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ABSTRACT If nindependent simulation runs are performed, with run
i using the random stream < [0, 1)S, fori =0, ...,n—1,

Quasi-Monte Carlo (QMC) methods are numerical tech- the Monte Carlo(MC) estimator ofu is

nigues for estimating large-dimensional integrals, usually

over the unit hypercube. They can be applied, at least in 11

principle, to any simulation whose aim is to estimate a Qn= - > fa). (2)

mathematical expectation. This covers a very wide range i=0

of applications. ) ) ) . .

In this paper, we review some of the key ideas of This estimator is unbiased, has variance' n where

guasi-Monte Carlo methods from a broad perspective, with

emphasis on some recent results. We visit lattice rules in o2 = / f2uydu — p? ©)

different types of spaces and make the connections between [0, 1)s

these rules and digital nets, thus covering the two most

widely used QMC methods is assumed finite throughout this paper, and obeys the central-
' limit theorem/n(Qn—u)/o = N(0, 1). The errorQ,—u
1 INTRODUCTION thus converges at ra@p(o//n).

The idea ofQuasi-Monte Carlo(QMC) methods is
to replace the random pointg; by a set of points
Pn = {ug,...,un_1} C [0, 1) that cover the unit hy-
percubd0, 1)S more uniformlythan typical random points.
The two main classes of methods for constructing such point
sets aredigital nets and integration lattices(Niederreiter
1992hb, Sloan and Joe 1994, L'Ecuyer and Lemieux 2002).
We will explain how they work in Section 3.

Can these methods beat ti#,(1/,/n) convergence
rate? The short theoretical answeyés A standard way to
bound the integration error and obtain its convergence rate is
via the Koksma-Hlawka inequality and its generalizations
(Niederreiter 1992b, Hickernell 1998a). The idea is to
consider a Banach spagef functions with nornj|- ||, where

|| f — || measures theariability of f, and a measur@ (Py)
n= / f(u)du (1) of the discrepancy(or non-uniformity) of P, chosen in a
[0.2° way that thevorst-casealeterministic error boun@n—pu| <

wheres is an integer that represents the number of calls | T — I D(Pn) holds forall f < 7. Then, for functionsf

to the RNG required by the simulation. In the case where with bounded variability the error is guaranteed to converge
this number of calls is random and unbounded, we can at least as fast (asymptotically) BPn). It is known that
simply view s as infinite, and assume that the number of there are point set’, (constructed via lattice rules and digital

uniforms that are actuallysedby the simulation is finite  nets) forwhichO(D(Pn)) = O(n~*(Inn)*~%) (Niederreiter
with probability one. 1992b). If we impose the additional condition thit < Py,

whenevem < n, so that lim— - P, represents an infinite
sequence of points whose firgpoints areP, for eachn, then
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When running a stochastic simulation on a computer, the
required (pseudo)randomness is usually produced by a ran-
dom number generator (RNG), whose output is a sequence
(or strean) of real numbers between 0 and 1. This se-
guence is supposed to imitate a typical realization of a
sequence of independent and identically distributed (i.i.d.)
random variables uniformly distributed over the interval
(0,1). The simulation program can then be viewed as
a complicated functionf that transforms this stream of
real numbersu = (ug, Uz, Uz, ...) into an output value

f (u). Frequently, the goal of the simulation is to estimate
a mathematical expectation that can be written as
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the best known rate becom&D(Pn)) = O(n~1(Inn)s).

In both cases, this rate bea®gn—1/?) asymptotically. But
for practical values oh (say,n < 10°), O(n~1(Inn)s1)
wins only if the dimensiors does not exceed 7 or 8. QMC

For randomized QMC point sets, the convergence rate
of the variancéE[(Qn — 1)?] can easily beat that of standard
MC, especially if the functionf is smooth. For example,
if & be the Sobolev class of functions ¢, 1)5 whose

methods have been shown to beat standard MC for certain mixed partial derivativeD' f of order |i| < k all have

problems in up to 1000 dimensions or more. However, the
O(n~1(Inn)s~1) convergence rate implied by the Koksma-
Hlawka inequality does not suffice to explain this success.
A key additional explanation will be given in Section 2:
roughly, QMC can still work nicely iff can be approximated
by a sum of low-dimensional functions.

