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ABSTRACT

Quasi-Monte Carlo (QMC) methods are numerical tech
niques for estimating large-dimensional integrals, usuall
over the unit hypercube. They can be applied, at least
principle, to any simulation whose aim is to estimate a
mathematical expectation. This covers a very wide rang
of applications.

In this paper, we review some of the key ideas o
quasi-Monte Carlo methods from a broad perspective, wit
emphasis on some recent results. We visit lattice rules
different types of spaces and make the connections betwe
these rules and digital nets, thus covering the two mo
widely used QMC methods.

1 INTRODUCTION

When running a stochastic simulation on a computer, th
required (pseudo)randomness is usually produced by a ra
dom number generator (RNG), whose output is a sequen
(or stream) of real numbers between 0 and 1. This se
quence is supposed to imitate a typical realization of
sequence of independent and identically distributed (i.i.d
random variables uniformly distributed over the interva
(0, 1). The simulation program can then be viewed a
a complicated functionf that transforms this stream of
real numbersu = (u0, u1, u2, . . . ) into an output value
f (u). Frequently, the goal of the simulation is to estimate
a mathematical expectation that can be written as

µ =
∫

[0,1)s
f (u)du (1)

wheres is an integer that represents the number of call
to the RNG required by the simulation. In the case wher
this number of calls is random and unbounded, we ca
simply view s as infinite, and assume that the number o
uniforms that are actuallyusedby the simulation is finite
with probability one.
-

If n independent simulation runs are performed,with ru
i using the random streamui ∈ [0, 1)s, for i = 0, . . . , n−1,
the Monte Carlo(MC) estimator ofµ is

Qn = 1

n

n−1∑
i=0

f (ui ). (2)

This estimator is unbiased, has varianceσ 2/n where

σ 2 =
∫

[0,1)s
f 2(u)du − µ2 (3)

is assumed finite throughout this paper,and obeys the cent
limit theorem

√
n(Qn−µ)/σ ⇒ N(0, 1). The errorQn−µ

thus converges at rateOp(σ/
√

n).
The idea ofQuasi-Monte Carlo(QMC) methods is

to replace the random pointsui by a set of points
Pn = {u0, . . . , un−1} ⊂ [0, 1)s that cover the unit hy-
percube[0, 1)s more uniformlythan typical random points.
The two main classes of methods for constructing such po
sets aredigital nets and integration lattices(Niederreiter
1992b, Sloan and Joe 1994, L’Ecuyer and Lemieux 2002
We will explain how they work in Section 3.

Can these methods beat theOp(1/
√

n) convergence
rate? The short theoretical answer isyes. A standard way to
bound the integration error and obtain its convergence rate
via the Koksma-Hlawka inequality and its generalization
(Niederreiter 1992b, Hickernell 1998a). The idea is t
consider a Banach spaceF of functions with norm‖·‖, where
‖ f −µ‖ measures thevariability of f , and a measureD(Pn)

of the discrepancy(or non-uniformity) of Pn, chosen in a
way that theworst-casedeterministic error bound|Qn−µ| ≤
‖ f −µ‖ D(Pn) holds for all f ∈ F . Then, for functionsf
with bounded variability the error is guaranteed to converg
at least as fast (asymptotically) asD(Pn). It is known that
there are point setsPn (constructed via lattice rules and digita
nets) for whichO(D(Pn)) = O(n−1(ln n)s−1) (Niederreiter
1992b). If we impose the additional condition thatPm ⊆ Pn

wheneverm < n, so that limn→∞ Pn represents an infinite
sequence of points whose firstn points arePn for eachn, then
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the best known rate becomesO(D(Pn)) = O(n−1(ln n)s).
In both cases, this rate beatsO(n−1/2) asymptotically. But
for practical values ofn (say,n ≤ 109), O(n−1(ln n)s−1)

wins only if the dimensions does not exceed 7 or 8. QMC
methods have been shown to beat standard MC for cer
problems in up to 1000 dimensions or more. However, t
O(n−1(ln n)s−1) convergence rate implied by the Koksma
Hlawka inequality does not suffice to explain this succes
A key additional explanation will be given in Section 2
roughly, QMC can still work nicely iff can be approximated
by a sum of low-dimensional functions.

