribution. The difference lies in th
uncertainty associated with the arrival rate of the Poiss
process. In Example 1 this uncertainty takes the form of
varying arrival rate, where the arrival rate variesin a known
fashion. In Example 2 the arrival rate is the same from da
to day, butwe do not know the exact value.

Are these two problems the same? In other word
can we analyze the systems using identical performan
measures and interval-estimation procedures?

I believe that the answer is no.
To understand why, let us consider the calculation

the long-run fraction of customers who wait for 1 minute o
less. Suppose that we observe one of the stores for` days.
Let Ni andSi be the number of customers that arrive to th
store, and the number of customers that reach service i
minute or less, on dayi respectively,i = 1, . . . , `. Then
the fraction of customers that wait for 1 minute or less ov
the ` days is

∑`
i=1 Si∑`
i=1 Ni

.

As ` gets large, this ratio converges to

ES1

E N1
,

as can be seen by dividing both the numerator and deno
inator by ` and applying the strong law of large number
to both.
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Now let us specialize to Example 1. Conditioning on
the arrival rate3 and using a standard result for Poisson
processes we find that

E N1 = E E[N1|3] = E[93] = 9αβ,

where the 9 comes from the fact that the shop is open for
hours. There are several ways to compute or approxima
ES1. One could apply queueing theory, but we will instead
use simulation. Specifically, one can imagine simulating th
bakery operations for a large number of days`. On dayi
we first generate a realization3i of 3 from its distribution,
and then simulate a multiserver queue with arrival rat
3i for the remainder of the day. The simulated random
variables(S1, . . . , S̀ ) are then i.i.d. random variables with
finite variance, and so we can construct a confidence interv
for ES1 in the usual fashion. We see that we can procee
in exactly the fashion that we are used to in conductin
simulation experiments. Interestingly, the situation is no
as clear cut for Example 2.

Consider how we can computeE N1 for Example 2.
In this case there is no need to condition onλ since it is a
deterministic quantity. From a standard result for Poisso
processes,E N1 = 9λ. But what is this value? We do not
know for sure because we do not know the value ofλ. We
have the same problem with computingES1. We could
use simulation to estimate it for any fixed value ofλ, but
what value ofλ should be used? Should we pick a single
value forλ? Or should we sample the value ofλ prior to
each day’s operation as we did in Example 1? If we ar
to perform such sampling, then what should we report t
the simulation user? A confidence interval as before?
so, how should such a confidence interval be interpreted

The answers to these questions vary depending on w
you ask, because this problem is a special case of t
problem of input model uncertainty and there is no gener
agreement on how to proceed.

The general form of this problem may be phrased a
follows. A simulation model relies on the specification of the
distributions and associated parameters (these distributio
could be multivariate) that serve as inputs to the mode
Following the custom of several authors, we reserve th
term model uncertaintyto relate to the choice of a family
of distributions (e.g., normal, exponential, Weibull), and
parameter uncertaintyto relate to the selection of parameters
for those distributions (e.g., mean and variance for th
normal distribution). The terminput model uncertainty
refers collectively to both problems.

This definition also encapsulates input models that a
based on nonparametric methods such as empirical distrib
tion functions. An empirical distribution function (or some
smoothed version thereof) is a particular model choice
Parameter uncertainty then relates to the value of the di
tribution function at the observed points.
e
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The problem is compounded by the fact that for an
fixed input model, simulation can only reportestimatesof
performance measures. In particular, the simulation is bu
from random variables that ensure that the resulting estim
is also random. This form of randomness is the one that w
are very familiar with. It takes various names, dependin
on who you speak with, including statistical uncertainty
stochastic uncertainty, aleatory uncertainty and simulati
uncertainty. This form of uncertainty can be contrasted wi
input model uncertainty as described above, which also h
multiple names including structural uncertainty, subjectiv
uncertainty, and epistemic uncertainty.

It is worth noting that while we are discussing this
problem in the context of stochastic simulation, the proble
is not unique to this field. For example, even if one were
apply queueing formulae to approximate the performan
measure for Example 2 above, one must still deal with t
issue of what to report, and how to decide when Steve Russ
has enough staff members. With deterministic formulae o
no longer has to deal with simulation uncertainty, but on
still has to deal with input model uncertainty.

As a second example, the field of risk analysis ha
grappled with this issue for some time; see Helton (1996
Helton (1997), Helton and Davis (2003) and Oberkam
et al. (2003) for entry points to that literature, and belo
for the approach described in Helton (1996). Oberkam
et al. (2003) describe a wide variety of methods for dealin
with input model uncertainty that draw from such field
as interval analysis, fuzzy set theory, possibility theor
evidence (Dempster-Shafer) theory, and imprecise prob
bility theory. These methods are not included in this surve
because I believe that the methods thatare included are
more appropriate for addressing input model uncertainty
simulation.