In classical QMC method$}, is a purely deterministic
point set, so the estimatdp, has zero variance and the
error (orbias) Qn — w is hard to estimate. Imandomized
QMC methods,P; is randomized in a way that it retains
its high uniformity over{0, 1) when taken as a set, while
each of its points has the uniform distribution oyér1)S
when taken individually. ThenQ, becomes an unbiased
estimator ofu, hopefully with smaller variance than the

Euclidean normj|D' f > < 1, then infp, sups c 7 (E[(Qn —
w22 = O(n~%/5-1/2) where the infimum is taken over
all randomized point set®, (Bakhvalov 1962, Heinrich and
Nowak 2002). Wherk/s is large, this is much better than
O(n~%/?). On the other hand, concrete constructions giving
this convergence rate for akyands are not available, and
the hidden constant could be large.

The remainder of this paper is organized as follows. In
Section 2, we recall the functional ANOVA decomposition
of a functionf and discuss the importance of looking at the
lower-dimensional projections when studying the uniformity
of a point setP,. In section 3, we give the definitions and
outline some basic properties of lattice rules and digital nets.
Randomized versions of these point sets, and corresponding

standard MC estimator. To estimate the variance and perhapsyariance expressions and bounds, are also examined. A short

compute a confidence interval gm, one can applym
independent randomizations to the saRye and compute
X and S, the sample mean and sample variance ofrthe
corresponding (independent) values®f. Then, BEX] = u
and E[S,%] = Var[Qn] = mVar[X] (UEcuyer and Lemieux
2000).

One simple example of such a randomization rsua
dom shift modulo 1proposed by Cranley and Patterson
(1976): generate &ingle point u uniformly distributed
over[0, 1)S and add it to each point d®,, coordinatewise,
modulo 1. Since all points oP, are shifted by the same
amount, the set retains most of its structure and unifor-
mity. Another example is aandom digital shift in base
b: generate again a single= (us, ..., Us) uniformly over
[0, 1)S, write the digital expansion in badeof each of its
coordinates, sayj = > 2, dj (b~¢, then addd; , modulo
b to the¢th digit of the digital expansion in bageof the jth
coordinate of each point; € P,. Forb = 2, the digitwise
addition modulob becomes a bitwise exclusive-or, which
is fast to perform on a computer. An interesting property
of this randomization is that if the hypercufig 1)S is par-
titioned into b%**+% rectangular boxes of the same size
by partitioning thejth axis intobd equal parts for each
j, for some integers]; > 0 (such a partition is called a
g-equidissection in base of the unit hypercube, where
g=(qs...,0s)), then the number of boxes that contain
m points, for each integem, is unchanged by the ran-
domization. In particular, if each box contains the same
number of point ofP, before the randomization, then it

also does after the randomization. In this case, we say that § _

P, is g-equidistributed in basé. Several other random-

conclusion completes the paper.
2 ANOVA DECOMPOSITION

The functional ANOVA decompositiofHoeffding 1948,
Owen 1998, Liu and Owen 2003) writek as f(u) =
K+ i s 124 11 (U) where eachf; depends only on
{uj, i € I}, the f|’s integrate to zero and are orthogonal,
and the variance decomposesids= Y ;.. g o Where
0|2 = Var[ f; (U)] for U uniformly distributed ovef0, 1)S.
See the references for explicit definitions of theseand
additional properties.

For each set of coordinatds let P,(l) denote the
projection of P, over the subspace determined by If
there is a set7 of subsets of{l,...,s} of cardinality
much smaller than2and such thad_, . ; o7 ~ o2, then
it suffices to construct, so that the projection®,(1)
are highly uniform for alll € 7, in order to reduce the
important variance termslz. This is generally easier to
achieve than havingll projectionsP, (1) highly uniform.
The set7 of important projections depends of course on
the functionf.

In this context, a functionf is said to haveeffective
dimensiond in proportion p in the superposition sensé
Y jij<d 0f = po? (Owen 1998). Ifpis closeto 1, this means
that f is well approximated by a sum dfdimensional (or
less) functions. For example, a multivariate polynomial
of degreed has effective dimension in proportion 1
in the superposition sensel < 1 for a linear function,

2 for a quadratic function, etc.). Real-life simulations
often involve high-dimensional functions with low effective

izatio_n methods exist and most are adapte(_:i to special types yimension in proportiony close to 1. Special techniques
of point sets; see, e.g., LEcuyer and Lemieux (2002) and ¢4 4150 be used to changen order to reduce the effective