In classical QMC methods,Pn is a purely deterministic
point set, so the estimatorQn has zero variance and the
error (orbias) Qn − µ is hard to estimate. Inrandomized
QMC methods,Pn is randomized in a way that it retains
its high uniformity over[0, 1)s when taken as a set, while
each of its points has the uniform distribution over[0, 1)s

when taken individually. Then,Qn becomes an unbiased
estimator ofµ, hopefully with smaller variance than the
standard MC estimator. To estimate the variance and perh
compute a confidence interval onµ, one can applym
independent randomizations to the samePn, and compute
X̄ and S2

x , the sample mean and sample variance of them
corresponding (independent) values ofQn. Then, E[X̄] = µ

and E[S2
x] = Var[Qn] = mVar[X̄] (L’Ecuyer and Lemieux

2000).
One simple example of such a randomization is aran-

dom shift modulo 1, proposed by Cranley and Patterso
(1976): generate asingle point u uniformly distributed
over [0, 1)s and add it to each point ofPn, coordinatewise,
modulo 1. Since all points ofPn are shifted by the same
amount, the set retains most of its structure and unif
mity. Another example is arandom digital shift in base
b: generate again a singleu = (u1, . . . , us) uniformly over
[0, 1)s, write the digital expansion in baseb of each of its
coordinates, sayu j = ∑∞

`=1 dj ,`b−`, then adddj ,` modulo
b to the`th digit of the digital expansion in baseb of the j th
coordinate of each pointui ∈ Pn. For b = 2, the digitwise
addition modulob becomes a bitwise exclusive-or, whic
is fast to perform on a computer. An interesting proper
of this randomization is that if the hypercube[0, 1)s is par-
titioned into bq1+···+qs rectangular boxes of the same siz
by partitioning the j th axis intobqj equal parts for each
j , for some integersqj ≥ 0 (such a partition is called a
q-equidissection in baseb of the unit hypercube, where
q = (q1, . . . , qs)), then the number of boxes that contai
m points, for each integerm, is unchanged by the ran-
domization. In particular, if each box contains the sam
number of point ofPn before the randomization, then i
also does after the randomization. In this case, we say t
Pn is q-equidistributed in baseb. Several other random-
ization methods exist and most are adapted to special ty
of point sets; see, e.g., L’Ecuyer and Lemieux (2002) a
Owen (2003).
n

.

s

t

s

For randomized QMC point sets, the convergence ra
of the varianceE[(Qn−µ)2] can easily beat that of standard
MC, especially if the functionf is smooth. For example,
if F be the Sobolev class of functions on[0, 1)s whose
mixed partial derivativesDi f of order |i | ≤ k all have
Euclidean norm‖Di f ‖2 ≤ 1, then infPn supf ∈F (E[(Qn −
µ)2])1/2 = O(n−k/s−1/2) where the infimum is taken over
all randomized point setsPn (Bakhvalov 1962, Heinrich and
Nowak 2002). Whenk/s is large, this is much better than
O(n−1/2). On the other hand, concrete constructions givin
this convergence rate for anyk ands are not available, and
the hidden constant could be large.

The remainder of this paper is organized as follows. I
Section 2, we recall the functional ANOVA decomposition
of a function f and discuss the importance of looking at the
lower-dimensional projections when studying the uniformit
of a point setPn. In section 3, we give the definitions and
outline some basic properties of lattice rules and digital net
Randomized versions of these point sets, and correspond
variance expressions and bounds, are also examined. A sh
conclusion completes the paper.

2 ANOVA DECOMPOSITION

The functional ANOVA decomposition(Hoeffding 1948,
Owen 1998, Liu and Owen 2003) writesf as f (u) =
µ +∑

I ⊆{1,...,s}, I 6=φ fI (u) where eachfI depends only on
{ui , i ∈ I }, the f I ’s integrate to zero and are orthogonal
and the variance decomposes asσ 2 = ∑

I ⊆{1,...,s} σ 2
I where

σ 2
I = Var[ f I (U)] for U uniformly distributed over[0, 1)s.

See the references for explicit definitions of thesef I and
additional properties.

For each set of coordinatesI , let Pn(I ) denote the
projection of Pn over the subspace determined byI . If
there is a setJ of subsets of{1, . . . , s} of cardinality
much smaller than 2s and such that

∑
I ∈J σ 2

I ≈ σ 2, then
it suffices to constructPn so that the projectionsPn(I )
are highly uniform for all I ∈ J , in order to reduce the
important variance termsσ 2

I . This is generally easier to
achieve than havingall projectionsPn(I ) highly uniform.
The setJ of important projections depends of course on
the function f .

In this context, a functionf is said to haveeffective
dimensiond in proportion ρ in the superposition senseif∑

|I |≤d σ 2
I ≥ ρσ 2 (Owen 1998). Ifρ is close to 1, this means

that f is well approximated by a sum ofd-dimensional (or
less) functions. For example, a multivariate polynomia
of degreed has effective dimensiond in proportion 1
in the superposition sense (d = 1 for a linear function,
d = 2 for a quadratic function, etc.). Real-life simulations
often involve high-dimensional functions with low effective
dimension in proportionρ close to 1. Special techniques
can also be used to changef in order to reduce the effective
dimension, without changingµ (Spanier and Maize 1994,
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Morokoff 1998, Owen 1998, Fox 1999). Nevertheless, fo
larges and moderated, the number of projectionsPn(I ) for
which |I | ≤ d, which equals

∑d
k=1

(s
k

)
, becomes so large

that it may be too hard or impossible to construct point se
for which all these projections are very uniform.