As a third example, there is now an area known a
robust optimizationthat deals with optimization problems
with constraints, where the parameters of the optimizatio
problem (not the decision variables) are assumed to
in an ellipsoid L say. These methods require that an
decision be feasible with respect to the constraints forany
choice of the parameters inL. Assuming the problem
is of “minimize” type, they then minimize the maximum
possible value of the objective, where the inner maximu
is over the values of the parameters. Robust optimizati
methods are therefore quite conservative in their approa
Nevertheless, for many problems one does not see much
a deterioration in the optimal value that is reported, and t
recommended solutions are far more robust to perturbatio
in the parameters than is the case for a solution genera
assuming that the parameters take a single value. Mu
of the work in this area is devoted to developing efficien
solution algorithms. See Ben-Tal and Nemirovski (1998
Ben-Tal and Nemirovski (2000) for details and examples
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Consider now the two questions in the title of th
paper. First, why do we care? The answer to this quest
is well understood, and is discussed below. Second, w
should we do about it? The answer to this question is le
clear, and many answers have been proposed. Any met
for dealing with input uncertainty must satisfy at least th
following requirements.

• Transparency– The method should be understoo
by users.

• Validity – The method should be based on a fir
statistical foundation that experts agree is reaso
able.

• Implementability – The method should ideally be
able to be applied to a range of problems witho
any need for expert intervention in each applicatio

• Efficiency – The method should not require a
unduly large amount of computing time.

This paper surveys the methods that have been s
gested for dealing with input uncertainty and is organized
follows. In §2 we answer the question of why we care. §
establishes a framework that allows a concrete discuss
of the various methods that have been proposed to deal w
input uncertainty. In §4 we describe a standard meth
that is standard in the sense that it has been well kno
and used for some time. Next, in §5 we survey some of t
recently proposed methods. Some final remarks are offe
in §6.

2 WHY DO WE CARE?

In this section we explore an example involving the M/M/
queue. Our goal is to explain the motivation for explicitl
addressing input model uncertainty. Our presentation
motivated by the example presented in Barton and Schru
(2001) and elaborated on in Barton et al. (2002), althou
we present the key ideas in a different manner. In particu
we work with parametric classes of distributions as oppos
to empirical distribution functions, and consider the ca
where the simulation is “perfect”, i.e., simulation error is 0
At the end of the section we discuss the example given
Barton and Schruben (2001) in a little more detail, part
to stress that the idealized assumptions of our example
not distort the key issues, although they do simplify som
of the difficulties.

Example 3: Consider an M/M/1 queue with arriva
rateλ0 customers per hour and service rateµ0 customers
per hour. We assume thatµ0 = 10 is known, butλ0 is
not. We take the (unknown) value ofλ0 = 9. We are
interested in computing the expected steady-state sojo
time (time spent in queue and in service) in the syste
which queueing theory gives asf (λ0), where

f (λ) =
{

(µ0 − λ)−1 if λ < µ0,

∞ if λ ≥ µ0.
t

d

-

d

n

,

n

The case whereλ ≥ µ0 corresponds to an unstable system
so that in this case we take the performance to be∞.
The function f also depends onµ0 but we ignore this
dependence in what follows because our focus is on th
unknown parameterλ0. The true value of performance is
f (λ0) = 1.

In this example we do not use simulation but rather, fo
any value ofλ, simply compute the functionf (λ). So here
the function f takes the place of a simulation. One can
view f as a zero-variance simulation, or the result from
simulation that runs for an infinite period of time. Even in
this idealized setting the issue of input model uncertaint
is nontrivial.

We assume thatλ0 must be estimated from interarrival
time data. Suppose that we haven ≥ 1 i.i.d. exp(λ0)

interarrival timesU1, . . . ,Un. The maximum likelihood
estimator ofλ0 from this data isλ̂n = 1/Ūn, the inverse
of the sample mean. Hence, for any finite value ofn, our
estimate ofλ0 will not coincide with the true value of 9
with probability 1. The key question is whether this make
much difference.

Asymptotic theory ensures that forn ≥ 1, the estimator
λ̂n is approximately normally distributed with meanλ0 and
varianceλ2

0/n. We will pretend that this distributional
approximation is exact, and look at performance assumin
this is the case.

Our estimatorλ̂n is normally distributed, so it has
infinite right and left tails. Therefore, no matter how large
n is, there is a positive probability that the queue is unstabl
Furthermore, there is also a positive probability thatλ̂n is
negative since we are assuming that it isexactlynormally
distributed! Of course, the case of a fitted negative arriva
rate never arises in practice because of the form of o
estimator of̂λn. There is no real need to worry about eithe
instability or negative arrival rates whenn is large, since
the chance of these events is then ridiculously small, a
can be quantified by large deviations theory. We ignore th
possibility of a negative arrival rate in what follows, but
explicitly consider the possibility of an unstable queue.