Owen (2003).
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dimension, without changing (Spanier and Maize 1994,
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Morokoff 1998, Owen 1998, Fox 1999). Nevertheless, for
larges and moderatd, the number of projectiong, (1) for
which [1] < d, which equalsy__; (), becomes so large
that it may be too hard or impossible to construct point sets
for which all these projections are very uniform.
Sometimesy", . s of is close too? if J contains all
the setd formed by indices that are not too far apart, and it
suffices to have good uniformity for the corresponding pro-

wherevy, ..., vs € RS are linearly independent ov& and
7Z® C Ls. The approximation oft by Qn with the node set
Pn = LsN[0, 1)S is a called dattice rule (Korobov 1959,
Sloan and Joe 1994). The conditi@f C L implies that
Ls is periodic with period 1 along each of teeoordinates.
Let V be the matrix whose rows are the basis vectors
vi,---,vsandVlitsinverse. The columrs], ..., h{ of
V~1 form a basis of thelual lattice defined ad} = {h €

jections. For example, if one wishes to estimate the average RS : h-v € Z for all v € Ls}, where- denotes the scalar

waiting time per customer in a queueing system, the result
will typically depend strongly on the interaction between

product. One ha&® C L iff (if and only if) L} € Z3iff all
entries ofV~1 are integer. When this holds,= det(V—1)

the interarrival and service times of customers that are close and all entries ol are multiples of In.

to each other in time, and very little on the interaction be-
tween customers that are far from each other in time. This
leads to the following definitionf has effective dimension

d in proportion p in the successive-dimensions serie

> i itd_1). 0<i<s_d O = po? (LEcuyer and Lemieux
2000). The following third definition further reduces the
number of projections considered: has effective dimen-
sion d in proportionp in the truncation sensgCaflisch,
Morokoff, and Owen 1997) iy 4 0Z = po?. Low

Therank of the lattice is the smallest such that one
can find a basis of the formy, ..., v, &41, - , &, Where
ej is the jth unit vector ins-dimensions. In particular,
a lattice rule ofrank 1 has a basis of the form
(a,...,as)/n andvj = g for j > 1, whereaj € Zp
for each j. It is a Korobov rule if vi has the special
form vy = (1, a, a2modn, ..., a1 modn)/n for
somea € Zn. The point setP, of a Korobov lattice
rule can also be written a8, = {(X, ..., Xs)/n such that

effective dimension in the truncation sense can sometimesbe x; € Zp and x; = axj—1 modn for all j > 1}. This is

achieved by setting the simulation experiment (or program)

the set of all vectors of successive values produced by a

in away that the first few random variables that are generated linear congruential generator (LCG) with modulnsand

account for most of the variance ih (Caflisch, Morokoff,
and Owen 1997, Fox 1999, L'Ecuyer and Lemieux 2000).
Point sets should thus be constructed by considering
the uniformity of certain sets of projections. It is natural to
ask that all projections contain as many distinct points as
the original point set, i.e., points should not be superposed
in projections. Adopting constructions for which several

multiplier a, from all possible initial states (including 0).
In this case, the points are easy to enumerate by using the
recurrence.

The projection Ls(l) of Ls over the subspace deter-
mined by | = {i1,...,i,} is also a lattice, with point
set Py(l1). A rule of rank 1 is fully projection-regular
iff gcd(n,a;) = 1 for all j, and a Korobov rule is fully

projections are identical can also make the analysis easier. projection-regular and dimension-stationary iff geda) =

A point set P, in [0, 1)S is calledfully projection-regular
(Sloan and Joe 1994, L'Ecuyer and Lemieux 2000) if for each
non-emptyl C {1,..., s}, Py(l) hasn distinct points. Itis
calleddimension-stationaryLemieux and L'Ecuyer 2001)

if whenever 1<i; < ... <iy, <sand 1< j <s—i,
Pa({ie, ..., ip}) = Pa{{is+1], ...,iy+]j}). This means that
Pn(1) depends only on thepacingsbetween the indices

in 1. Note that naive rectangular grids $n> 2 are not

1 (LEcuyer and Lemieux 2000).