Sometimes,
∑

I ∈J σ 2
I is close toσ 2 if J contains all

the setsI formed by indices that are not too far apart, and
suffices to have good uniformity for the corresponding pro
jections. For example, if one wishes to estimate the avera
waiting time per customer in a queueing system, the res
will typically depend strongly on the interaction betwee
the interarrival and service times of customers that are clo
to each other in time, and very little on the interaction be
tween customers that are far from each other in time. Th
leads to the following definition:f has effective dimension
d in proportion ρ in the successive-dimensions senseif∑

I ⊆{i,...,i+d−1}, 0≤i≤s−d σ 2
I ≥ ρσ 2 (L’Ecuyer and Lemieux

2000). The following third definition further reduces the
number of projections considered:f has effective dimen-
sion d in proportionρ in the truncation sense(Caflisch,
Morokoff, and Owen 1997) if

∑
I ⊆{1,...,d} σ 2

I ≥ ρσ 2. Low
effective dimension in the truncation sense can sometimes
achieved by setting the simulation experiment (or program
in a way that the first few random variables that are generat
account for most of the variance inf (Caflisch, Morokoff,
and Owen 1997, Fox 1999, L’Ecuyer and Lemieux 2000

Point sets should thus be constructed by consideri
the uniformity of certain sets of projections. It is natural to
ask that all projections contain as many distinct points a
the original point set, i.e., points should not be superpos
in projections. Adopting constructions for which severa
projections are identical can also make the analysis eas
A point set Pn in [0, 1)s is called fully projection-regular
(Sloan and Joe 1994,L’Ecuyer and Lemieux 2000) if for eac
non-emptyI ⊆ {1, . . . , s}, Pn(I ) hasn distinct points. It is
calleddimension-stationary(Lemieux and L’Ecuyer 2001)
if whenever 1≤ i1 < . . . < iη < s and 1≤ j ≤ s − iη,
Pn({i1, . . . , iη}) = Pn({i1+ j , . . . , iη+ j }). This means that
Pn(I ) depends only on thespacingsbetween the indices
in I . Note that naïve rectangular grids ins ≥ 2 arenot
projection-regular, because their projections have seve
points superposed on each other. In this sense, they are
QMC point sets.

3 LATTICE RULES AND DIGITAL NETS

3.1 Ordinary Lattice Rules

We now summarize the main types of construction metho
for QMC point sets, and some of their basic properties. A
integration latticeis a vector space of the form

Ls =

v =

s∑
j =1

h j v j such that eachh j ∈ Z


 ,
e
t

e

e
)
d

d

r.

l
ad

wherev1, . . . , vs ∈ R
s are linearly independent overR and

Z
s ⊆ Ls. The approximation ofµ by Qn with the node set

Pn = Ls ∩ [0, 1)s is a called alattice rule (Korobov 1959,
Sloan and Joe 1994). The conditionZ

s ⊆ Ls implies that
Ls is periodic with period 1 along each of thes coordinates.

Let V be the matrix whose rows are the basis vecto
v1, · · · , vs andV−1 its inverse. The columnshT

1 , . . . , hT
s of

V−1 form a basis of thedual lattice, defined asL∗
s = {h ∈

R
s : h · v ∈ Z for all v ∈ Ls}, where· denotes the scalar

product. One hasZs ⊆ Ls iff (if and only if) L∗
s ⊆ Z

s iff all
entries ofV−1 are integer. When this holds,n = det(V−1)

and all entries ofV are multiples of 1/n.
The rank of the lattice is the smallestr such that one

can find a basis of the formv1, . . . , vr , er+1, · · · , es, where
ej is the j th unit vector ins-dimensions. In particular,
a lattice rule of rank 1 has a basis of the formv1 =
(a1, . . . , as)/n and v j = ej for j > 1, whereaj ∈ Zn

for each j . It is a Korobov rule if v1 has the special
form v1 = (1, a, a2 mod n, . . . , as−1 mod n)/n for
some a ∈ Zn. The point setPn of a Korobov lattice
rule can also be written asPn = {(x1, . . . , xs)/n such that
x1 ∈ Zn and x j = axj −1 mod n for all j > 1}. This is
the set of all vectors of successive values produced b
linear congruential generator (LCG) with modulusn and
multiplier a, from all possible initial states (including 0)
In this case, the points are easy to enumerate by using
recurrence.