Sinceλ̂n is a random variable, the estimatorf (λ̂n) of
the mean sojourn time is also a random variable. (In fac
it is an improper random variable since it takes the valu
∞ with positive probability.) The randomness arises purel
as a result of input model uncertainty. We can obtain it
distribution by noting that forx > 0

P( f (λ̂n) ≤ x) = P((µ0 − λ̂n)−1 ≤ x, λ̂n < µ0)

= P(µ0 − λ̂n ≥ x−1, λ̂n < µ0)

= P(λ̂n ≤ µ0 − x−1)

= 8

(
µ0 − λ0 − x−1

n−1/2λ0

)
, (1)
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where8 is the cumulative distribution function of a standar
normal random variable. Here (1) follows sinceλ̂n is
normally distributed. Differentiating, we obtain the densit
of f (λ̂n)−1 for x > 0 as

n1/2

λ0x2φ

(
µ0 − λ0 − x−1

n−1/2λ0

)
, (2)

whereφ is the density of a standard normal random variab
The density (2) is plotted for various values ofn in Figure 1.

Figure 1: The Density of the Expected Steady-State
Waiting Time for Variousn

It is important to understand what these densities t
us. For any fixed value ofn, the density gives a sense
of what our “simulation” experiment could predict for the
mean steady-state sojourn time. The height of the dens
as always, gives a sense of how likely a given value is
occur. Some observations are in order.

1. As n increases, the densities shift to the right an
concentrate around 1, indicating that for largen
we are likely to predict a value very close to th
correct value of 1. This is as expected because
n increaseŝλn → λ with probability 1.

2. The densities are not heavily concentrated, even
moderately large values ofn. Therefore it is quite
likely that we will predict values for the steady-
state mean waiting time that are quite differen
from 1, simply because of our error in the estimat
of the arrival rate. We need avery large value of
n, i.e., a significant amount of data, to ensure hig
accuracy.

3. The densities are somewhat skewed, especially
small values ofn, so that most of the probability
concentrates around values significantly small
than 1. So bias is most-likely significant, even fo
moderately largen.
ion
,

r

r

So in this first example, we see that input model un
certainty can have a significant impact on performan
predictions. One needs a very large number of observatio
to ensure high accuracy.

Of course, this example is contrived in several way
First, the system we studied is a heavily-loaded M/M/
queue. Performance measures for such queues are hig
sensitive to input parameters. Hence, this example is p
haps an extreme example of sensitivity to input paramete
Second, the system has no bound on capacity. This is of
a feature ofmodelsbut not of real systems themselves. Fo
example, call centers have a finite number of trunk lines, a
emergency rooms in hospitals can redirect patients to oth
parts of the hospital, or to other hospitals. Nevertheless,
any capacitated queue, similar phenomena arise. Barton
Schruben (2001) explicitly deal with a capacitated queu
in their example, and yet they observe similar behavio
to that shown above. Third, we assumed that interarriv
times were indeed exponentially distributed. In general w
may suspect that this is the case via our understanding o
process, but still not be absolutely sure. Zouaoui and Wils
(2001a) and others call such uncertaintymodeluncertainty
as opposed toparameteruncertainty. Even when we ignore
model uncertainty we see nontrivial behaviour. Finally, w
assumed a “zero variance” simulation. In practice we do n
have this luxury and must explicitly deal with the fact tha
simulation estimates of performance measures are sub
to simulation uncertainty.

As noted above, Barton and Schruben (2001) consid
a similar example in order to demonstrate the difficulties a
sociated with ignoring input model uncertainty. They loo
at a single-server queue with capacity for 10 custome
where customers arriving to a full system are lost. Inste
of using parametric distributions as we did, they instea
use smoothed empirical distribution functions to estima
both the interarrival and service time distributions from
data. They conduct a finite-length simulation run in o
der to estimate the expected steady-state sojourn time o
customers that actually enter the queue. As the simu
tion runlength increases, the confidence intervals reduce
width. For an infinite simulation runlength the confidenc
interval widths would converge to 0, giving an exact resu
just as we assumed in the above example. They obse
that the coverage of the confidence intervals, given by t
fraction of their confidence intervals that cover the tru
value of the performance measure, deteriorates as the s
ulation runlength increases. As they point out, this is to b
expected because any one of their experiments first samp
an interarrival and service time distribution. The sample
distributions differ from the true distributions, and so th
simulation experiment estimates the performance associa
with the wrong system.