Figure 1 illustrates the point s in s = 2 dimensions
for a Korobov lattice rule witm = 1021 anda = 90. The
vectorsv; = (1/1021 90/1021) andv, = (0, 1) are a basis
of the lattice. This rule is both fully projection-regular and
dimension-stationary. The high regularity and uniformity of
the points over the unit square is apparent. The projection of
P, on each of the two coordinates gives the set of equidistant

projection-regular, because their projections have several points Py({1}) = P,({2}) ={0,1/n,...,(n—1)/n}.

points superposed on each other. In this sense, they are bad

QMC point sets.
3 LATTICE RULES AND DIGITAL NETS
3.1 Ordinary Lattice Rules

We now summarize the main types of construction methods
for QMC point sets, and some of their basic properties. An
integration latticeis a vector space of the form

S
Ls=qv =) hjvj such that each; e Z ¢ ,
=1
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It is possible to construct sequences of Iattictésc
L2 c L3 c ..., sothateach lattice contains the previous one
(Cranley and Patterson 1976, Joe and Sloan 1992, Hicker-
nell, Hong, L'Ecuyer, and Lemieux 2001). Such sequences
permit one to increase the cardinality B sequentially,
without throwing away the points already considered. If the
point setLé N [0, 1) containsng points, thennz_1 must
divide ng, for each&. For example, if theth rule is a
Korobov rule withng = 25 points and multiplierag, then
one must have = az_1 or @z = az_1 + nNg_1 for each
&. That is, when doubling the number of points, there are
only two possibilities for the new lattice in this case.
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Figure 1: The 1021 Points of the Korobov Lattice Rule
with n = 1021 anda = 90 in Two Dimensions

The lattice structure oP, and each of its projections
P, (1) implies that their points belong to a limited number of
equidistant parallel hyperplanes. In two dimensions, these
hyperplanes are lines, as illustrated in Figure 1. We want

3.2 Fourier Expansion of f and Variance
for Randomly-Shifted Lattice Rules

A randomly-shifted lattice retains its lattice structure. For
this reason, applying a random shift modulo 1 to an in-
tegration lattice provides a randomized point set with a
nice structure that facilitates mathematical analysis of the
error and variance. More precisely, let us write Hoairier
expansiorof f as

fuy= > fhexp2rv/=1h-u), (4)
heZs
with Fourier coefficients
f (h) =/ f(u)exp(—27+/—1h - u)du.
[0,1)s
Then, for the Monte Carlo method,
nVarfQnl=o%= Y [f(h)P, (5)
0#heZs
whereas for a randomly-shifted lattice rule,
VarlQal= Y [fP? (6)

0#hel

the distance between these hyperplanes to be small, in order

to avoid large slices of space that contain no point. This
distance forP, (1) happens to equal one over the Euclidean
length of a shortest nonzero vector in the dual latti¢eél ).
Computing it is often called thgpectral tes{Knuth 1998).

It is commonly used to assess the quality of LCGs, and can
be used in exactly the same way for integration lattices. For
example, for eacH in some arbitrarily selected clasg

of subsets 0f0, ..., s— 1}, one could compute the length
£(1) of the shortest nonzero vector ir§ (1), divide it by an

(Tuffin 1998, L'Ecuyer and Lemieux 2000). Note that the
terms in (4) that corresponds to small vectbrsepresent
the main trends (low-frequency components) of the function
f and are usually more important than the high-frequency
ones (largén). Note that the decomposition (5) is finer than
the one given in Section 2, in the sense that egtlorre-
sponds to the sum of terms in (5) for thevhose nonzero
coordinates are those with indiceslinExpression (6) sug-
gests measures of discrepancy of the fdfm#hd* w(h)

upper bound on the best possible value that can be achievedor SUR£hel ¢ w(h) for the integration lattice.s, wheére the

for an arbitrary lattice witm points per unit of volume inl |
dimensions, in order to obtain a normalized value between
0 and 1 for anyl, say, S(1), and then take the worst case
min;c7 S(1) as a figure of merit for the lattice. Ideally,
this figure of merit should be as close to 1 as possible.
For the lattice of Figure 1, one haS({1,2}) = 0.958
and S({1}) = S({2}) = 1. LEcuyer and Lemieux (2000)
provide further details and explicit Korobov rules selected
via this type of criterion in more than two dimensions.
Another possibility could be to take a weighted average
of the S(1). Several other measures of uniformity have
been proposed and used for selecting integration lattices;
see, e.g., (Sloan and Joe 1994, Hellekalek 1998, Hickernell
1998hb, Lemieux and L'Ecuyer 2001).
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weightsw(h) could (ideally) be chosen to decrease with
the norm ofh proportionally with the anticipated values
of |fA(h)|2. In practice, these weights are chosen some-
what arbitrarily, because the Fourier coefficients are hard
to anticipate, but perhaps more work is needed in that di-
rection. If we takew(h) equal to ¥||h|2 multiplied by an
appropriate normalization constant that depends on thie set
of nonzero coordinates &f, then} ., w(h) becomes
equivalent to (is the inverse of) the spectral test figure of
merit min ¢ 7 S(1) discussed earlier. This type of figure of
merit is thus justified both by a geometric argument (dis-
tance between hyperplanes) and by a variance expression
in terms of Fourier coefficients for randomly-shifted lattice
rules.
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3.3 Lattice Rules in Formal Series