The projection Ls(I ) of Ls over the subspace deter
mined by I = {i1, . . . , iη} is also a lattice, with point
set Pn(I ). A rule of rank 1 is fully projection-regular
iff gcd(n, aj ) = 1 for all j , and a Korobov rule is fully
projection-regular and dimension-stationary iff gcd(n, a) =
1 (L’Ecuyer and Lemieux 2000).

Figure 1 illustrates the point setPn in s = 2 dimensions
for a Korobov lattice rule withn = 1021 anda = 90. The
vectorsv1 = (1/1021, 90/1021) andv2 = (0, 1) are a basis
of the lattice. This rule is both fully projection-regular an
dimension-stationary. The high regularity and uniformity o
the points over the unit square is apparent. The projection
Pn on each of the two coordinates gives the set of equidist
points Pn({1}) = Pn({2}) = {0, 1/n, . . . , (n − 1)/n}.

It is possible to construct sequences of latticesL1
s ⊂

L2
s ⊂ L3

s ⊂ . . . , so that each lattice contains the previous o
(Cranley and Patterson 1976, Joe and Sloan 1992, Hick
nell, Hong, L’Ecuyer, and Lemieux 2001). Such sequenc
permit one to increase the cardinality ofPn sequentially,
without throwing away the points already considered. If th
point setLξ

s ∩ [0, 1)s containsnξ points, thennξ−1 must
divide nξ , for eachξ . For example, if theξ th rule is a
Korobov rule withnξ = 2ξ points and multiplieraξ , then
one must haveaξ = aξ−1 or aξ = aξ−1 + nξ−1 for each
ξ . That is, when doubling the number of points, there a
only two possibilities for the new lattice in this case.
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Figure 1: The 1021 Points of the Korobov Lattice Rule
with n = 1021 anda = 90 in Two Dimensions

The lattice structure ofPn and each of its projections
Pn(I ) implies that their points belong to a limited number o
equidistant parallel hyperplanes. In two dimensions, the
hyperplanes are lines, as illustrated in Figure 1. We wa
the distance between these hyperplanes to be small, in or
to avoid large slices of space that contain no point. Th
distance forPn(I ) happens to equal one over the Euclidea
length of a shortest nonzero vector in the dual latticeL∗

s(I ).
Computing it is often called thespectral test(Knuth 1998).
It is commonly used to assess the quality of LCGs, and c
be used in exactly the same way for integration lattices. F
example, for eachI in some arbitrarily selected classJ
of subsets of{0, . . . , s− 1}, one could compute the length
`(I ) of the shortest nonzero vector inL∗

s(I ), divide it by an
upper bound on the best possible value that can be achie
for an arbitrary lattice withn points per unit of volume in|I |
dimensions, in order to obtain a normalized value betwe
0 and 1 for anyI , say,S(I ), and then take the worst case
minI ∈J S(I ) as a figure of merit for the lattice. Ideally,
this figure of merit should be as close to 1 as possibl
For the lattice of Figure 1, one hasS({1, 2}) = 0.958
and S({1}) = S({2}) = 1. L’Ecuyer and Lemieux (2000)
provide further details and explicit Korobov rules selecte
via this type of criterion in more than two dimensions
Another possibility could be to take a weighted averag
of the S(I ). Several other measures of uniformity hav
been proposed and used for selecting integration lattice
see, e.g., (Sloan and Joe 1994, Hellekalek 1998, Hickern
1998b, Lemieux and L’Ecuyer 2001).
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3.2 Fourier Expansion of f and Variance
for Randomly-Shifted Lattice Rules

A randomly-shifted lattice retains its lattice structure. For
this reason, applying a random shift modulo 1 to an in-
tegration lattice provides a randomized point set with a
nice structure that facilitates mathematical analysis of the
error and variance. More precisely, let us write theFourier
expansionof f as

f (u) =
∑
h∈Zs

f̂ (h) exp(2π
√−1h · u), (4)

with Fourier coefficients

f̂ (h) =
∫

[0,1)s
f (u) exp(−2π

√−1h · u)du.