Typically, simulation is used to provide insight so tha
a decision can be made. In Example 2 above the decis
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is how many staff to hire to ensure satisfactory custom
service. The main reason that we care about input mod
uncertainty is that it may lead us to an incorrect decisio
If we underestimate the true arrival rate in Example 2
then we will likely not hire enough staff members to ensur
satisfactory waiting times. If we overestimate the true arriv
rate then we will provide better service than we expecte
(not such a bad thing), but at the financial cost of hirin
too many staff. While these issues may not be so critic
in a bakery or wine store, they are of more concern whe
one is dealing with an emergency service call center, f
example.

3 FRAMEWORK

Let us consider a fairly general framework that will allow
a concrete discussion of the issues. This framework
essentially that proposed in Cheng (1994) with a sma
extension to allow for model uncertainty, and another slig
modification of notation to reduce reliance on the Gree
alphabet!

We wish to computeα = f (m0, θ0), where the function
f depends on two variables. The first variablem indexes
a (potentially uncountably infinite) class of models. Th
second variableθ ∈ <p represents a finite-dimensional se
of parameters. For a given modelm, one may not need
all p parameters since various models require more or le
parameters. For example, the normal distribution has
parameters while the exponential has only 1.

The quantitiesm0 and θ0 represent the “true” model
and its associated parameters. The notion of a “true” mod
and set of parameters is contrary to a Bayesian philosop
When we come to Bayesian methods we will modify th
discussion accordingly. The functionf gives, for eachm
andθ , the exact value of the desired performance measu
that would be obtained from a simulation with zero varianc

A simulation model is available that can be used t
estimatef (m, θ). Specifically the simulation model can be
used to generate i.i.d. samples(Xi (m, θ) : i ≥ 1), where
the samples are unbiased (E Xi (m, θ) = f (m, θ)) and have
finite varianceσ 2(m, θ).

This structure fits well with most terminating simu-
lations where the goal is to compute an expected valu
There are, however, simulation problems that do not fit th
framework very well. An important class of problems tha
is excluded is steady-state simulation where initializatio
bias and choice of runlength play an important role. A
another example, the problem of computing a quantile
the distribution ofX(m0, θ0) does not fit our structure. For
the problem of quantile estimation one can still view th
performance measure as a functionf of m andθ , but the
function is no longer given byf (m, θ) = E X1(m, θ).

Suppose that one selects modelm̂ and associated pa-
rametersθ̂ . These selections may be based on data
l

l
.

.

otherwise, and may be random or nonrandom. One th
fixesm̂ andθ̂ and then conditional on these values, obtain
an i.i.d. sample of sizè, (Xi (m̂, θ̂ ) : 1 ≤ i ≤ `). One then
estimatesf (m0, θ0) by the sample average

α̂ = 1

`

∑̀
i=1

Xi (m̂, θ̂ ).

One way to measure the quality ofα̂ is through its mean
squared error

E(α̂ − α)2 = var(α̂) + bias(α̂)2.

The bias is given by

E f (m̂, θ̂ ) − f (m0, θ0). (3)

The variance can be further broken down using the con
tional variance formula as in Cheng (1994) to give

var(α̂) = Evar(α̂|m̂, θ̂ ) + varE(α̂|m̂, θ̂ )

= Eσ 2(m̂, θ̂ )

`
+ var f (m̂, θ̂ ). (4)

We label the two terms in (4) expected simulation varianc
and input model variance respectively. Thus, the me
squared error of̂α has three components: squared bia
expected simulation variance and input model variance.

In Example 3 there was only a single choice of modelm0.
We assumed a zero-variance simulation so thatσ 2(m0, θ)

is identically 0 for anyθ . Input model variance is simply
the variance associated with the density that was plotte
Bias is identified by comparing the mean of the densi
with the true value 1.

4 THE “STANDARD” APPROACH

We have seen that input model uncertainty can have
dramatic impact on performance predictions, and therefo
on the decisions one makes based on the results of
simulation study. So what should one do about it? In th
section we describe one of the currently used methods
dealing with input model uncertainty.

Bruce Schmeiser discusses input model uncertainty
Barton et al. (2002). He draws a clear distinction betwee
model error (as can be quantified by bias as in (3)) a
simulation error (quantified by simulation variance, i.e
the first term in (4)), but does not discuss input mod
variance. His main point is that so long as the simulation us
understands that the error bounds reported by a simulat
are with respect to simulation error alone, “all is well.” To
paraphrase his position, both bias and input model varian
are irrelevant so long as one understands that simulation
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only a tool for analyzing the system with the selected inp
model and parameters.

Schmeiser also explicitly recognizes that it is importan
to obtain a sense of the effect of modeling error. He the
argues that these two problems should be treated separa
This position is a reasonable one, and one that is essentia
the status quo. There are some difficulties with this overa
framework though, and we describe some of them below

A tool that is often used to explore the impact of in
put model uncertainty issensitivity analysis. A sensitivity
analysis (e.g., Kleijnen 1994, Kleijnen 1996) is performe
by varying the input distributions and parameters in som
manner, and observing the changes in the output. This
often done in a somewhat haphazard way, although the
are benefits to formalizing the approach using design of e
periments and/or regression approaches. See, e.g., Cha
12 of Law and Kelton 2000 for an accessible introductio
to these techniques.