In the latticeL s defined above, the vector coordinates are in
R and the linear combinations of the basis vectors are over
7. But integration lattices can also be defined in different
spaces. For example, we can repl&tandZ by the ring

Lp of formal Laurent series with coefficients B, and

by the ringZp[z] of polynomials with coefficients irZy,
respectively, wherd is an arbitrary integer larger than 1
andZy, is the residue ring of integers modud@Niederreiter
1992b, L'Ecuyer 2003, Lemieux and L'Ecuyer 2003). The
lattice

S
= qu (2vj(2) : eachqj(2) € Zplz] ¢ ,
j=1
()

thus obtained, wheng (2), ..., vs(2) arein(Lp)Sis called a
polynomial integration latticeinder the additional condition
that (Zp[2])S C Ls.

An output mappingy : L — R can be defined by

o0 o
) (Z xzzl> = Z x¢bt.
{=w l=w

The polynomial lattice rule(PLR) uses the node sé¥, =
©(Ls) N[0, 1)S = ¢(Ls N Lpo), whereLpo = Lp mod
Zp[z]. Most of the properties of ordinary lattice rules have
counterparts in the context of PLRs.

The basis vectors form a matri¥¥ with rows
V1(2),...,Vs(z), whose inverse V-1 has columns
h1(2)7, ..., hs(2)T that form a basis of thdual lattice

Ls= [v(z)

LE={h@ € (Lp)®: h(@)V(2) € Zplz] for all v(z) € Ls},

whereh(z) - v(z) = Z?Zlhj(z)vj (z). The determinants
det(Ls) = detV) and detL%) = det(V~1) = 1/ det(Ls) do
not depend on the choice of basis. The conditif(z])S <
Ls is crucial to guarantee that all the inverses defined above
do exist even wheb is not a prime (i.e., whefiy, is not a
field). This condition holds ifiv 1 exist and all its entries
are polynomials. Then, detf) is a polynomialP(z), the
number of points is = bX wherek is the degree oP(2),
and each coordinate of any vectz) € Ls has the form
v(2) = p(2)/P(z) for some polynomialp(z).

The rank of the rule is the smallest such that there
is a basis of the formv1(2),..., v (2),& 41, - ,6. A
Korobov PLRis a rule of rank 1 withP(2)vi(2) =
(1, a(z), a%@z) modP(z2), ..., as1(z) mod P(2),
where P(z) is a polynomial of degreek over Zp,
having a multiplicative inverse /P(z) in Lp, and
a(z) € Zp[z]/(P) (the polynomials with degree less than
k). Such a rule is equivalent to using the point set
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Pn = {¢((po(2). ..., ps-1(2))/P(2)) such thatpo(z) €
Zp[z]/(P)} where pj(2) = a(2)pj-1(2) mod P(z) for all

j, i.e., the image byy of all vectors of successive val-
ues produced by a polynomial LCG with modul&%z)
and multipliera(z), from all initial statespo(z). For the
special case where = 2 (the most interesting case), this
corresponds to using all cycles ofliaear feedback shift
register (LFSR) or Tausworthegenerator with characteris-
tic polynomial P(z) (Tezuka 1995, Lemieux and L'Ecuyer

2003).
The projection ofLs over the subspace determined by
| ={i1,...,iy} C {1,...,s} is a polynomial integration

lattice Ls (1) with dual latticeC% (1) and pointsePn(1). For
primeb, one can show (Lemieux and L'Ecuyer 2003) that a
rule of rank 1 withv1(z) = (91(2), 92(2), ..., 0s(2))/P(2)

is fully projection-regular iff gcdg; (z), P(2)) = 1 forall j,
and that a Korobov rule, witlgj (z) = al~1(z) mod P(2),

is fully projection-regular and dimension-stationary iff
gcda(z), P(z) = 1.