Then, for the Monte Carlo method,

nVar[Qn] = σ 2 =
∑

06=h∈Zs

| f̂ (h)|2, (5)

whereas for a randomly-shifted lattice rule,

Var[Qn] =
∑

06=h∈L∗
s

| f̂ (h)|2 (6)

(Tuffin 1998, L’Ecuyer and Lemieux 2000). Note that the
terms in (4) that corresponds to small vectorsh represent
the main trends (low-frequency components) of the function
f and are usually more important than the high-frequency
ones (largeh). Note that the decomposition (5) is finer than
the one given in Section 2, in the sense that eachσ 2

I corre-
sponds to the sum of terms in (5) for theh whose nonzero
coordinates are those with indices inI . Expression (6) sug-
gests measures of discrepancy of the form

∑
06=h∈L∗

s
w(h)

or sup06=h∈L∗
s
w(h) for the integration latticeLs, where the

weightsw(h) could (ideally) be chosen to decrease with
the norm ofh proportionally with the anticipated values
of | f̂ (h)|2. In practice, these weights are chosen some
what arbitrarily, because the Fourier coefficients are hard
to anticipate, but perhaps more work is needed in that di
rection. If we takew(h) equal to 1/‖h‖2 multiplied by an
appropriate normalization constant that depends on the setI
of nonzero coordinates ofh, then

∑
06=h∈L∗

s
w(h) becomes

equivalent to (is the inverse of) the spectral test figure of
merit minI ∈J S(I ) discussed earlier. This type of figure of
merit is thus justified both by a geometric argument (dis-
tance between hyperplanes) and by a variance expressio
in terms of Fourier coefficients for randomly-shifted lattice
rules.
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3.3 Lattice Rules in Formal Series

In the latticeLs defined above, the vector coordinates are
R and the linear combinations of the basis vectors are ov
Z. But integration lattices can also be defined in differe
spaces. For example, we can replaceR andZ by the ring
L b of formal Laurent series with coefficients inZb and
by the ringZb[z] of polynomials with coefficients inZb,
respectively, whereb is an arbitrary integer larger than 1
andZb is the residue ring of integers modulob (Niederreiter
1992b, L’Ecuyer 2003, Lemieux and L’Ecuyer 2003). Th
lattice

Ls =

v(z) =

s∑
j =1

qj (z)v j (z) : eachqj (z) ∈ Zb[z]

 ,

(7)

thus obtained, wherev1(z), . . . , vs(z) are in(L b)
s is called a

polynomial integration latticeunder the additional condition
that (Zb[z])s ⊆ Ls.

An output mappingϕ : L b → R can be defined by

ϕ

( ∞∑
`=ω

x`z
−`

)
=

∞∑
`=ω

x`b
−`.

The polynomial lattice rule(PLR) uses the node setPn =
ϕ(Ls) ∩ [0, 1)s = ϕ(Ls ∩ L b,0), whereL b,0 = L b mod
Zb[z]. Most of the properties of ordinary lattice rules hav
counterparts in the context of PLRs.

The basis vectors form a matrixV with rows
v1(z), . . . , vs(z), whose inverse V−1 has columns
h1(z)T , . . . , hs(z)T that form a basis of thedual lattice

L∗
s = {h(z) ∈ (L b)

s : h(z)·v(z) ∈ Zb[z] for all v(z) ∈ Ls},

where h(z) · v(z) = ∑s
j =1 h j (z)v j (z). The determinants

det(Ls) = det(V) and det(L∗
s) = det(V−1) = 1/ det(Ls) do

not depend on the choice of basis. The condition(Zb[z])s ⊆
Ls is crucial to guarantee that all the inverses defined abo
do exist even whenb is not a prime (i.e., whenZb is not a
field). This condition holds iffV−1 exist and all its entries
are polynomials. Then, det(L∗

s) is a polynomialP(z), the
number of points isn = bk wherek is the degree ofP(z),
and each coordinate of any vectorv(z) ∈ Ls has the form
v(z) = p(z)/P(z) for some polynomialp(z).

The rank of the rule is the smallestr such that there
is a basis of the formv1(z), . . . , vr (z), er+1, · · · , es. A
Korobov PLR is a rule of rank 1 with P(z)v1(z) =
(1, a(z), a2(z) mod P(z), . . . , as−1(z) mod P(z)),
where P(z) is a polynomial of degreek over Zb,
having a multiplicative inverse 1/P(z) in L b, and
a(z) ∈ Zb[z]/(P) (the polynomials with degree less than
k). Such a rule is equivalent to using the point se
r

e

Pn = {ϕ((p0(z), . . . , ps−1(z))/P(z)) such that p0(z) ∈
Zb[z]/(P)} where pj (z) = a(z)pj −1(z) mod P(z) for all
j , i.e., the image byϕ of all vectors of successive val-
ues produced by a polynomial LCG with modulusP(z)
and multipliera(z), from all initial statesp0(z). For the
special case whereb = 2 (the most interesting case), this
corresponds to using all cycles of alinear feedback shift
register (LFSR) orTausworthegenerator with characteris-
tic polynomial P(z) (Tezuka 1995, Lemieux and L’Ecuyer
2003).