A standard, and often recommended, approach to qua
tifying the effect of parameter uncertainty is to use a 2k

factorial design. In this approach there arek (say) different
parameters that are to be adjusted. The goal is to det
mine which parameters or parameter combinations have
significant effect on the output. If such parameters can
identified, then we can decide whether to collect more da
to help improve the accuracy of estimates of these inp
parameters or not. Suppose we restrict attention to 2 p
sible values (high and low) for each parameter. Then the
are 2k possible parameter settings that could be consider
One then runs a simulation experiment at each of the
parameter settings, and uses the results to determine wh
parameter combinations have a significant impact on t
output performance measure.

Perhaps the greatest problem with this approach is th
for large numbers of parametersk, a factorial design can re-
quire a tremendous amount of computation, i.e., the approa
is not efficient. One might then use a fractional-factoria
design, or screening methods to reduce the dimensiona
of the problem (Kleijnen 1998). However, at this stag
it starts to become necessary to have expert guidance
how to proceed, so that we run into difficulties withimple-
mentability. There are also other issues such as the select
of the high and low levels of each parameter.

These and several other issues are discussed in Kleijn
(1994), Kleijnen (1996), Kleijnen (1998). Kleijnen also
briefly mentions uncertainty analysis, primarily in a settin
like that of Example 3, where there is no simulation erro
but also in the general case where simulation error is prese
Uncertainty analysis involves randomly sampling the inpu
parameters before each simulation run, but then holdi
the parameters constant during the run. Kleijnen (199
also gives some references to early work that implemen
such uncertainty analysis, predominantly in the case whe
ly.
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models are deterministic so that simulation error is n
present.

5 RECENTLY PROPOSED METHODS

We now turn to some of the more-recently proposed metho
for dealing with input model uncertainty in the presence
simulation error.

The closest method to that described in the previous s
tion was described in Freimer and Schruben (2002). Freim
and Schruben give two design of experiments methods
deciding how much data to collect for one or more p
rameters. Both of their methods iteratively search for
amount of data so that the difference in the results of t
simulation experiment are statistically indistinguishable
extreme values of the parameter settings. The extreme
ues they select are the endpoints of confidence intervals
the parameters. In other words, they search for an amo
of input data that is sufficient to ensure that simulation va
ance dominates both bias and input model variance. Th
approach is certainly implementable (it requires only a fe
easily-understood inputs from the simulation user and t
rest of the procedure is automated). Unfortunately, bo
of their approaches may require a large amount of co
putation. Furthermore, they use repeated hypothesis te
which, while not unreasonable and certainly common
the literature, is a potential source of concern. Finally, t
amount of data reported as required is related to simulat
variance, and not to an error tolerance prescribed by
user.

5.1 Delta-Method Approaches

Starting with Cheng (1994) and continuing with Chen
and Holland (1997), Cheng and Holland (1998), Chen
and Holland (2003), Cheng and Holland have develop
a framework and several methods for dealing with inp
model uncertainty. The framework given by Cheng (199
has been adopted by several authors including Zoua
and Wilson (2001b), Zouaoui and Wilson (2001a). (Th
framework is slightly extended in §3.) The framewor
assumes that the modelm0 is specified with certainty, but
that the parametersθ are not. The parameters are ofte
assumed to be approximately normally distributed as
the case, under mild regularity conditions, when maximu
likelihood is used to estimateθ0. Cheng (1994), Cheng and
Holland (1997) use the delta method (see, e.g., Hender
2000, Henderson 2001) to determine the first-order terms
the combined simulation variance and input model varian
(4). The bias (3) is not considered in these early pape
They give estimators for the first-order variance terms. Th
find that the estimators suffer when there are a large num
of uncertain parameters. To deal with this problem they al
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give a parametric bootstrapping approach that is describ
below with other bootstrapping methods.

Cheng and Holland (1998) introduce two new method
for estimating the combined simulation and input mode
variance, again ignoring bias. The first of these method
involves two stages, where the vector

g = ∇θ f (m, θ)|θ0

is estimated in the first stage, and then in the second sta
the bulk of the simulation effort is run at only 2 paramete
settings that depend on the estimatedg and the covariance
matrix of the estimatêθ of θ0. The second method does
not require the estimation ofg, so that the first stage of
simulation is unnecessary. The second method requires th
the simulation user knows thesign of the entries ing but
not necessarily their absolute values. The method resu
in a conservative confidence interval procedure in the sen
that the variance is overestimated. One might often expe
the signs to be known for scale parameters of distribution
but for other parameters such as shape parameters it see
unlikely that this information would be available. All of
these early methods ignore the bias (3) which, as we ha
seen, can be substantial, and this is perhaps their mo
serious disadvantage.