PLRs of rank 1 were introduced by Niederreiter (1992a),
and by Tezuka (1990) fob = 2 and the special case of
an irreducibleP(z); see also Niederreiter (1992b), Section
4.4. They were generalized to PLRs of arbitrary rank over
a finite field by Lemieux and L'Ecuyer (2003) and over the
ring Zy by LEcuyer (2003).

3.4 Equidistribution and Measures of Uniformity
for Polynomial Lattice Rules

Recall thatP, is calledg-equidistributed in basbk, for an
integer vectorq = (qy, ..., qgs) > 0, if each box of they-
equidissection of0, 1)® contains the same number of points
from P,, namelyb! points wheret =k —q; — - - - — Qs if

n = bX. If this holds forqy = - - - = gs = ¢ for somet > 1,
we haves-distribution with ¢ digits of accuracy(Tezuka
1995), and the largest sudhis called thes-dimensional
resolutionof P,. This value cannot exceddk/s].

These definitions also apply to projections: Hoe
{in, ...y} € {1,...,8}, the setPy(l) is (G, ..., Gi,)-
equidistributed if each box of the (gi,...,q;,)-
equidissection ofi0, 1)" contains ¥!) points of Py(1),
wherek —t(1) = g, + ...+ q;,. Theresolution gapof
Pa(l) is 8y = |k/n] — ¢, where{, is the n-dimensional
resolution of Py(1).

Forn = b¥, P, is called a(t, k, s)-net in base hf it
is (q1, . . ., Qs)-equidistributed for all non-negative integers
a1, ..., 0s summing tok —t (Niederreiter 1992b). We call
the smallest such the t-value of the net.

For ordinary lattice rules, measures of uniformity such
as the distance between hyperplanes are obtained by com-
puting a shortest vector in the dual lattice. Interestingly,
this is also true for PLRs: The equidistribution aidk, s)-
net properties can be verified by computing the length of
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a shortest nonzero vector in the dual latti€g, with an
appropriate choice of norm.
Foreachintegervector= (qs, . . ., gs), define alength
(or distance function|| - | _q on (Zp[z])® by
logy IN@)ll—q = max (degh;) —aj), (8)
forh(z) = (h1(2), ..., hs(2)) € Zp[z], where de¢hj) is the

degree of the polynomidl; (z) and deg0) = —oo by con-
vention. Leto = MiNgzh(zec: IN(2)]1-q, the length of the

shortest nonzero vector in the dual lattice. Underthe assump-

tion thatb is prime, itis proved in LEcuyer (2003) th&, is
g-equidistributed ift-;” > 1. In particular, the-dimensional
resolution ofPy is equal to log Mingsn(zec: IN(2) [lo- This
shortest vector with respect to the distance funcliio¢) ||o

is relatively easy to compute (Tezuka 1995, Couture and
L'Ecuyer 2000).

Thet-value of P, can also be obtained by computing
the length of a shortest nonzero vector in the dual lattice,
with a different definition of length. Foh(z) € Zp[z],
define|h(2)|; by

S
logy ()l =) _ deghj)

=1

and letty = Mingthzec: IN(@)|z. Then thet-value of
Pn is equal tok — s+ 1 — log, 77 (Niederreiter and Pirsic
2001, L'Ecuyer 2003).

Following the discussion in Section 2 and similar to
what we suggested for ordinary lattice rules, one can con-
sider for PLRs uniformity criteria of the form\ ; =
max ¢y 81 (worst-case resolution gap) or may tﬁ‘/h
or maxes (t — tﬁl), where J is a selected class of sets
I, t; is thet-value for P (1), tﬁ‘ a lower bound on the best
possiblet-value in|l | dimensions, and with the convention
that 0 = 1. The choice of7 is again arbitrary and a
matter of compromise. Iff contains too many sets, not
only the selection criterion will be more costly to compute,
but the best value that it can achieve will be larger, and
therefore the criterion will become less demanding for the
equidistribution of the more important projections. Other
types of uniformity criteria are discussed, e.g., in LEcuyer
and Lemieux (2002).