The projection ofLs over the subspace determined by
I = {i1, . . . , iη} ⊂ {1, . . . , s} is a polynomial integration
latticeLs(I ) with dual latticeL∗

s(I ) and point setPn(I ). For
primeb, one can show (Lemieux and L’Ecuyer 2003) that
rule of rank 1 withv1(z) = (g1(z), g2(z), . . . , gs(z))/P(z)
is fully projection-regular iff gcd(gj (z), P(z)) = 1 for all j ,
and that a Korobov rule, withgj (z) = a j −1(z) mod P(z),
is fully projection-regular and dimension-stationary iff
gcd(a(z), P(z)) = 1.

PLRs of rank 1 were introducedby Niederreiter (1992a
and by Tezuka (1990) forb = 2 and the special case of
an irreducibleP(z); see also Niederreiter (1992b), Section
4.4. They were generalized to PLRs of arbitrary rank ove
a finite field by Lemieux and L’Ecuyer (2003) and over the
ring Zb by L’Ecuyer (2003).

3.4 Equidistribution and Measures of Uniformity
for Polynomial Lattice Rules

Recall thatPn is calledq-equidistributed in baseb, for an
integer vectorq = (q1, . . . , qs) ≥ 0, if each box of theq-
equidissection of[0, 1)s contains the same number of points
from Pn, namelybt points wheret = k − q1 − · · · − qs if
n = bk. If this holds forq1 = · · · = qs = ` for somè ≥ 1,
we haves-distribution with ` digits of accuracy(Tezuka
1995), and the largest such̀is called thes-dimensional
resolutionof Pn. This value cannot exceedbk/sc.

These definitions also apply to projections: ForI =
{i1, . . . , iη} ⊂ {1, . . . , s}, the setPn(I ) is (qi1, . . . , qiη )-
equidistributed if each box of the (qi1, . . . , qiη )-
equidissection of[0, 1)η contains 2t (I ) points of Pn(I ),
wherek − t (I ) = qi1 + . . . + qiη . The resolution gapof
Pn(I ) is δI = bk/ηc − `I , where`I is the η-dimensional
resolution ofPn(I ).

For n = bk, Pn is called a(t, k, s)-net in base bif it
is (q1, . . . , qs)-equidistributed for all non-negative integers
q1, . . . , qs summing tok − t (Niederreiter 1992b). We call
the smallest sucht the t-valueof the net.

For ordinary lattice rules, measures of uniformity suc
as the distance between hyperplanes are obtained by co
puting a shortest vector in the dual lattice. Interestingly
this is also true for PLRs: The equidistribution and(t, k, s)-
net properties can be verified by computing the length o
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a shortest nonzero vector in the dual latticeL∗
s, with an

appropriate choice of norm.
For each integer vectorq = (q1, . . . , qs), define a length

(or distance function) ‖ · ‖−q on (Zb[z])s by

logb ‖h(z)‖−q = max
1≤ j ≤s

(deg(h j ) − qj ), (8)

for h(z) = (h1(z), . . . , hs(z)) ∈ Zb[z], where deg(h j ) is the
degree of the polynomialh j (z) and deg(0) = −∞ by con-
vention. Letσ ∗

1 = min06=h(z)∈L∗
s
‖h(z)‖−q, the length of the

shortest nonzero vector in the dual lattice. Under the assum
tion thatb is prime, it is proved in L’Ecuyer (2003) thatPn is
q-equidistributed iffσ ∗

1 ≥ 1. In particular, thes-dimensional
resolution ofPn is equal to logb min06=h(z)∈L∗

s
‖h(z)‖0. This

shortest vector with respect to the distance function‖h(z)‖0
is relatively easy to compute (Tezuka 1995, Couture an
L’Ecuyer 2000).

The t-value of Pn can also be obtained by computing
the length of a shortest nonzero vector in the dual lattic
with a different definition of length. Forh(z) ∈ Zb[z],
define‖h(z)‖π by

logb ‖h(z)‖π =
s∑

j =1

deg(h j )

and let τ ∗
1 = min06=h(z)∈L∗

s
‖h(z)‖π . Then thet-value of

Pn is equal tok − s + 1 − logb τ ∗
1 (Niederreiter and Pirsic

2001, L’Ecuyer 2003).
Following the discussion in Section 2 and similar to

what we suggested for ordinary lattice rules, one can co
sider for PLRs uniformity criteria of the form1J =
maxI ∈J δI (worst-case resolution gap) or maxI ∈J t∗|I |/tI
or maxI ∈J (tI − t∗|I |), whereJ is a selected class of sets
I , tI is thet-value forPn(I ), t∗|I | a lower bound on the best
possiblet-value in|I | dimensions, and with the convention
that 0/0 = 1. The choice ofJ is again arbitrary and a
matter of compromise. IfJ contains too many sets, not
only the selection criterion will be more costly to compute
but the best value that it can achieve will be larger, an
therefore the criterion will become less demanding for th
equidistribution of the more important projections. Othe
types of uniformity criteria are discussed, e.g., in L’Ecuye
and Lemieux (2002).