The second new method given in Cheng and Hollan
(1998) is considerably extended in Cheng and Hollan
(2003). In the later paper, the assumption that the sign
the entries ofg is retained, and a welcome improvement is
that simulation bias is explicitly considered. The author
show that their procedure yields a conservative confiden
interval with only a small amount of computation relative
to their previously-developed methods. This method i
attractive in that its computational requirements are sma
relative to virtually all other currently-known methods, and
it has a sound underlying theory. It has the disadvantag
that it only applies to parameter uncertainty, and it require
the simulation user to know the signs of the componen
of g, which makes the method less implementable tha
it might otherwise be. One can imagine an extension o
this method where the signs of the components ofg are
estimated as part of the procedure. Typically it is muc
easier to estimate thesignof a quantity than it is to estimate
the actualvalue, so that such a procedure might be expecte
to work quite well in practice. It is not yet known how the
performance of this method compares with the Bayesia
approaches described shortly.

Ng and Chick (2001) discuss the issue of how to re
duce input parameter uncertainty for simulations. They em
ploy an approximation that is essentially the delta-metho
approximation introduced in Cheng (1994), although th
interpretation is different since a Bayesian framework i
employed. They use this approximation to decide wha
l,
d

s

e

at

s
e
t
,
ms

e
st
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e
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t

data to collect next to maximally reduce the variance of th
simulation output.

5.2 Bayesian Methods

Starting with Chick (1997) there has been a fair amou
of recent interest in Bayesian methods for simulation inp
analysis (Chick 1997, Chick 1999, Chick 2000, Chick 200
Ng and Chick 2001, Chick and Ng 2002, Zouaoui an
Wilson 2001b, Zouaoui and Wilson 2001a). The idea o
applying Bayesian techniques to simulation analysis is n
new, however, and earlier references can be found in Ch
(1997). The overall philosophy behind these methods is
place a prior distribution on the input models and paramete
of a simulation, update the prior distribution to a posterio
distribution based on available data, and only then run
simulation experiment. The posterior distribution quantifie
uncertainty in the input modelm and parametersθ .

Chick (2001) recommends implementing a Bayesia
model average (Draper 1995). The Bayesian model av
age (BMA) is simplyE f (m̂, θ̂ ), where(m̂, θ̂ ) follows the
posterior distribution. In order to compute this expectatio
Chick (2001) generates i.i.d. replicates ofX(m̂, θ̂ ) by first
sampling a singlem andθ from the posterior and then, based
on those values, generating a singleX(m, θ). This pro-
cess is then repeated and the results are averaged. Zou
and Wilson (2001b), Zouaoui and Wilson (2001a) intro
duce what they call a “BMA-based simulation replicatio
algorithm,” which is essentially a version of the Bayesia
model average where the user exercises control over h
many simulation replications are performed at each samp
model and set of parameters. More specifically, Zouao
and Wilson (2001b), Zouaoui and Wilson (2001a) genera
severalconditionally i.i.d. valuesX1(m, θ), . . . , Xk(m, θ)

for each pair(m, θ) that are sampled, and use various met
ods to decide how many such values to generate at e
pair (m, θ).

Zouaoui and Wilson (2001b) focuses on the speci
case wherem is known with certainty. Zouaoui and Wilson
(2003b) and Zouaoui and Wilson (2003a) are extensio
of the conference papers that include proofs and addition
computational examples.

Chick and Ng (2002) look at the problem of identifying
which input parameters have the greatest impact on t
mean of the simulation output whilesimultaneouslytrying
to obtain accurate estimates of those parameters. They
an entropy-based performance measure that is essenti
the sum of a “model discrimination term” and a “paramete
estimation” term.

The Bayesian framework is an elegant one that enable
clean answer to many vexing questions. There are, howev
several issues that deserve further attention. Perhaps
key issue is that of computational efficiency. It can be qui
difficult to compute the posterior distribution in genera
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so that one often has to resort to computational devic
like Markov chain Monte Carlo methods or importanc
sampling. Chick (2001) provides an overview, and Zouao
and Wilson (2001b), Zouaoui and Wilson (2001a) als
discuss the issue. One of the key problems with eith
of these techniques is the need to tailor the methods
each application, which reduces the implementability of t
Bayesian approach. Some users also object to the nee
specify prior distributions for the data, although it is m
personal view that this is actually a strength of the approa

An important point is how one should interpret th
output of the BMA algorithms given in these papers. Th
standard BMA estimatesE f (m̂, θ̂ ), as does the method
described in Zouaoui and Wilson (2001a), but this c
be substantially different fromf (m0, θ0) due to the bias
(3). This objection makes sense, of course, only when o
adopts the frequentist perspective that there is a single cor
choice (m0, θ0) of the model and parameters. Perhaps
more robust interval-estimation method is the one describ
in Section 4.2.2 of Zouaoui and Wilson (2001b) based
quantiles of the posterior distribution of the simulatio
output, which is essentially a percentile confidence interv
This method bears a close resemblance to certain inter
estimation procedures used with resampling methods.