3.5 Lattice Rules in Formal Series OverZy

We now consider a lattice of the form

K
= Z yiGi (2) such thaty; € Zy for eachi
i—1

Cs=13Vv(2)
)
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whereci(2), ..., c(z) arek vectors ofLL} b.o independent
over Zy, and IetPn = ¢(Cs) C [0, 1)3, WhEI’E(p is defined
as before. Here, the lattice is defined o¥y instead of
over Zp[z] as in (7). The seP, contains exactlyn = bk
distinct points, becausé c L§

To define the dual Iattlce we first define a (non-
commutative) producH in L, by

w2
( Z xoZt

{=—00

00 w2
>® ZWZJ = Z XeYe+1

{=w1 {=w1—1

where the last sum is iflp. Forx(z) = (X1(2), ..., Xs(2))
andy(z) = (y1(2), ..., ¥s(8)) inL}, we definx(2) Oy (2) =
Zle Xj(2) © yj(2). Thedual latticeis then defined as

Cs

{h(2) € (Zp[z])® such that
h(z) ©v(z) =0 for all v(z) € Cs}.

This is a lattice oveZ, i.e., can be written a&- = {h(z) =

Z]j):l Xihj(z) such thatx; € Zy for eachi} for some basis

h1(2), ..., h,(2), wherev is the dimension ot/’sL over Zp.
Equidistribution properties can be determined by com-

puting the lengths of shortest vectors in this dual lattice,

just as for PLRs (L'Ecuyer 2003). Specifically, at least for

primeb, P, is g-equidistributed iff mir@#hecé Ihi—q > 1,

the resolution ofP, is equal to log min()#hecé_ IIh]lo, and

its t-value is equal tk — s+ 1 — logy, minwhe% Ihl.

3.6 Digital Nets and Sequences

The lattice rules ovelZy defined in the previous section
turn out to be equivalent to another very well-known class
of QMC methods: the digital nets, introduced by Sobol’
(1967) in base 2, later generalized by Faure (1982), Nieder-
reiter (1987), and Tezuka (1995), and defined as follows
(Niederreiter 1992b). LeC®, ..., C® be matrices of
dimensionoco x k with elements inZy, for some inte-
gerk > 1 They are thegenerating matrlcesnf the net.

Fori = b — 1, wiite i = Y ¥ la bt and de-
f|ne U| (U|,1, N U|ys) Whereuu = Z@:l U|’J,Zb and
(Ui,j,1 Ui,j,z,.--)T = CD@p,a1,...,8k1)". The

point setP, = {uo, ..., Un_1} thus obtained, witm = b¥,

is adigital netoverZy. Thesen points are distinct in their
first ¢ digits iff the £s x k matrix formed by taking the firgt
rows of eachC')) has rank. The matrice€(}) can also be
defined with an infinite number of columns: we then have
an infinite sequence of points, calleddaital sequence
whose firstb* points form a digital net for each integkr

In concrete implementations, it is worth considering only
a finite number of rows of eacB)), because of the finite
precision of computers.
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Digital nets and sequences can in fact be defined over
an arbitrary commutative ringR of cardinalityb, with an
identity element. It suffices to define bijections betwéen
and Zp to map the digits of théd-ary expansion of to
elements ofR and to recover thé-ary digits ofu; j from
elements ofR (Niederreiter 1992b, L'Ecuyer and Lemieux
2002). A similar generalization also applies to lattices rules
in formal series by incorporating the bijections frdrio Zy,
into ¢. However, the result is no longer a lattice ogyor
Zp[Zz]. Here, we assume th& = Zy, and that all bijections
are the identity, which is usually the case in practice.

For the latticeCs defined in (9), if we write the ba-
sis vectorsci(z) = (Gi,1(2), ..., Cis(2)) wherec j(z) =
Y521cz7¢, and letCl) be theco x k matrix with ele-

mentscéfi) then it turns out that this methods yields exactly
the same point set as the digital net in bhseith generat-
ing matricesC?, ..., C® (UEcuyer and Lemieux 2002,
L'Ecuyer 2003). In other words, a lattice rule in formal
series overZy is just an alternative definition of a digital
net overZy, with identity bijections. These digital nets are
thus lattice rules in an appropriate space.

Several special cases of digital sequences (from which
digital nets can be extracted by taking the first b¥ points
for anyk) have been proposed over the years. The matrices
C) are normally chosen on the basis of some uniformity
criterion, which is often the-value.

In the original construction of Sobol’ (1967) each matrix
Cc) is filled up using a recurrence with primitive charac-
teristic polynomial f; over the finite fieldF,, where the
fj are all distinct and have small degree. The initial states
of these recurrences are called thieection nhumbersand
their choice may have a significant impact on the quality of
the point set. Specific values are suggested by Sobol’ and
Levitan (1976) and used in the implementation of Bratley
and Fox (1988). These values have been chosen sdthat
has s-distribution with one bit of accuracy whem = 25
and two bits of accuracy whem= 4. Equidistribution for
other equidissections was not examined.