3.5 Lattice Rules in Formal Series OverZb

We now consider a lattice of the form

Cs =
{

v(z) =
k∑

i=1

yi ci (z) such thatyi ∈ Zb for eachi

}
,

(9)
p-

,

-

wherec1(z), . . . , ck(z) are k vectors ofL s
b,0 independent

over Zb, and letPn = ϕ(Cs) ⊂ [0, 1)s, whereϕ is defined
as before. Here, the lattice is defined overZb instead of
over Zb[z] as in (7). The setPn contains exactlyn = bk

distinct points, becauseCs ⊂ L
s
b,0.

To define the dual lattice, we first define a (non
commutative) product� in L b by

(
w2∑

`=−∞
x`z

`

)
�

 ∞∑

`=w1

y`z
−`


 =

w2∑
`=w1−1

x`y`+1

where the last sum is inZb. For x(z) = (x1(z), . . . , xs(z))
andy(z) = (y1(z), . . . , ys(s)) in L

s
b, we definex(z)�y(z) =∑s

j =1 x j (z) � yj (z). The dual lattice is then defined as

C⊥
s = {h(z) ∈ (Zb[z])s such that

h(z) � v(z) = 0 for all v(z) ∈ Cs}.

This is a lattice overZb, i.e., can be written asC⊥
s = {h(z) =∑ν

j =1 xi h j (z) such thatxi ∈ Zb for eachi } for some basis

h1(z), . . . , hν (z), whereν is the dimension ofC⊥
s overZb.

Equidistribution properties can be determined by com
puting the lengths of shortest vectors in this dual lattic
just as for PLRs (L’Ecuyer 2003). Specifically, at least fo
primeb, Pn is q-equidistributed iff min06=h∈C⊥

s
‖h‖−q ≥ 1,

the resolution ofPn is equal to logb min06=h∈C⊥
s

‖h‖0, and
its t-value is equal tok − s + 1 − logb min06=h∈C⊥

s
‖h‖π .

3.6 Digital Nets and Sequences

The lattice rules overZb defined in the previous section
turn out to be equivalent to another very well-known clas
of QMC methods: the digital nets, introduced by Sobo
(1967) in base 2, later generalized by Faure (1982), Nied
reiter (1987), and Tezuka (1995), and defined as follow
(Niederreiter 1992b). LetC(1), . . . , C(s) be matrices of
dimension∞ × k with elements inZb, for some inte-
ger k ≥ 1. They are thegenerating matricesof the net.
For i = 0, . . . , bk − 1, write i = ∑k−1

`=0 ai,`b` and de-
fine ui = (ui,1, . . . , ui,s) whereui, j = ∑∞

`=1 ui, j ,`b−` and
(ui, j ,1, ui, j ,2, . . .)

T = C( j )(ai,0, ai,1, . . . , ai,k−1)T . The
point setPn = {u0, . . . , un−1} thus obtained, withn = bk,
is adigital net overZb. Thesen points are distinct in their
first ` digits iff the`s×k matrix formed by taking the first̀
rows of eachC( j ) has rankk. The matricesC( j ) can also be
defined with an infinite number of columns: we then hav
an infinite sequence of points, called adigital sequence,
whose firstbk points form a digital net for each integerk.
In concrete implementations, it is worth considering on
a finite number of rows of eachC( j ), because of the finite
precision of computers.
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Digital nets and sequences can in fact be defined ov
an arbitrary commutative ringR of cardinalityb, with an
identity element. It suffices to define bijections betweenR
and Zb to map the digits of theb-ary expansion ofi to
elements ofR and to recover theb-ary digits ofui, j from
elements ofR (Niederreiter 1992b, L’Ecuyer and Lemieux
2002). A similar generalization also applies to lattices rule
in formal series by incorporating the bijections fromR to Zb

into ϕ. However, the result is no longer a lattice overZb or
Zb[z]. Here, we assume thatR = Zb and that all bijections
are the identity, which is usually the case in practice.

For the latticeCs defined in (9), if we write the ba-
sis vectorsci (z) = (ci,1(z), . . . , ci,s(z)) where ci, j (z) =∑∞

`=1 c( j )
`,i z−`, and letC( j ) be the∞ × k matrix with ele-

mentsc( j )
`,i then it turns out that this methods yields exactly

the same point set as the digital net in baseb with generat-
ing matricesC(1), . . . , C(s) (L’Ecuyer and Lemieux 2002,
L’Ecuyer 2003). In other words, a lattice rule in formal
series overZb is just an alternative definition of a digital
net overZb, with identity bijections. These digital nets are
thus lattice rules in an appropriate space.