5.3 Resampling Methods

We do not review the key ideas of resampling here. F
an introduction and overview of resampling methods
simulation, see Cheng (2000), Cheng (2001).

Barton and Schruben (1993) propose two resampl
methods for accounting for input uncertainty. They u
empirical distribution functions (EDFs) to model the dis
tribution functions of independent input random variable
They perform a number of macro replications, where ea
macro replication consists of first sampling the input EDF
from a family of such distribution functions, and then pe
forming a simulation experiment using the sampled emp
ical distribution functions. This approach is similar to
Bayesian model average, in that parameters (EDFs) are
sampled, and then a simulation run is conducted. Their t
methods of resampling are standard bootstrap resamp
and a method that they call uniform resampling.

Barton and Schruben (2001) provide an update on t
approach. They also describe the construction of inter
estimates of performance measures. They recommend
use of percentile confidence intervals for these two metho
They also introduce a method they calldirect resampling
where input data are partitioned into subsamples. Ea
subsample is then used to fit an EDF and a simulati
experiment is performed. They conclude that with suf
cient data one should use direct resampling together witt
confidence intervals, i.e., confidence intervals of the fo
A ± t H , whereA is a point estimate,H is an estimate of
to

.

t

-

t

g

l
e
.

the standard error ofA, and t is a constant related to the
desired confidence level. Given the bias that is evident
Figure 1 even for large values ofn, the direct-resampling
approach does not seem advisable, unless one is sure
the problem under study is not subject to such bias. Give
the bias issue, the use of percentile confidence interva
together with one of the other resampling methods seem
much more advisable.

One potential difficulty with the use of percentile confi-
dence intervals is that they were originally recommended f
use with bootstrapping methods in the absence of simulati
uncertainty. Unfortunately, when simulation uncertainty i
present, the percentile confidence intervals are based o
convolution of input model uncertaintyand simulation un-
certainty, rather than on input model uncertainty alone. Th
same problem is apparent in Section 3 of Cheng and Holla
(2003), where a certain bootstrap method is reviewed, a
in the interval estimation procedure mentioned at the en
of Section 4.2.1 of Zouaoui and Wilson (2001b). There i
not currently any obvious way to separate these two form
of uncertainty using existing resampling methods. It seem
reasonable to expect that as long as simulation uncertainty
“small” relative to input model uncertainty, this convolution
issue will not cause any major problems. However, mo
work is needed to understand exactly how such interva
behave.

In Barton et al. (2002), Barton reviews the resamplin
procedures advanced in Barton and Schruben (1993), Bar
and Schruben (2001). In the same paper, Schruben discus
a variety of possible extensions.

Further discussion of resampling methods for inpu
model uncertainty can be found in Cheng (1994) and Che
and Holland (1997). The emphasis in these papers is
variance rather than bias.

5.4 Induced Distribution Methods

Recall that we assume that the estimatesm̂ andθ̂ of m0 and
θ0 follow a certain distribution. This distribution can arise
through expert solicitation as in Helton (1997), through fre
quentist techniques like maximum likelihood as discussed
Cheng (1994), Cheng and Holland (1997), through Bayesi
formalisms as in Chick (2001), implicitly through a resam
pling scheme, or otherwise. Once this distribution is spec
fied, we viewm̂ and θ̂ as random objects. The distribution
of f (m̂, θ̂ ) gives the distribution of the desired performanc
measure induced purely by input model uncertainty. No
that this distribution excludes any simulation uncertainty
This distribution is therefore a compact representation
the effect of input model uncertainty. This is, in fact, the
distribution associated with the densities that were com
puted in Example 3, where we looked at a problem wit
no simulation uncertainty.
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Andradóttir and Glynn (2003) describe how to estimate
the meanE f (m̂, θ̂ ), which is the same value as the BMA.
Their framework is more general than the one here in tha
it is explicitly designed to incorporate features of steady
state simulations like bias, and they do not restrict attentio
to functions of the formf (m̂, θ̂ ) = E[X1(m̂, θ̂ )|m̂, θ̂ ] as
we do. They perform several macro replications, wher
each macro replication first selects values form̂ and θ̂ ,
and then devotes a varying amount of computational effo
to a simulation at those input model settings. They sho
how to split effort between sampling values form̂ and
θ̂ and simulating at those settings so as to minimize th
mean squared error of an estimator ofE f (m̂, θ̂ ). They also
show that if certain numerical integration schemes that a
superior to Monte Carlo in low-dimensional problems are
used, then one can improve the rate of convergence of t
mean squared error to 0. Here, dimension refers to th
combined dimensions of̂m and θ̂ .