In the construction of Faure (1982) and its generaliza-
tions, the basid is the first prime larger or equal to the
dimensions andC) = A;PJ~! whereP is the transposed
Pascal matrix, with element, j) equal to(i‘:ll), andA;
is an arbitrary non-singular lower-triangular matrix. The
resulting point set has the remarkable property of being a
(0, k, s)-net (i.e., has the best possilbigalue) whem = b¥
for any k. Noticing that Faure’s construction is not practi-
cal for larges because it would require too many points,
Niederreiter (1988) has proposed a construction whese
a prime power, but can be smaller thgnand where the
t-value is reasonably small when= bX. More recently,
Niederreiter and Xing (1997) proposed a new class of digital
net sequences with optimal asymptdticalue as a function

87

of s andn, for a fixedb. These sequences improve on the
t-value of Sobol’s sequence for= 2.

The Salzburg tablegPirsic and Schmid 2001) list the
best parameters found for the special case where the digital
net is a Korobov PLR, in an attempt to optimizetitgalue.
Other sets of parameters for PLRs, chosen via a criterion
of the form A 7 defined earlier, can be found in Lemieux
and L'Ecuyer (2001) and L'Ecuyer and Panneton (2002).

3.7 Variance Expressions and Bounds for Randomized
Nets and Lattice Rules in Formal Series

Randomly shifting a set il corresponds to adding a
random formal series to all series in the set, by adding
the corresponding coefficients ify,. In the point setP;,

this transposes to a random digital shift in bdse As
mentioned in the introduction, this type of shift preserves
the equidistribution of everg-equidissection in bask.

A variance expression similar to (6) is available for
(randomly) digitally-shifted lattice rules in formal series
(Lemieux and L'Ecuyer 2003, L'Ecuyer and Lemieux 2002).
The Fourier expansion and coefficients are replaced by Walsh
expansion and coefficients. Just as for ordinary lattice rules,
these expressions suggest that the integration lattices should
be selected so that their dual lattice does not contain short
vectors.

Randomly shifting a point set provides an unbiased
estimator ofu with a minimal amount of randomization
and “perturbation” of the point set. However, more ran-
domization can in some cases reduce the variance. Owen
(1995) has proposed a randomization method calksted
uniform scrambling for digital nets, which randomly per-
mutes the value$0, ..., b — 1} used for the digitay; j ¢,
independently for each coordinaje as follows. One uses
a first permutation fort = 1. For¢ > 1, one uses a
different permutation for each possible value of the pre-
ceding¢ — 1 digitsuj j,1--- Uj j¢—1. To scramble the first
¢ digits thus requiregl + b + - - - + b‘~1)s permutations,
and all these permutations are independent. Owen (1997)
has shown that for smooth enough functions (whose mixed
partial derivatives satisfy a Lipschitz condition) the vari-
ance is inO(n—3(logn)S). With a random digital shift, the
bound is O(n—2(logn)®) instead (LUEcuyer and Lemieux
2002). However, nested uniform scrambling is much more
expensive to apply than the digital shift. Several other less
expensive scramblings have been proposed whose amount
of randomization lie somewhere in between these two; see
Owen (2003) for an overview and a discussion.

4 CONCLUSION
We have reviewed the most common QMC methods and their

randomizations, in the framework of lattice rules in different
spaces. These methods can be used to improve the efficiency
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of simulations. Numerical illustrations of their application Hickernell, F. J. 1998b. Lattice rules: How well do they
and effectiveness can be found in several of the references measure up? IRandom and Quasi-Random Point Sets
given below. On-going work on these methods includes, ed. P. Hellekalek and G. Larcher, Volume 13& etture
among other things, making computer searches for good Notes in Statistics109—166. New York: Springer.
parameters in terms of various selection criteria, developing Hickernell, F. J., H. S. Hong, P. LEcuyer, and C. Lemieux.
extensive general-purpose software tools for QMC, studying 2001. Extensible lattice sequences for quasi-Monte
the effectiveness of QMC methods and comparing them for Carlo quadratureSIAM Journal on Scientific Com-
specific classes of applications, developing QMC rules that puting 22 (3): 1117-1138.

may adapt to the integrand, and studying how the methods Hoeffding, W. 1948. A class of statistics with asymptot-

can be made more effective for high-dimensional problems. ically normal distributions.Annals of Mathematical
Statistics19:293-325.
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