Several special cases of digital sequences (from whic
digital nets can be extracted by taking the firstn = bk points
for anyk) have been proposed over the years. The matric
C( j ) are normally chosen on the basis of some uniformit
criterion, which is often thet-value.

In the original construction of Sobol’ (1967) each matrix
C( j ) is filled up using a recurrence with primitive charac-
teristic polynomial f j over the finite fieldF2, where the
f j are all distinct and have small degree. The initial state
of these recurrences are called thedirection numbersand
their choice may have a significant impact on the quality o
the point set. Specific values are suggested by Sobol’ a
Levitan (1976) and used in the implementation of Bratle
and Fox (1988). These values have been chosen so thatPn

hass-distribution with one bit of accuracy whenn = 2s

and two bits of accuracy whenn = 4s. Equidistribution for
other equidissections was not examined.

In the construction of Faure (1982) and its generaliza
tions, the basisb is the first prime larger or equal to the
dimensions andC( j ) = A j P j −1 whereP is the transposed
Pascal matrix, with element(i , j ) equal to

( j −1
i−1

)
, andA j

is an arbitrary non-singular lower-triangular matrix. The
resulting point set has the remarkable property of being
(0, k, s)-net (i.e., has the best possiblet-value) whenn = bk

for any k. Noticing that Faure’s construction is not practi-
cal for larges because it would require too many points
Niederreiter (1988) has proposed a construction whereb is
a prime power, but can be smaller thans, and where the
t-value is reasonably small whenn = bk. More recently,
Niederreiter and Xing (1997) proposed a new class of digit
net sequences with optimal asymptotict-value as a function
ncy
r

h

s

d

-

a

l

of s andn, for a fixedb. These sequences improve on th
t-value of Sobol’s sequence forb = 2.

The Salzburg tables(Pirsic and Schmid 2001) list the
best parameters found for the special case where the dig
net is a Korobov PLR, in an attempt to optimize itst-value.
Other sets of parameters for PLRs, chosen via a criteri
of the form1J defined earlier, can be found in Lemieux
and L’Ecuyer (2001) and L’Ecuyer and Panneton (2002)

3.7 Variance Expressions and Bounds for Randomized
Nets and Lattice Rules in Formal Series

Randomly shifting a set inL b corresponds to adding a
random formal series to all series in the set, by addin
the corresponding coefficients inZb. In the point setPn,
this transposes to a random digital shift in baseb. As
mentioned in the introduction, this type of shift preserve
the equidistribution of everyq-equidissection in baseb.

A variance expression similar to (6) is available fo
(randomly) digitally-shifted lattice rules in formal series
(Lemieux and L’Ecuyer 2003, L’Ecuyer and Lemieux 2002
The Fourier expansion and coefficients are replaced by Wa
expansion and coefficients. Just as for ordinary lattice rule
these expressions suggest that the integration lattices sho
be selected so that their dual lattice does not contain sh
vectors.

Randomly shifting a point set provides an unbiase
estimator ofµ with a minimal amount of randomization
and “perturbation” of the point set. However, more ran
domization can in some cases reduce the variance. Ow
(1995) has proposed a randomization method callednested
uniform scrambling, for digital nets, which randomly per-
mutes the values{0, . . . , b − 1} used for the digitsui, j ,`,
independently for each coordinatej , as follows. One uses
a first permutation for̀ = 1. For ` > 1, one uses a
different permutation for each possible value of the pre
ceding` − 1 digits ui, j ,1 · · · ui, j ,`−1. To scramble the first
` digits thus requires(1 + b + · · · + b`−1)s permutations,
and all these permutations are independent. Owen (199
has shown that for smooth enough functions (whose mix
partial derivatives satisfy a Lipschitz condition) the vari
ance is inO(n−3(logn)s). With a random digital shift, the
bound is O(n−2(logn)s) instead (L’Ecuyer and Lemieux
2002). However, nested uniform scrambling is much mo
expensive to apply than the digital shift. Several other le
expensive scramblings have been proposed whose amo
of randomization lie somewhere in between these two; s
Owen (2003) for an overview and a discussion.

4 CONCLUSION

We have reviewed the most commonQMC methods and th
randomizations, in the framework of lattice rules in differen
spaces. These methods can be used to improve the efficie
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of simulations. Numerical illustrations of their application
and effectiveness can be found in several of the referenc
given below. On-going work on these methods include
among other things, making computer searches for go
parameters in terms of various selection criteria, developin
extensive general-purpose software tools for QMC, studyin
the effectiveness of QMC methods and comparing them f
specific classes of applications, developing QMC rules th
may adapt to the integrand, and studying how the metho
can be made more effective for high-dimensional problem
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