Recall that in the setup of Section 3,f (m̂, θ̂ ) is actu-
ally a conditional expectation,f (m̂, θ̂ ) = E[X(m̂, θ̂ )|m̂, θ̂ ].
Lee (1998) described how to efficiently compute the dis
tribution function of f (m̂, θ̂ ) in the case where(m̂, θ̂ ) has
a discrete distribution, and more generally. Lee and Glyn
(1999) extended the results of Lee (1998) in the discret
distribution case. The discrete distribution case is not of a
much interest as the general case in our discussion sin
parameter uncertainty is often captured through continuo
distributions.

Steckley and Henderson (2003) use kernel density e
timation methods to estimate the density off (m̂, θ̂ ) (when
it exists). Under a variety of conditions they establish tha
the rate of convergence of the estimated density to the tru
density in terms of mean integrated squared error is of th
orderc−4/7, wherec is the computational budget. This rate
is slower than that associated with kernel density estimatio
(c−4/5) in the i.i.d. setting. The difference is due to the
fact that one needs to control the simulation uncertainty a
well as input model uncertainty.

Helton (1996) (see also Helton 1997) summarizes wor
done by a research group at Sandia National Laboratories
risk assessments for nuclear waste disposal. He estimat
for any given m and θ , the complementary cumulative
distribution function (CCDF) ofX1(m, θ), F̄(x; m, θ) =
P(X1(m, θ) > x). When m̂ and θ̂ are recognized as
random variables, one then obtains a family of CCDFs
To manage the multidimensional nature of these results,
then focuses on a fixed valuex = R at which the CCDFs
are evaluated, and looks at the distribution of these valu
induced by the input model uncertainty in̂m and θ̂ . Latin
hypercube sampling is used over the distribution of(m̂, θ̂ )

and Monte Carlo sampling is used for each fixedm andθ

to obtain the results. The use of Latin hypercube samplin
over the distribution of(m̂, θ̂ ) is similar in philosophy to the
use of numerical integration techniques in Andradóttir an
t

t

e

-

e
s

-

e

n
s,

e

s

Glynn (2003). In general, numerical integration technique
should work well in low-dimensional problems, but can be
expected to perform less well when the dimension of(m̂, θ̂ )

is high.

6 CONCLUSIONS

One can quite reasonably argue that there is no need
develop methods that capture input model uncertainty an
simulation uncertainty in the same framework. So long
as the simulation user is aware of potential model error
due to input model uncertainty, interprets the simulation
output accordingly, and conducts sensitivity and/or uncer
tainty analyses all is well. The problem is that the typica
simulation user is not particularly proficient in statistics,
and so is unlikely to be aware of appropriate sensitivity
and/or uncertainty analyses. This suggests the need for
transparent, statistically valid, implementable and efficien
method for understanding input model uncertainty.

A feature of virtually all of the methods designed to
capture input model uncertainty is additional computation
over and above that required when a single model and s
of parameters is chosen, i.e., the standard approach is fo
lowed. This computation almost invariably takes the form
of repeated macro replications where(m̂, θ̂ ) are sampled,
and then one or more simulation runs are performed at th
sampled values. Of course, in the standard method, one us
ally needs to perform a careful sensitivity and/or uncertainty
analysis. Once one factors in the additional computationa
effort required to perform such an analysis, it is no longe
clear that the methods outlined above are computational
more demanding than the standard approach.

The benefit of these methods is a more appropriat
representation of the uncertainty in predictions of perfor
mance measures than in the standard approach. The ext
to which these methods are implementable, i.e., can avo
the need for expert intervention and thus be automated,
one of the chief factors that will determine whether they
will be adopted in the mainstream.

Perhaps an even more important factor in determinin
whether these methods will be adopted is transparenc
These methods need to be understood by users. Educati
of users about the issues and methods available is on
key requirement. Another is ensuring that the results o
these kinds of analyses can be put into a digestible form
Even confidence intervals are not as widely accepted a
we might prefer, and if we are to report a confidence
interval that estimates a deterministic quantity, the user mu
understand the interpretation of the deterministic quantity
This transparency requirement is all the more challengin
when we realize that most simulation models are designe
to estimate a large number of performance measures. O
methods should be able to easily handle such complexity
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At the current point in time there is no clear “winner”
among the methods outlined in this paper. All have adva
tages and disadvantages relative to the other methods
may very well be that many of the methods can be succe
fully applied to a single problem, and the choice of metho
may come down to a matter of taste. Nevertheless, ma
of the methods are still in an early stage of development,
any conclusions about the dominance of one method ov
another are probably somewhat premature.
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